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Background

Learning object and language [Nakamura+ 15]

Place concept formation [Taniguchi+ 17]

Formation of integrated concepts with
object and motion [Attamimi+ 14]

} Our group has developed many multimodal learning 
models based on probabilistic models
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Learning object concepts and language model
} Multimodal information is classified into categories (MLDA)

} Robot obtain multimodal (visual, auditory and haptic) information by 
observing, grasping and shaking objects

} User teaches object features by speech

} We assumed robot does not have predefined language knowledge
Parameters of speech recognition (SR) are learned simultaneously
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Speech recognition (SR)
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Spatial Concept Acquisition [Taniguchi+ 2017]

} Taniguchi et al.  proposed more complicated model
} Robot builds a map using SLAM and simultaneously learns:

} space name and appearance (MLDA),  space region (GMM),  
parameters of speech recognition (LM)

SLAM

GMM

MLDA

Speech
recognition
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Multimodal Learning=Complementary Learning

} This model is constructed by connecting two models:
} Speech recognition and clustering (latent Dirichlet allocation)

} Shared variable !" is determined with mutual influence
} Possibility that speech # is recognized as !"

} Possibility that !" is co-occurred with category $

Visual, auditory and
haptic information

Speech signal
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Background
} These models are also constructed by connecting small-

scale models 
Speech 
recognition MLDA

MLDA

MLDA

MLDA

SLAM

GMM

MLDA

Speech
recognition

• Latent variables are shared with two models
• Shared variable is determined with mutual influence

The parameters are optimized complementarily831



} These models have complicated structure
} To realize human-like learning models, much more 

complicated models are required

} Framework to easily construct models is required

Implement it with 
the programing

Problem in Constructing Models

Formulate the
learning system

Drive equations 
for parameter 

inference

This part becomes more difficult
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SERKET
} To easily construct multimodal learning models, 

we have proposed the framework SERKET

} Shared latent variables are optimized with mutual 
influence on each model
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SERKET
- Modularizing
- Connecting
- Inference
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Modules in SERKET
} Each module has observations and latent variables
} Models are constructed by connecting  shared latent variables of 

modules hierarchically

} Parameters are estimated by communication between modules 
while programmatic independence maintains

Module(m, n)

Shared Latent VariableObservation

Bayesian model

Hierarchically
connected

834



Estimation of shared latent variables
} Parameters are estimated by exchanging messages

} By executing this procedure sequentially in each module�
the parameters are optimized mutually

} Currently, two methods are implemented for message exchange

1. Receive messages from other modules and
latent variable !",$ and parameters are updated

2. New messages are sent to other modules 
based on updated parameters

Module(m, n)

Shared Latent VariableObservation
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Parameter optimization 1 
} Message Passing (MP) Approach

} Assume that ! is determined with mutual 
influence :   ! ∼ # ! Θ%, Θ', (

∝ # ! Θ% #(!|Θ', ()
} Module 1→Module 2:

- Module 1 sends # ! Θ% to Module 2
- Module 2 updates Θ' using # ! Θ%

} Module 2→Module 1:
- Module 2 sends #(!|(, Θ') to Module 1
- Module 1 updates Θ% using #(!|(, Θ')(

!

Θ%

!

Module 1

Module 2

Θ'

Θ%�Parameters of Module 1
Θ'�Parameters of Module 2
! �Shared latent variables
( �Observation
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Parameter optimization 2 
} Sampling Importance Resampling (SIR) approach

} In the case that ! has a large number of 
possibilities such as speech recognition 
results       Monte Carlo approximation

} Module 2 generates samples !" and sends
them to Module 1

!" ∼ $(!|Θ(, *)
} Module 1 resamples based on $(!|Θ,) and

sends selected samples !∗ to Module 2

} Parameters are updated using selected !∗
*

!

Θ,

!

Module 1

Module 2
�e.g.�speech recognition �

Θ(
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Implementation Examples
} We confirm that integrated models by SERKET improve 

their performance
} Used modules: 

} Variational Auto-Encoder (VAE)
} Gaussian Mixture Model (GMM)
} Multimodal Latent Dirichlet Allocation (MLDA)
} Markov Model (MM)
} Speech Recognition (SR)

} Multimodal Dataset�
} Image�MNIST
} Speech�Spoken Arabic Digit Dataset
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Implementation Examples
} Five examples

1. VAE+GMM
2. VAE+GMM+MLDA
3. VAE+GMM+MLDA+MM
4. Model for language acquisition by robots
5. Model for learning object feature extractor by robots

We share Jupyter notebook that you can 
execute on the Google Collaboratory

http://iros20.naka-lab.org/
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Example1�VAE+GMM
} Unsupervised image classification 

Image data: MNIST (784 dims)

• Dimensional compression by 
VAE (18 dims)
• Classification by GMM
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Example1�VAE+GMM

VAE

GMM

Source code

Features extracted
from images

Category

# Load observations 

# Define modules 

# Define connection between modules 

# Optimize the parameters
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Example1: Mutual learning of VAE and GMM

Standard VAE: ! = #

Compute     of cluster

784 dimensional observations
are compressed into 

18 dimensional      

is estimated using modified ELBO
and received  

} Modified evidence lower bound (ELBO) of VAE

GMM

VAE

Latent space suitable 
for classification can be learned 

with mutual influence
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Example1: Classification Results

