2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

(_g¥ THE UNIVERSITY OF TOKYO

YNBE=RR T S

Matsuo Lab., the University of Tokyo

Pixyz: a framework for developing deep generative models

Masahiro Suzuki

Project assistant professor, the University of Tokyo

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 780

A brief description of deep generative models
Pixyz: a framework for developing deep generative models

Tutorial with Jupyter notebook

781

A brief description of deep generative models

782

What you can do with deep generative models

e
Ba==

A stop sign is flying in
blue skies. [Zhu + 17]

Observation 1

[Mansimov+ 15]

i went to the store to buy some groceries .

i store to buy some groceries .

i were to buy any groceries .

horses are to buy any groceries .

horses are to buy any animal .

horses the favorite any animal .

horses the favorite favorite animal .

horses are my favorite animal .

Figure 1: Class-conditional samples generated by our model. 783 [ESlami+ 18]
[Brock+ 18] [Bowman+ 15]

Observation 2 Observation 3

Generative Models

(Probabilistic) generative models :

O Assume that observed variables (data) are generated from some stochastic models, and that
the generating processes are modeled by probability distributions.

Latent variables are often assumed to be factors behind the observed variables.
O Explicitly show "how the data are created".

4 A
' ' S. ‘f 3 Observed variable Latent variable Z~p(Z)
75353 _ | }
5590 6 gereaon] | p@) = [pyGlnpedz | x~rocin
3 5 3 O O Pa::meter
Observed data X Generative model)

78%

Training of Generative Models

Suppose there is a true distribution of training data: pgatq (x).
O Note: this distribution is not actually obtained.

Train the generative model pg(x) to approximate the true distribution pg¢q(%).
O = finding the parameter 0 for the closest approximation.

Pdata(X) “ > P (x)

785

Training of Generative Models

Usually, the “distance” is measured with Kullback-Leibler (KL) divergence:

Dt [PatataCOIIPo (0] = ~Eppy 0 [106P24422) > —Ep 108 0 ()]

KL divergence log-likelihood function
= how “good” the model given data

Minimizing KL divergence & maximizing log-likelihood function

Therefore, the optimized parameter 8 is obtained as follows (maximum likelihood estimation)

A

N
1

6 = arg meaxﬁz log pg(x,,), where x,~pgaaeq(x)

n=1

. . 786
O Note: we use sample approximation to calculate the expected value.

What generative models can do

Generative

Generation : model

O If generative models are well trained, they can generate
unseen data.
Density estimation :

O We can estimate how well the sample fits the model.
O Outlier detection and anomaly detection

Imputation :

http://jblomo.github.io/datamining290/slides/2013-04-26-
Outliers.html

O Completing missing values of data.

—

787

Deep generative models

If the observed variables are complex, these generating processes cannot be directly
expressed with simple probability distributions.

O When the observed variable is a vector and the dependency between its elements
(dimensions) is nonlinear (e.g., high-resolution images).

O How to represent such nonlinear relationships? -> deep neural networks (DNNSs)

Deep generative models (DGMs)
O Generative models of which probabilistic distributions are parameterized by DNNs.

O They can be learned end-to-end from complex inputs. p (x |Z)
Generative processes can by represented explicitly ; —| Generatve | .
(generative models)
+
Non-linear relationships can be captured
(DNNs) 788

deep neural networks

Various deep generation models

Learning model Likelihood estimation of Generation Inference
generative models
VAEs Generative model: p(x,z) = [p(x|z)p(z)dz Not directly possible Low cost Possible (inference model)
Inference model; q(z|x) (ELBO can be estimated)
GANs Generator: G(z) Impossible (the Low cost Impossible (or possible with
Discriminator: D(x) discriminator estimates an encoder)
the density ratio)
Autoregressive Conditional model: [1; p(x4lx1, -, Xq-1) Possible High cost There are no latent
models variables
Flow-based models | Flow (invertible function): x = f(z) Possible Low cost Possible (inverse
transformation)
Diffusion models Inverse process: p(x7) [T p(Xe—11X¢) Not directly possible High cost Possible (diffusion process)
Diffusion process : [], q(X;|X¢—1) (ELBO can be estimated) | (iterative)
Score-based Score network: s(x) Not directly possible (log- | High cost There are no latent
models likelihood gradient can (iterative) variables
be estimated)
Energy-based Energy function: E(x) Interactable (because of | High cost Depends on the model
models thespartition function) (iterative) design.

