Research and Educational
Directions

Houssam Abbas

EECS, Oregon State University
e

97~

Oregon State
University

and the F1/10 team



The role F1/10 can play in preparing
students for research



Algorithmic

Ethics

How should a car behave?

Cyber-Physical
Security

Understanding the
vulnerabilities of an
autonomous vehicle to
attacks

589

Fairness in
Multi-Agent
CGontrol

Ensuring fair access to the
airspace for UAS



8567vl [cs.RO] 24 Jan 2019

F1/10: An Open-Source Autonomous Cyber-Physical Platform

Matthew O’Kelly”, Houssam Abbas™*, Jack Harkins, Chris Kao, Yash Vardhan Pant & Rahul Mangharam
Department of Electrical and Systems Engineering, University of Pennsylvania, USA
{mokelly, harkj, chriskao, yashpant, rahulm} @seas.upenn.edu
** School of Electrical Engineering and Computer Science, Oregon State University, USA

houssam.abb

ate.edu

Varundev Suresh Babu”, Dipshil Agarwal & Madhur Behl
Department of Computer Science, University of Virginia, USA
{varundev, dpad4va, madhur.behl} @virginia.edu

Paolo Burgio & Marko Bertogna
Dept. of Physics, Informatics & Mathematics, University of Modena & Reggio Emilia, Italy
{marko.bertogna, paolo.burgio}@unimore.it

* These authors contributed equally

ABSTRACT

In 2005 DARPA labeled the realization of viable autonomous ve-
hicles (AVs) a grand challenge; a short time later the idea became
a moonshot that could change the automotive industry. Today,
the question of safety stands between reality and solved. Given the
right platform the CPS community is poised to offer unique insights.
However, testing the limits of safety and performance on real vehi-
cles is costly and hazardous. The use of such vehicles is also outside
the reach of most researchers and students. In this paper, we present
F1/10: an open-source, affordable, and high-performance 1/10 scale
autonomous vehicle testbed. The F1/10 testbed carries a full suite
of sensors, perception, planning, control, and networking software
stacks that are similar to full scale solutions. We demonstrate key
examples of the research enabled by the F1/10 testbed, and how
the platform can be used to augment research and education in
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Figure 1: It takes only a couple of hours fully to assemble a F1/10 autonomous
racecar, using detailed instructions available at hitp:/fitenth.org/
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TUNERCAR: A Superoptimization Toolchain for Autonomous Racing

Matthew O’Kelly', Hongrui Zheng!, Joseph Auckley’

Abstract— The objective of this effort is to develop an optimal
autonomous racer with safe and reusable core autonomy compo-
nents that are agnostic to vehicle planning and control software.
TUNERCAR is a toolchain that jointly optimizes racing strategy,
planning methods, control algorithms and vehicle parameters
for an autonomous racecar. In this paper, we detail the target
hardware, software, simulators, and systems infrastructure for
this toolchain. Our methodology employs a massively parallel
implementation of CMA-ES which enables simulations to pro-
ceed 6 times faster than real-world rollouts. Besides a massive
speed up, we show our approach can reduce the lap times in
autonomous racing, given a fixed computational budget. We
d rate improv over naive random search of 2.0
seconds per lap, improvements over expert solutions of 0.81
seconds per lap, and beat a human driver by 6.52 seconds.
For all tested tracks, our metlgg provides the lowest lap-
time, and relative lap-time im ents between 6 and 12
percent. We further compare the performance of our method
against hand tuned solutions submitted by over 30 international
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, Achin Jain', Kim Luong!2,

and Rahul Mangharam'

This paper introduces the notion that component reuse and
adaptation is analogous to creating a new kind of compiler that
targets computational, physical, and external environmental
details of a robot’s operational domain. In general, the goal of
a compiler is to validate and then transform a source program
in one language to another (usually lower-level e.g. assembly)
which is suitable for the target domain [2]. Modern optimizing
compilers [3] also seek to improve the performance of the
transformed program. To concretize the analogy, we define
the source program as a parameterized description of the
vehicle dynamics, tracking controllers, and local planning
method which we wish to transform to perform safely and
efficiently in the operational environment represented by a
map, physical laws, and sensing capabilities.

