2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

F1/10 : o
Autonomous Racing =

le. .'h nlil.

Simultaneous Localization
And Mapping (SLAM)

Prof. Madhur Behl

Computer Science

CS 4501
University of Virginia

978-1-7281-6211-9/20/$31.00 ©2020 IEEE

Topic

Alpha

Color Scheme
Draw Behind
Resolution
Width

Height

+ Position

»~

Orientation
Path

+ Status: Ok

Add

(O Time

ROS Time:

Reset

Imap
0.7

map

0.05
2048
2048

-51.225; -51.225; 0
0:0:0:1

4

1458504023.35

ROS Elapsed: 2.01

Wall Time:

mapping_demo.rviz® — RViz

* 20D Nav Goal 9 Publish Point

1460591289.42

Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click:: Zoom. Shift: More options.

Wall EtapéZ4: 22.83

Hector
SLAM

X

Experimental

30 fps

Objectives

What is Simultaneous Localization and Mapping ?
What are Occupancy Maps ?

How are SLAM and Scan Matching related ?
SLAM in ROS — Hector Mapping

Google Cartographer SLAM Overview

475

Problem Setting

Localization: given a

map, use sensor data

to estimate the current
pose of the robot

Mapping: given robot
pose at each time

(trajectory), use sensor

data to blild map

Simultaneous
Localization and
Mapping (SLAM):
use sensor data to

build map and

estimate robot
trajectory

A brief history of SLAM

Why do we need a map?

In order to support path planning
Limiting the error in state estimates, by providing the opportunity to ‘reset’
Later... do we really need a map!?

Historical Development (1986-2004): Probabilistic Foundations

EKF (you will still find this in visual inertial odometry)
Particle Filter (very efficient localization)
We wiill cover these methods next class in the context of localization

Modern Era (2004-Now): Algorithmic Improvements

Maximum a-posteriori Estimation
Other names: factor graph optimization, graph-SLAM, smoothing and mapping (SAM), bundle adjustment

477

Limitations : Basic Path Planning

* High Level Path Assignments

« 2" right, 2" right, 15t right, 15t left, 15t right

Race Lines

ACCELERATION
LATE APEX

BALANCED THROTTLE OR TRAIL BRAKING

TURN IN
GEAR CHANGE

BRAKING
PEDAL TRANSITION

FULL THROTTLE

»» drivingfast.net

479

Occupancy Grid Mapping

* Occupancy: binary R.V.
my ,:{free, occupied} - { 0,1}

[Review — Into Probability]

Given some probability space (£, P),

a random variable X: Q) — R is a function that
maps the sample space to the reals.

Occupancy Grid Mapping

* Occupancy: binary R.V.
my ,:{free, occupied} - { 0,1}

* Occupancy grid map
: fine-grained grid map where an occupancy variable associated

with each cell y

mqq1 | My | M3

482

Occupancy Grid Mapping

e Occupancy grid mapping
. A Bayesian filtering to maintain a occupancy grid map.

Recursively update p(my,,,) for each cell

p(my) P(Ma2)p(myz)

: il s
, | e ,y>' I
[]
0 1

(x;oy)

——

483

Occupancy Grid Mapping

* Measurement

d range sensor

Occupancy Grid Mapping

Free
* Measurement (’ /szccupied

z~{0,1}

d range sensor

Occupancy Grid Mapping

* Measurement (
=Y

z~{0,1} S

e Measurement model

p(z=1
p(z=0
p(z=1
p(z=0

Free

Occupied

p(z|my,y)
My y = 1) : True occupied measurement
Myy = 1) : False free measurement
Myy = 0) : False occupied measurement
My = ()) : True free measurement

486

Occupancy Grid Mapping

Measurement
Model

p(z|my,)

p(my 1)

p(m1,2]

p(my.y)

Occupancy Grid Mapping

Posterior Map Measurement Prior Map
Model
h | Zlm
W p(mx,y|z) | P(Z|myy) p(mx,y)
HEEE
Likelihood Prior
p(PT(;lSterT;) - p(Zlmx,y)p(mx,y)
X,y —
p(2)

Evidence

Occupancy Grid Mapping

(X happens) p(X)

FEEa= (X not happens) p(X°)

* More convenient when we use “Odd”

m,., = 1|z
Odd((my,=1) given z) = Py 2)

p(mx,y = 0]z)

Occupancy Grid Mapping

* Odd

(Bavyes’ Rule)

plim,, =)= T =p1()zp)(mx,y = 1)

Odd _@%_ p(Zlmx,y — 1)p(mx,y = 1)/p(z)

T p(ny, =0]z) SOmey = 012

490

Occupancy Grid Mapping

* Odd

p(Myy = 112) p(zlmyy = Dp(my,y, = 1)/ph2)

Odd = =
@ p(zlmey = 0)p(mcy = 0)/p2)

p(Zlmx,y = 0)p(mx,y =0)
p(z)

p(mx,y = OIZ) =
(Bayes Rule)

491

Occupancy Grid Mapping

* Take the log!

p(mx,y = 1|z) _ p(zlmx,y = 1)p(mx,y =1)