10

Variational Autoencoder

Variational autoencoders [Kingma+ 13, Rezende+ 14]
O Deep generative model with a latent variable
O Both inference and generative models are parameterized by DNNs.

Infer_ence_ m_ode_:l Generative model
(Gaussian distribution) (Bernoulli distribution)
46 (Z1%) = Nzl = g (0, 0 = g§(x) z~p(2) po(x|z) = B(x|1 = fo(2))
o A VA

|
Qe (z|x) | X ~Po(x|2)
|

I OO0 - OO0

OO0 - OO0

790

Variational Autoencoder

Objective function of VAEs
O Lower bound of the log-likelihood function

log pg (x) = Eq,(z1x)[108 Pe (x]2)] = Dk1[q4 (z1%) | po(2)]

Negative reconstruction loss Regularization for inference

VAE encodes input x into z with an inference model and decodes (reconstructs) x
from z with a generative model.

O The inference model and the generative model can be regarded as an encoder and a decoder
in autoencoders.

Latent variable Reconstruction
Input

X |$ Encoder q(z|x) f}) z |$ Decoder p(x|z) f}) X

791

12

Generated images from VAES

Sampling images from random z
O These tend to be blurred.

-
O~
.
=

LW Py W
SO\ PUNmeL .
SN0 NWOvan in
Do~y M W
aQbhuyrveY\ ~wih
Q~AN VLYY ~o

WOy O\~ Y
~hHhwOIN0H o
N0 P\ (v
OOV e LYW

792
[Kingma+ 13] @AlecRad

Generated images from VAES

Nouveau VAE (NVAE) [Vahdat+ 20]

O Hierarchy of latent variables in VAE. 2
O Advantages:

Acquire hierarchical representations ?
Improve the expressive power of the model
More flexible inference

(d) CelebA HQ (t = 0.6) (e) FFHQ (t = 0.5)

14

VAEs and representation learning

VAEs learn not only the reconstruction but also the representation z~q (z[x).

O In DGMs, representation learning is equivalent to inference.
O VAEs are an excellent representation learning method.

Want better representation than plxels

(:,\ (:3 prodict hutur
Representation learning: \W . SR .. B -
. R il OFHO 0
O Obtain "good representation” from the data (preferably unsupervised) ' S
u What IS "good representa’tlon"? of—dis‘entang‘led—represénlations—from—video:creativé—ai—meetup) ’

A representation that not only preserves the properties of the original data but can also
be used for other tasks.

O Meta-Prior [Bengio+ 13, Goodfellow+ 16]
Assumptions about the properties of representation that can be used for many tasks

e.g., manifold, disentanglement, hierarchy of concepts, semi-supervised learning,
clustering, etc. 794

15

Disentangled representation

The assumption that data are generated from factors that vary independently

O Advantage: O o
. s OO *
Easy for humans to interpret (acquisition of "concepts") W e OO b = Color
! - O /4 D Pose
84 2 |~

Potential for use in a variety of tasks

https://www slideshare.net/lubaelliott/emily-denton-unsupervised-learning-of-disentangled-
representations-from-video-creative-ai-meetup

Disentangled representation can be obtained by regularizing the inference[Higgins+ 17]

(a) Skin colour (b) Age/gender (c) Image saturation

-1-4:3000

16

Multimodal learning

We use multimodal information to perform more reliable information processing than
single modality information.

Robots also acquire various types of information from multiple sensors.
O Video, audio, angle, acceleration, etc.

Microphone Arra
P . Force-Torque Sensor

Y Wide-Angle Camera
L _
Gripper

Vacuum Pad

RGB-D Camera
Display

Stereo Camera

Wide-Angle Camera

-—

https://www.youtube.com/watch?v=SQSmaVzZEXso (HSR)

We want to make decisions and predictions using multi-modal data in machine
learning.

= Multimo®al learning

Joint DGMs

Joint DGMs: DGMs modeling the joint distribution of modalities p(x, y)

O After learning, this might perform generation with arbitrary conditioning (bidirectional
transition): p(x|y), p(y|x)
O This latent variable obtains a joint representation of all modalities.

Joint representation

p(x,y)

797

18

Missing modality problem

To infer representation from one modality, the other modality needs to be missing.