We propose a solution to the cyber-physical compilation
problem utlhzmg the concept of fupempnml anon (v g [4
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Teaching Autonomous Systems at 1/10"-scale:

Design of the F1/10 Racecar, Simulators and Curriculum
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ABSTRACT

Teaching autonomous systems is challenging because it is a rapidly
advancing cross-disciplinary field that requires theory to be contin-
ually validated on physical platforms. For an autonomous vehicle
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compilers [3] also seek to improve the performance of the
transformed program. To concretize the analogy, we define
the source program as a parameterized description of the
vehicle dynamics, tracking controllers, and local planning
method which we wish to transform to perform safely and
efficiently in the operational environment represented by a
map, physical laws, and sensing capabilities.

We propose a solution to the cyber-physical compilation
problem utilizing the concept of superoptimization (c.f. [4],




Sample research topics

Real-time systems research

- Real workloads
- Representative hardware
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Sample research topics

Real-time systems research

- Real workloads
- Representative hardware

AutoV: An Automotive Testhed for

Real-Time Virtualization

Overview

Contributors ove Wi ew

Demos

Publications
Related Projects

Sitemap Automotive systems are becoming increasingly complex. Virtualization is a promising technique to achieve low size, we
systems: functionalities on multiple ECUs can be consolidated into multiple virtual machines (VMs) on a commodity mu
as the RT-Xen project, is a promising technique to achieve the timing isolation for virtualization in automotive systems.

with real anitomotive annlicatinme in 29 nonecimiilation environment



Sample research topics

Real-time reachability

595

Yaw
(o]




Sample research topics

Real-time reachability

Runtime monitoring
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Sample research topics

Real_tlme reachablllty @ github.com/doganulus/reelay

sussli @ Mattmight E5 OSU [ Grants ¢, Teaching - Google.. 8 ML engineering fo.. @ CAVlinks @ Ultimate HIIT Wor... @ Palestir

Runtime anitoring README.md

Reelay Monitors

) python [passing () docs [passing coverage [96%' ¢ code quality |A

) library 'passing

Reelay is a header-only C++ library and set of tools for system-level verification and testing of real-time systems.
Reelay implements state-of-the-art runtime verification techniques to construct runtime monitors that check
temporal behaviors of the system against system-level requirements. Hence, Reelay can be used to enhance
rigorous systems engineering practices by formalizing and automating the assessment phase.

Main Features

¢ Formal specification of temporal properties

Provably correct monitor construction from the specification
¢ Fast and frugal runtime requirement checking (very low overhead)

597
* Simple but non-restrictive user interface

Available for C++ and Python



Sample research topics

Real-time reachability

Runtime monitoring
Scalable End-to-End Autonomous Vehicle

Adversarial traffic Testing via Rare-event Simulation
Matthew O’Kelly* Aman Sinha* Hongseok Namkoong*
University of Pennsylvania Stanford University Stanford University
mokelly@seas.upenn.edu amans@stanford.edu hnamk@stanford.edu
John Duchi Russ Tedrake
Stanford University Massachusetts Institute of Technology

jduchi@stanford.edu russt@mit.edu

598



F1/10 Onboard
Reachahility

Nathan Jewell-Carlton, CS undergrad
Autonomous Systems Lab OSU



Problem

How do we ensure safety?
Where is the agent going to be?
How is it going to get there?
Will it hit an obstacle?

