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The role F1/10 can play in preparing 
students for research
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Algorithmic 
Ethics

Cyber-Physical 
Security

Fairness in 
Multi-Agent

Control

How should a car behave? Understanding the 
vulnerabilities of an 
autonomous vehicle to 
attacks

Ensuring fair access to the 
airspace for UAS
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Sample research topics
Real-time systems research

- Real workloads
- Representative hardware
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Sample research topics
Real-time reachability
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Sample research topics
Real-time reachability

Runtime monitoring
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Sample research topics
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Sample research topics
Real-time reachability

Runtime monitoring

Adversarial traffic
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F1/10 Onboard 
Reachability

Nathan Jewell-Carlton, CS undergrad
Autonomous Systems Lab OSU
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Problem

● How do we ensure safety?
● Where is the agent going to be?
● How is it going to get there?
● Will it hit an obstacle?
● Find out and react before it happens (speed!)
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Reachability Process
● Find physical properties of the agent
● Develop dynamical model
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Reachability Process
● Find physical properties of the agent
● Develop dynamical model
● Minimally over-approximate possible future system states
● Ensure there are no failure modes
● Adjust control systems

this is the essence of reachability
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Successive Linearization
Nonlinear reachability - slow, accurate

Linearize then run Linear reachability - fast, cheap, less accurate 

Successive Linearization

● Multiple linear eq. Combined
● Fast computation algorithms
● Controllable accuracy
● Linearization overhead
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Non-Linear Dynamical Model
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Output
Uses HYLAA, 

a reachability tool by Stanley Bak
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Output
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GPU Parallelism
● How can performance be increased?
● Use more of our hardware!
● Free cpu cycles
● Improve latency
● Significant refactoring required
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Digging into function 
call timings 

(pycallgraph output)
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Flow diagram for refactoring CPU based reachability to 
run on NVIDIA GPU

611



Demo

RVIZ of car running around demo track - live onboard reachability612



Performance
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Performance
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Performance

615



Nonlinear MPC and 
MPCC for F1/10 cars

Niraj Basnet, M.Sc. student
Autonomous Systems Lab, OSU
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Nonlinear MPC 
● Uses nonlinear system 

model
● Better disturbance 

rejection capability
● Better step response
● Better tracking 

performance 
● Slower than Linear MPC
● Modern solvers are 

improving runtimes
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Model Predictive Contouring Control 
(MPCC)
● Spatial reference path sufficient for tracking
● No reference control inputs needed
● Centerline of the racetrack acts as reference 

contour, parameterized by its arc length θ
● Uses lag and contouring error to generate 

trajectory with trade-off between tracking 
precision and speed  

● Path planning and tracking combined into 
single nonlinear optimization problem

● Able to generate locally optimal racing lines

Contouring error(ec) and Lag error(el )
with linear approximations      and 
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Nonlinear MPCC
Problem Formulation

System model

Contouring error
Lag error

Rate of input change
Path constraints
State constraints

Actuator constraints
619



Kinematic vehicle model
● Simplified motion model with easiest 

parameter identification
● Imposes non-holonomic constraints
● No regards for tyre forces 
● Suitable for slow speeds only
● Prone to understeering and oversteering 
● Computationally cheap to compute

Rear axle bicycle kinematic model
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Dynamic Vehicle Model
● Considers both lateral and 

longitudinal dynamics
● Uses linear or nonlinear tyre forces to 

account for slip at high speeds
● Involves complicated system 

modeling by an expert
● Handles high speed behaviors
● Defines understeer and oversteer
● Computationally demanding
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Dynamic Vehicle Model

Tyre 
Model
(Pacejka) 622



Hybrid Vehicle Model
● Dynamic model(DM) is ill-defined for slow speeds due to slip angles 
● Kinematic model(KM) fails at high speeds
● Combine Dynamic and Kinematic model to get the best of both 
● Uses a velocity threshold to switch between two models
● Velocity threshold used : vth = 0.8m/s
● Actuator space is kept same while state space solution is remapped during the 

transition
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Constraints
Obstacle constraints
Ellipsoidal approximation of other 
obstacles(cars)

Tyre constraints
Slip angle constraints on front wheel and 
rear wheel

Upper 
bound

Lower 
bound
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Solvers for Nonlinear MPCC
● Interior point based solvers like Ipopt , Hpipm, Acados, ForcesPro(Commercial)
● Can be structured into sequence of locally convex QPs to use SQP based 

solvers 
● Casadi framework for Algorithmic differentiation 
● Implementation details of Nonlinear MPCC(dynamical model)

○ Sampling time of 50ms
○ Horizon N=40 
○ 4th order Runge Kutta discretization
○ Solver: ForcesPro - Embotech
○ Controller PC with i7@3.2Ghz
○ Mean Solver time of 10ms (Real time)
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MPCC Kinematic (Precision Tracking 
mode)
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MPCC Kinematic (Contouring mode with 
an obstacle)
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MPCC Dynamic(High speed driving)
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