()

encoder

If the amount of information on the missing modality y is large, it may not be
possible to properly infer z from only x, resulting in a collapsed representation
(missing modality problem).

O This prevents arbitrary conditioning.
798

19

JMVAE

We prepare encoders for each modality, q(z|x) and g(z|y), and learn them to
approximate the original VAE encoder, q(z|x, y).

Eq,(zlx, y)[108Po (x,¥12)] — Dx1[qy (2%, y) Il Po(2)] —Dk1[qy (2%, y) I 42 (2|x)] —Dk1[qe (z]x, y) Il g2 (2]y)]

approximate the encoder of each modality to
the original encoder

Dk, Dk, @
7 —>

X y y

original objective

encoder

After training, we can use each trained encoder, q(z|x) and q(z|y), to infer properly
from a single modality.

=> IMVAE#suzuki+ 17]

20

JMVAE

We can obtain the joint representation and perform bidirectional generation.
O e.g., images (x) and attributes (y)

20

Base
15 .. 6 e®*s Not Male
" Generated Mouth
10 | @ . Input attributes Average face Reconstruction Not Male Eyeglasses Not Young Smiling slightly open
.| e 0 T .
il iy . v
L] .

.t

B
£l

o I
E

e Mg HEdadad4

_ _ Bi-directional generation (arbitrary conditioning)
Joint representation

We applied it to semi-supervised learning [Suzuki+ 18] and zero-shot learning [Suzuki+ 18]

Recent works can deal with more than two modalities.
O Multimodal variational autoencoder (MVAE) [W&® 18] (not our work)

21

Various deep generation models

Learning model Likelihood estimation of Generation Inference
generative models
VAEs Generative model: p(x,z) = [p(x|z)p(z)dz Not directly possible Low cost Possible (inference model)
Inference model; q(z|x) (ELBO can be estimated)
GANs Generator: G(z) Impossible (the Low cost Impossible (or possible with
Discriminator: D(x) discriminator estimates an encoder)
the density ratio)
Autoregressive Conditional model: [1; p(x4lx1, -, Xq-1) Possible High cost There are no latent
models variables
Flow-based models | Flow (invertible function): x = f(z) Possible Low cost Possible (inverse
transformation)
Diffusion models Inverse process: p(x7) [T p(Xe—11X¢) Not directly possible High cost Possible (diffusion process)
Diffusion process : [], q(X;|X¢—1) (ELBO can be estimated) | (iterative)
Score-based Score network: s(x) Not directly possible (log- | High cost There are no latent
models likelihood gradient can (iterative) variables
be estimated)
Energy-based Energy function: E(x) Interactable (because of | High cost Depends on the model
models th&dpartition function) (iterative) design.

22

Pixyz: a framework for developing deep generative models

802

23

How to implement deep generative models?

Libraries for implementing deep neural networks
O Tensorflow (Keras) , PyTorch, etc.
O Many of deep generative model studies use one of these libraries.

Since these are not treated as probabilistic models, it is difficult to implement complex deep
generative models.

Their implementation differs from person to person and tends to difficult to read.

Probabilistic programing languages
O Libraries for designing and learning (inference) about probabilistic models.

Stan[Gelman 12], PRISM, PyMC3[Salvatier 16] (PyMC4) , Edward[Tran+ 17] (Edward 2),
Pyro[Bingham+ 18], Tensorflow probability

O TensorFlow Probability, Edward, and Pyro can be implemented by mixing DNNs and probability
distributions.

Tensorflow Probability and Edward: based on Tensorflow

Pyro: based on PyTorch 503

24

Implementation example of deep generative model with

probabilistic programming language

Design a generative model by describing the generative processes of variables.
O Edward (v1)

MODEL Generative model
z = Normal(loc=tf.zeros([FLAGS.M, FLAGS.d]l), 7 ~ (Z)
scale=tf.ones([FLAGS.M, FLAGS.d])) p z ~p(z)
hidden = tf.layers.dense(z, 256, activation=tf.nn.relu) A
x = Bernoulli(logits=tf.layers.dense(hidden, 28 x 28)) } X~ Peo (XlZ) |
oM E ~ po(x|2)
(]q, Z|X I
INFERENCE -
x_ph = tf.placeholder(tf.int32, [FLAGS.M, 28 % 28]) |
hidden = tf.layers.dense(tf.cast(x_ph, tf.float32), 256, Inference model
activation=tf.nn.relu) - ZNChp (le)

qz = Normal(loc=tf.layers.dense(hidden, FLAGS.d),
scale=tf.layers.dense(
hidden, FLAGS.d, activation=tf.nn.softplus))