Mutual
learning

average best

- 0.477 0.478

� 0.503 0.568

Latent variables compressed by PCA
�18 dims→2 dims�

w/o mutual learning w/ mutual learning

• Latent space suitable for 
classification was learned with 
mutual influence
•Classification accuracy increased

Estimated class index
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average:  Average of 10 trials
best: The �����
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�����

Adjusted Rand Index (ARI)
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Example2: VAE+GMM+MLDA
} Unsupervised classification of image and speech

Pairwise dataset of image and speech

• Multimodal data is classified in 
unsupervised manner
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Example 2: VAE+GMM+MLDA

���

���

����

Source code

Learn correspondence
between image and speech

# Load observations 

# Define modules 

# Define connection between modules 

# Optimize the parameters
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Example 2: Classification Results

Mutual
learning

average best

- 0.604 0.638

� 0.637 0.735

Classification accuracy improved by 
multimodal learning 
using images and speech

Estimated class index
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Only image Multimodal

Adjusted Rand Index (ARI)
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Example 3: VAE+GMM+MLDA+MM
} Category and their sequence rules are learned

Arranged pairwise
data in ascending order

• Unsupervised classification of 
multimodal data
• Learning their transition rules 
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Example 3: VAE+GMM+MLDA+MM

���

���

����

��

Suorce code

Learning transition rules

# Load observations 

# Define modules 

# Define connection between modules 

# Optimize the parameters
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Example 3: Classification Results

Mutual 
learning

average best

- 0.575 0.524

� 0.834 0.980

Classification accuracy significantly 
improved by learning transition rules

Estimated class index
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Confusion Matrix

Multimodal
+ transition

average:  Average of 10 trials
best: The �����
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Estimated class index
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Conclusion of Example 1,2 and 3

VAE+GMM VAE+GMM+MLDA VAE+GMM+MLDA+MM

average 0.503 0.637 0.834

VAE-GMM VAE-GMM-MLDA VAE-GMM-MLDA-MM
Estimated class index
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Estimated class index
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+ transition

Confusion Matrix

Adjusted Rand Index (ARI)

Complementary learning is realized by using SERKET
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Example 4: Model for language acquisition
} Unsupervised classification of multimodal dataset

} Robot obtain multimodal (visual, auditory and haptic) information by 
observing, grasping and shaking objects

} User teaches object features by speech

} We assumed robot does not have language knowledge
Parameters of speech recognition (SR) are learned simultaneously

Categorization of
multimodal information
S

peech
sign

als
V

isu
al, au

dio
h

aptic in
form

ation

Concepts,
word meanings

Bottle
Drink

Plushie
Soft

This / is / a / bottle

Learning parameters
of speech recognition

Observing, grasping, and shaking

User’s utterances 

Mutual
learning
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Example 4: Model for language acquisition
} Learn not only categories but also language model (LM)

} Language model and object categories are learned mutually

Visual, auditory and
haptic information

Speech signal

Speech Recognition (SR)

Latent Dirichlet Allocation (LDA)

This is plastic 
bottle

Recognized 
strings

Bottle
Drink
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Example 4: Learning of LM
} SIR is used for learning language model

SR

MLDA

Samples speech 
recognition results

- Learn parameters of MLDA
- Compute

- is determined by resampling
based on 

- Update parameters of LM
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Example 4: Classification Results
} Classify 50 multimodal data

} Classification accuracy
} w/o mutual learning: 80%
} w/ mutual learning: 94%

} Speech recognition accuracy
} w/o mutual learning: 64%
} w/ mutual learning: 74%

Classification and speech 
recognition accuracies improve 

by multimodal learning 
based on SERKET
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Example 5: Model for learning object feature  
extractor by robots

} We used a dataset obtained through the robot observed 
objects and the human taught object feature by speech
} # of the objects: 499
} # of the categories: 81 

} Words and images were used in this example
} Words

} The speech was recognized by phoneme recognizer
} Recognized strings were segmented into words by unsupervised word 

segmentation (NPYLM)

} Images
}
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Example 5: MLDA+VAE
} The model to learn object categories and image features 

from words and images

���

����

words

Image features
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Example 5: Classification Results
} Compare with the model where pre-trained CNN is used 

for feature extractor
} Classification accuracies:

} Integrated model of VAE and MLDA: 67.8%
} Model with pre-trained CNN: 66.8%

} Learned latent space: 

} Suitable latent space for classification were learned

w/o mutual learning w/ mutual learning
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Example 5: Cross modal inference
} Images were generated from words input

} Images that represent the characteristics of the categories 
were generated 
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Conclusion
} We implemented VAE, GMM, LDA and MM modules, and 

integrated model with them

} We showed implementation examples and it is easy to 
construct the integrated models

} Accuracy improved by mutual influence of modules

} Moreover, we implemented speech recognition module and its 
integrated model

} Future work

} Integrate deep neural network using Pixyz

} Improve the efficiency of parameter inference
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