ICRA'09 Paper Abstract

Close

Paper FrB6.1

Rottmann, Axel (University of Freiburg), Burgard, Wolfram (University of Freiburg)

Adaptive Autonomous Control Using Online Value Iteration with Gaussian Processes

Scheduled for presentation during the Regular Sessions "Learning and Adaptive Systems - II" (FrB6), Friday, May 15, 2009, 10:30−10:50, Room: 404

2009 IEEE International Conference on Robotics and Automation, May 12 - 17, 2009, Kobe, Japan

This information is tentative and subject to change. Compiled on January 21, 2022

Keywords Learning and Adaptive Systems, Adaptive Control, Aerial Robotics

Abstract

In this paper, we present a novel approach to controlling a robotic system online from scratch based on the reinforcement learning principle. In contrast to other approaches, our method learns the system dynamics and the value function separately, which permits to identify the individual characteristics and is, therefore, easily adaptable to changing conditions. The major problem in the context of learning control policies lies in high-dimensional state and action spaces, that needs to be explored in order to identify the optimal policy. In this paper, we propose an approach that learns the system dynamics and the value function in an alternating fashion based on Gaussian process models. Additionally, to reduce computation time and to make the system applicable to online learning, we present an efficient sparsification method. In experiments carried out with a real miniature blimp we demonstrate that our approach can learn height control online. Further results obtained with an inverted pendulum show that our method requires less data to achieve the same performance as an off-line learning approach.

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2022 PaperCept, Inc.
Page generated 2022-01-21  08:43:42 PST  Terms of use