Bind p(x, z) and q(z | x) to the same TensorFlow placeholder8f4r x.

inference = ed.KLqp({z: qz}, data={x: x_ph}) Learnlng (lnference)

25

Challenges in implementing deep generative models

Probabilistic programming languages are rarely used in recent deep generative model studies.
O Recent deep generative models are very complexed
TD-VAE[Gregor+ 18]: A sequential deep generative model with multiple inference distributions
(E}b b [1ng (xt2 ’th) + long <Zt1 ’btl) + logp (Zt2lzt1) - long (Zt2 ’btz) - logq (Zt1 ‘thbtubtz)] =i = . o e
g\ 2ty 5%ty |0ty ,0ty E==| o
[Gregor+ 18]
FactorVAE[Kim+ 18]: Adversarial learning is used to estimate the regularization term of VAE
inference.

[Kim+ 18]

26

Features of deep generative models

We focus on the following features of the deep generative models compared to the
normal generation models.

Feature 1: DNNs that compose DGMs are encapsulated by probability distributions.

Feature 2: Model structure and regularization are described in the objective function
(loss function), which is optimized using gradient methods (e.g., SGD).

806

27

Feature 1: Encapsulation of DNNs by probability distribution

The probability distributions on the deep generative models are parameterized by DNNSs.
O ->Each DNN structure is encapsulated by a probability distribution.

In recent papers of complex deep generative models, the details of DNN are not mentioned
in the description of the model.

O TD-VAE[Gregor+ 18]

E

q(Ztl azt2 |bt1 abt2

log p (z¢,|2t,) +1ogpB (21, |bt,) +10gp (24, |21,) —log pB (21,]bs,) — log q (24, |2t,, bty , by,)]

-> We need a framework that allows us to implement generative models by manipulating
probability distributions without considering the structure of DNNSs.

807

28

Difference in parameterization of probabillity

distribution by DNNs

The way of representing the probability distribution by DNNs differs depending on the type
of deep generation model.

"1. Model the conditional distribution p(x|2).
O implicit (GANs) or explicit(VAEs). x~p(x|z) & x = f(2)
(2. Model p(x) directly. b A
O Auto-regressive models : p(x) = np(xilxl' o Xit)
the product of conditional distributions i=1
O Flow-based models : - df (x)
change of variables p(x) =p(f() |—
L J

To handle various deep generation models in a unified manner, differences in
parameterization should be concealed wigh probability distributions.

29

Feature 2: Model definition by the objective function

In the deep generative models, the objective function to be optimized is explicitly set.
O Allinference and regularization of variables in the model are added to the objective function.
O FactorVAE:

. i:; [y o o (012)] = KL (1 (169 16))] 2K L(a(a) (=)

Reconstruction Regularization of representation

O In the context of deep generative models, model design = objective function definition

-> We need a framework that can easily define the objective function
from the probability distribution.

809

30

Features of deep generative models

We focus on the following features of the deep generative models compared to the
normal generation models.

Feature 1: DNNs that composes the deep generative models are encapsulated by
probability distributions.

Feature 2: Model structure and regularization are described into the objective function
(loss function), which is optimized using gradient methods (e.g., SGD).

810

31

Features of deep generative models

We focus on the following features of the deep generative models compared to the
normal generation models.

Feature 1: DNNs that composes the deep generative models are encapsulated by
probability distributions.

=> A framework that can encapsulate DNNs with probability distribution (Distribution API)

Feature 2: Model structure and regularization are described into the objective function
(loss function), which is optimized using gradient methods (e.g., SGD).

=> A framework that can easily define the objective function from the
probability distribution (Loss API) and can train it (Model API) .

We propose to implement deep generative models
with a combination of APIs considering each feature.