Find out and react before it happens (speed!)
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Reachabhility Process

e Find physical properties of the agent
e Develop dynamical model
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Reachabhility Process

e Find physical properties of the agent
e Develop dynamical model
e Minimally over-approximate possible future system states

Yaw
[}
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Reachabhility Process

Find physical properties of the agent

Develop dynamical model

Minimally over-approximate possible future system states
Ensure there are no failure modes

Adjust control systems
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Reachabhility Process

Find physical properties of the agent

Develop dynamical model

Minimally over-approximate possible future system states
Ensure there are no failure modes

Adjust control systems

this is the essence of reachability
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Successive Linearization

Nonlinear reachability - slow, accurate
Linearize then run Linear reachability - fast, cheap, less accurate
Successive Linearization

Multiple linear eq. Combined
Fast computation algorithms
Controllable accuracy
Linearization overhead
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Non-Linear Dynamical Model

Variables of state are decided by the systems’ dynamics.
x : the vehicle’s x coordinate in meters

y : the vehicle’s y coordinate in meters

v : the vehicle’s yaw in Radian

Input variables are decided by the control system.
v : the vehicles velocity
d : the vehicles change if y

X=vcosy+d (1)
y=vsiny+d (2)

Y= u% sin(d) (3)
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Uses HYLAA,

Linearized Kinematics

H

a reachability tool by Stanley Bak

Y Position
N
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Quickzonoreach Output (run_f1zono.py)
| !

—8— Init

—— Reach Set
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Quickzonoreach Output (run_flzono.py)
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How can performance be increased?
Use more of our hardware!

Free cpu cycles

Improve latency

Significant refactoring required
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Digging into function
call timings
(pycalligraph output)
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e Currently Processed Zonotope

In GPU/Hybrid Impl. Multiple threads can be
spawned to start kemnels for each Zonotope so the

QZ Zon DtoPe A rray ou tPUt 31:2 threads wa?tagnapxlg: GIL for [in nybﬁdle(v:le?’b
cycles.
! |
GPU / Hybrid

Synchronous

Copy Zonotope to GPU Mem (Static),

L _———-—LCopy Computed Convex Hull to GPU Mem

find initial simplex

N Blocks Find
Supporting points for
find convex hull each simplex in parallel extract normal
and rhs

extract normal and rhs| e SIAHGZONO &

r hull einicatio Initial Target Extracting correct prepare for initial 20n0 boun

om convex hul zono mat_t ransposed (w/ dims)
for CUDA dimensions maximization SoHORN CaoHe

COPIED EACH HYBRID ITER
computed convex hull (w/ dims)

Parallelization

DYNAMIC ATTRIBUTES
vertices

Maximize in paraliel

if error is acceptable
2dd supporting ptto Should be some freed {elattsad aun
new point list CPU cycles due to this rows)

step being moved to
GPU, CPU will be able
to handle convex hull
for other zonos,
check size of new decreasing average
points list time per projection

compute
error

check error

No New Points?
2

find final convex hull and return \._

Copy Supporting points back to Host

Flow diagram for refactoring CPU based reachability to
run on NVIDIA GPU




RVIZ of car running around demo tfack - live onboard reachability



Performance

Combined execution time by steps for runtime modes
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Performance

555 Fraction of execution time in verts function by steps
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Performance

Standard Deviation between trial execution time by steps for runtime mode
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Nonlinear MPGC and
MPCC for F1/10 cars

Niraj Basnet, M.Sc. student
Autonomous Systems Lab, OSU



e Uses nonlinear system

model T ; 2
e Better disturbance min / |2(t) — @res (t)HQm + || w(t) — wres (t)HRu di
. re 2 t=0
rejection capability ,
+ ||xe(T) —x T
e Better step response H (T) ref ( )) 1P

e Better tracking subject to & = f(z, u);

u(t) e U
performance
e Slower than Linear MPC z(0) =z (o).
e Modern solvers are
improving runtimes
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Model Predictive Gontouring Gontrol
(MPCC)

e Spatial reference path sufficient for tracking

e No reference control inputs needed

e Centerline of the racetrack acts as reference
contour, parameterized by its arc length ©

e Uses lag and contouring error to generate
trajectory with trade-off between tracking
precision and speed

e Path planning and tracking combined into
single nonlinear optimization problem

e Able to generate locally optimal racing dines

(X,Y)

Contouring error(e®) and Lag error(e')
with linear approximations ¢¢ and ¢!