32

Features of deep generative models

Pixyz

Pixyz: PyTorch-based library specialized for deep generative models.
O We focus on making it easier to implement and use complex deep generative models

O Step-by-step implementation with three APIs. "\O\
O The upper API is independent of the lower API. / P (‘ X y Z)
Model API (pixyz.models) 6 p— aaL(x; 6,9)
Train the loss function and evaluate it a0
Loss API (pixyz.losses) , _ po(x,2)
Define a loss function using distributions £0x;6,0) = ~Eqycaiollog 94 (2 x)]
) W
[The lower APl is hidden —
in the upper one. J
Distribution API (pixyz.distributions) p(x,2) = p(x|2)p(2)
Define distributions using DNNs, flows, etc. q(z|x)
DNN modules Flow modules Autoregression modules
(torch.nn.modules) (pixyz.flow§)|3 (pixyz.autoregressions)

34

Implementation of VAE (1. Distribution API)

Define the probability distribution by DNN
O Inherit the pixyz.Distribution.
O Itis almost the same as the usual PyTorch implementation.

inference model q(z|x)
generative model p(x|z) class Inference(Normal): zZ ~ p(Z)
class Generator(Bernoulli): def __init_ (self):
def init_ (self): super(Inference, self).__init_ (cond_var=["x"], var=["2"], A
super(Generator, self).__init__(cond_var=["z"], var=["x"], self:Fel w nn:LiNear(784::168) Gt B |
name="p") self.fc31 = nn.Linear(100, 64) 1 X ~ p@ (xlz)
self.fcl = nn.Linear(64, 784) self.fc32 = nn.Linear(100, 64) q (le)
% [
. def forward(self, x):
def fo’:ward\([felf{) .Z.?'t e WIS h = F.relu(self.fcl(x)) 1
return probs’i: torch.sigmoidisell. fcliz return {"loc": self.fc31(h), "scale": F.softplus(self.fc32(h))}
p = Generator().to(device) q = Inference().to(device)
— . — i — . — 2 _ H
pe(x|z) = B(x; 2 = g(z)) (Bernoulli) dp(zlx) = N (z; 0 = fu(x), 02 = f 2(x)) (Gaussian)

Define probability distribution without DNN

brior = Normal(loc=torch.tensor(@.), scale=torch.tensor(1.),
var=["z"], features_shape=[z_dim], name="p_{prior}").to(device)

p(2) = N'(20,1) (Gaussian)

35

Implementation of VAE (1. Distribution API)

The Distribution API can represent joint distributions by multiplying the distributions.

po (x,2) = pe(x|2)p(2) p_joint = p * prior

samples = p_joint.sample(batch_n=64)
print(samples)
X,Z~Dg (X,Z) {'z': tensor([[@0.7152, -1.4977, -0.0758, ..., 1.1506, 0.4569, -1.4079],

[-1.4547, ©.7707, 1.2808, ..., -1.0872, -2.3142, -0.2347],
[0.9625, -1.1309, 1.2302, ..., 0.4613, -0.1019, 0.7201],
e
[0.3662, ©0.2852, 0.3178, ..., 0.2123, -2.9080, 1.3641],
[-0.6231, -0.4798, -0.7857, ..., —-0.2356, 0.4331, 0.5930],
[-1.2890, -0.0230, 1.3472, ..., 0.7161, -0.6847, -1.0407]]1), 'x': tensor([[1l., 0., 1., ..., €
[Ley: @y Lo wwwm Tow Quy 05
[6.. 0., 1.. ..., 1., 0., 1.].

The modeled distribution can be confirmed with “print”.

print_latex(p_joint)

p(x,z) = p(xlzgpprior(z)

Implementation of VAE (2. Loss API)

Loss API defines “Loss classes” with Distribution classes as an argument.
O We can calculate between Loss.
-> We can convert the equation written in the paper directly into the implementation.

The objective of VAE : E,, . [—Dki[q,(z]x) Il p(2)] + Eq,zix) [log pg (x]2)1]

elbo = (-KullbackLeibler(q, prior) + E(q, LogProb(p))).mean()

Loss class Loss class

The defined “Loss” can also check what objective function is implemented by printing.

print_latex(elbo)

mean (—Dg; [Q(Z|x)||Pprim&Z)] + Egiz10) [log p(x |z)])

37

Implementation of VAE (2. Loss API)

The value of Loss can be evaluated by giving data (= lazy evaluation)

training data (tensor)

loss.eval({"x": x})

tensor(565.5946, grad_fn=<MeanBackwardo>)

817

38

Implementation of VAE (3. Model API)

Set Loss and optimization algorithm, and train given data.

model = Model(loss=loss, distributions=[p, ql,
optimizer=optim.Adam, optimizer_params={"1r": le-3})

model.train({"x": x})