Nonlinear MPCC

Problem Formulation

C

€ T

éf“'] QuVo,k + Auy, RAAuy
b

s.t. zo=z(0)
o117 = Flopue) /[ System model ]

é(zy) = sin (®™(01)) (Xp — X™(01)) — cos (@™ (0k)) (Vi — Y™ (0 —-[ Contouring error ]

é'(zy) = —cos (®™(0y)) (X — X™(0x)) — sin (" (0x)) (Yi — Y™'(0 —-[ Lag error ]
Augp = ugp — ugp—1 Rate of input change ]

Tk € XTrack Path constraints ]

TSTpST ﬁ: State constraints ]

u<up<u 610

Au < Auy < Au Actuator constraints ]




Kinematic vehicle model ..

e Simplified motion model with easiest
parameter identification

® Imposes non-holonomic constraints
e No regards for tyre forces
e Suitable for slow speeds only
e Prone to understeering and oversteering Rear axle bicycle kinematic model
e Computationally cheap to compute & = vcos(f)
€r = [X7Y7¢’,079] y:vsin(O)
iU = [CL, (5, ’Ue] . -
0 = — tan(d
~ tan(d)

620
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Dynamic Vehicle Model

e Considers both lateral and
longitudinal dynamics

e Uses linear or nonlinear tyre forces to
account for slip at high speeds

e Involves complicated system
modeling by an expert

e Handles high speed behaviors

e Defines understeer and oversteer

e Computationally demanding

Under Steer

Over Steer

621



Dynamic Vehicle Model

X = vy cos(p) — vy sin(yp)

Y = v, sin(p) + v, cos(p)

@Y = C‘i i Y, F. (@)
Vg = —(Fr gz — Ffysind + moyw)
m
1
Uy = —(Fpy — Fr,co86 — mu,w) F(d) N
Yy m LY f7y X = [X’ Y’ Sp,vm,vy7w,9]
. 1 B
w = E(Ff,ylf cosd — Fy. 1) _ u = [d, , ve] )
5 ;
0 = vy Tyre F¢, = Dysin(Cyarctan(Byay)) where oy = —arctan (@fTW) -,
Model . olr — v,
(Pacejka) | [ry = Drsin(Crarctan(B,a;))  where o, = arctan (T)

Fr,ac — (le - CmZU:c)d - C'r - Cdvi




Hybrid Vehicle Model

Dynamic model(DM) is ill-defined for slow speeds due to slip angles

Kinematic model(KM) fails at high speeds

Combine Dynamic and Kinematic model to get the best of both

Uses a velocity threshold to switch between two models

Velocity threshold used : v, = 0.8m/s

Actuator space is kept same while state space solution is remapped during the
transition

fhyb(x’u) — )‘szn(x’u) . (1 - /\)fdyn(xau)

5 — 1 if (2 S Uth
0 otherwise
623



Constraints

Tyre constraints
Slip angle constraints on front wheel and

rear wheel

Upper

bound . .
| Acceleration

-
-~ : :
..-’-.'---Ii---

== Dry Pavement

Wet Pavement
— Snow

Obstacle constraints

Ellipsoidal approximation of other
obstacles(cars)
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Solvers for Nonlinear MPCG

e Interior point based solvers like lpopt , Hpipm, Acados, ForcesPro(Commercial)

e Can be structured into sequence of locally convex QPs to use SQP based
solvers

e Casadi framework for Algorithmic differentiation

e Implementation details of Nonlinear MPCC(dynamical model)
o  Sampling time of 50ms

Horizon N=40

4th order Runge Kutta discretization

Solver: ForcesPro - Embotech

Controller PC with i7@3.2Ghz

Mean Solver time of 10ms (Real time)

o O O O O
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