After training, we can easily infer latent variables and generate images using inference
models and generation models.

z~qy(2|x) z_sample = q.sample({"x": x}) # inference model
x_sample = p_joint.sample(batch_n=64) # generative model

X, z~pg (x,2)

39

Implementations of complex DGMs (Loss API)

kl = KullbackLeibler(q, p_bl)

TD-VAE reconst = E(q, -p_t.log_prob() - p_d.log_prob() + p_b2.log_prob())
step_loss = E(p_b2, reconst + kl)

_loss = Iterativeloss(step_loss, max_iter=seq_len-1,
series_var=["x", "b"], timestep_var=("t"],
slice_step=slice_step)

loss_cls = E(belief_state_net, _loss).mean()

print_latex(loss_cls)

19
mean (Ep(hh) [Z Ef bttt Epyzabe [Pk [aGalze b,)l psza b)) + gty jzapsn 108 Po(zelba) — log patxalzn) — logp.(zlzlzn)]]]])
=1

FactorVAE

reconst = StochasticReconstructionLoss(q, p)

kl = KullbackLeibler(q, prior)
tc = AdversarialKullbackLeibler(q, q_shuffle, discriminator=d, optimizer=optim.Adam, optimizer_params={"1r":1e-3})

loss_cls = reconst.mean() + kl.mean() + 10@xtc
print_latex(loss_cls)

mean (—E ;1) [log p(x12)]) + mean (D1 [q(z10)||Ppriok2)]) + 10mean(DRE [q(z|x)| Igsu(zlxsnp)])

Pixyz allows you to implement each model in
a simple and readable manner.

40

Implementations of complex DGMs

GQON]I[Eslami+ 18]: Neural rendering model that generates images from different
viewpoints based on multiple viewpoints

Ali Eslami @arkitus - 125 12H v
Clean and performant PyTorch implementation of Generative Query Networks by

Shohei Taniguchi: github.com/iShohei220/tor..

=laniguchi and Masahiro Suzuki- github com/masa si/oixyzo Pixyz (deep

generative modeling library): github.com/masa-su/pixyz
@ V11— ZE8R

Ground Truth Generation
Observation 1

B Neural scene
representation

Rendering steps

Latent ?
v v Query Predicted w
view) i

Observation 2 Observation 3 Representation network f

MR O 260)

820

41

Learning speed in Pixyz

We compared with Pyro, the probabilistic programming language implemented on PyTorch.
O Also compared with raw implementation in PyTorch (this should be the fastest)

O Comparison of learning time of VAE per step (z: dimension of latent variable, h: that of hidden
layer)

Results #z | #h | PyTorch (ms) | Pyro (ms) Pixyz (ms)
10 400 247 4+ 0.11 491 +0.12 | 3.61 +£0.11
30 400 2494+ 0.10 | 494 +0.13 | 3.58 +0.10
10 | 2000 | 3.26 4+ 0.11 493 4+0.12 | 3.62 + 0.09
30 | 2000 | 328 +0.10 | 495+0.12 | 3.65 4+ 0.09

O Pixyz is faster than Pyro.
O Compared to the raw PyTorch implementation, the speed has not dropped significantly.

[Pixyz is suitable for implementing copnplex deep generative models.]

42

Pros and cons of Pixyz

Pros

O We can intuitively implement arbitrary deep generative models.
O The implemented code is easy to read and easy to reuse.
O The speed is not much slower than the raw PyTorch implementation.

Cons
O It cannot be applied to Bayesian deep learning.

In Bayesian deep learning, it is necessary to infer the posterior distribution of network
parameters.

822

43

Tutorial with Jupyter notebook

823

Hands-on

Overview of Pixyz
O 00-PixyzOverview.ipynb

Details of each API (skip in this presentation)

O Distribution API description
01-DistributionAPITutorial.ipynb

O Loss API description
02-LossAPITutorial.ipynb

O Model API description
03-ModelAPITutorial.ipynb

Application: deep Markov models using cartpole dataset
O 04-DeepMarkovModel.ipynb

=> Move to Jlpyter Lab!

45

Ssummary

A brief description of deep generative models
Pixyz background & description

Tutorial with Jupyter notebook

Acknowledgements

O This library is based on results obtained from a project commissioned by the New Energy and
Industrial Technology Development Organization (NEDO).

825

46