Odd: =
p(mx,y = 0|z) p(ZImx,y = O)p(mx,y =0)
m ="1lz Zlm =1 m = 1
— 1ngo(xy =1l2) _ 1ng(xy = 1)p(Myy =)
p(mx,y = 0]z2) p(z My y = O)p(mx,y = 0)
p(Z My y = 1) p(mx.y — 1)
= log + log
p(zlmyy = 0) p(mzy = 0)

logodd™ = logodd meas + log odd™

Occupancy Grid Mapping

* Log-odd update

Posterior Map Measurement Prior Map
Model
Log-odd Log-odd-meas Log-odd

logodd™ = logodd meas + logodd™

493

Occupan

cy Grid Mapping

* Log-odd update

Posterior Map

Measurement
Model

Prior Map

Log-odd-meas

logodd™ = logodd meas + logodd™

494

Occupancy Grid Mapping

* Measurement model in log-odd form

p(zlmx,y = 1)
p(zlmx,y = 0)

log

* Two possible measurement:
p(z = 1|my, = 1)

p(z = 1|mx,y = 0)
p(z = 0|m,, = 0)

Case | : cells with z=1 logodd_occ:=log

Case Il : cells with z=0 logodd_free:=log

p(z = 0|my,, = 1)

(Trivial Case : cells not measured)

495

Occupancy Grid Mapping

* Example Update Rule:

Constant Measurement Model log odd += logodd_meas
logodd_occ := 0.9
logodd_free := 0.7 g g g g g g 019
s olofofo]o]o0

Initial Map: t0 [olololololo E

logodd = 0 for all (x,y)

L]

p(mx,y = 1) = p(mx,y = O) = 0.5

496

Occupancy Grid Mapping

* Example Update Rule:
Constant Measurement Model log odd += logodd_meas
log odd_occ := 0.9
— 0|0|0[0(0|0]|0]|O
logodd_free := 0.7 STalolslalole
0/0{0|0|0]|0
Update t0 [o[o]olo]o]o i
= Case | : cells with z=1 measurement
logodd « 0 + logodd_occ i .
= Case |l : cells with z=0 -
logodd < 0 — logodd_free 0/0/0/0]0]0]0 0
0[{0|0[{0|0|O
1 Tol.9
497 0[0[0]|0]0]0

Occupancy Grid Mapping

* Example Update Rule:
Constant Measurement Model log odd += logodd_meas
log odd_occ := 0.9
,_ 0/0[{0|0]0]0|0O|O
logodd_free := 0.7 olololo[o]0 _
o .9
Update 11 [olololaiol
= Case | : cells with z=1 measurement

logodd « 0 + logodd_occ

= Case Il : cells with z=0 =
logodd « 0 —logodd_free 0/0/0/0]0/0]0]0
B .9 0
2 Tol.s ‘

Map at t0

Measurement

\‘«-\‘gg,o'

Map at t1

Measure

ment

\ 4

Map at t2

Handling Range Measurement on Grid

Global frame x.
T

Body frame

The Map The Robot

500

Handling Range Measurement on Grid

Global frame

X2

6

The Map

501

Known state: (X1, X 9)
X (1Lr*2
= /\
Body frame
. [—
Y \J Xl

The Robot

Handling Range Measurement on Grid

Global frame y : _
—_—] Distance measurement: d

Known state: (X1, X5, 0)

e | (=[50 SnelE]

The Map

502

Handling Range Measurement on Grid

The (Continuous) Map The Discretized Map

503

Handling Range Measurement on Grid

 Example r=10cm
)X [cm] I
| | @
0O 10 20 30 1 & a9 4

cm] 0<x<10 :> i =1 [index]
10<x<20 C—»> =2
20<x <30 W) =3

504

Handling Range Measurement on Grid

* Example r=7 m
)X [cm] I
F——f—————————1— | ®
0 7 14 21 1 2 3 4

505

Handling Range Measurement on Grid

e Example r
X I
> —o
e R KR B S D
0 r 2r 3r 1 2 3 4 .

[= ceil(x/r)

506

Handling Range Measurement on Grid

e Example r
X I
> —T
) ———————+—— @
3r-2r-r 0 r 2r 3r 1 2 3 4
Xmin

i = ceil((x .) /1)

507

Handling Range Measurement on Grid

i = ceil(x/r)

r
—_—p “
X 4
p— 7>
PY ®| (iy, Iy
Y (xlr Xz) 12 Y
@ ® (il,occ: iz,occ)
(xl,occr x2,occ) | | | | |

The (Continuous) Map

508

The Discretized Map

Handling Range Measurement on Grid

Global frame | : _
—_—l Distance measurement: d

Known state: (X1, X5, 0)

el = [S3in cosello] + L]

The Map

509

Handling Range Measurement on Grid

Global frame [,

I——>

A

The Map

510

Distance measurement: d
Known state: (X1, X5, 0)

Occupied cell: (xl,occ' Xz,occ)

oy

*Bresenham's line algorithm

Handling Range Measurement on Grid

Global frame I
T

The Map The Robot

511

Handling Range Measurement on Grid

Distance measurement:
Global frame

e3> (dq,d;y,ds3,dy, ds)
Directions of rays:
(ay, @y, a3, ay, as)

Known state: (X1, X5, 6)

For k-th occupied cell:

] = o]+ 1]

The Map —ilk] - ceil 1 [xlk]
okl r X2k

512

Handling Range Measurement on Grid

Global frame

——

The Map

513

*Bresenham's line algorithm

Registering the first Scan

Registering the first Scan

Scan Matching

Pose of the Caratt =11

Laser Scans w.r.tcarat Timet=t;

516

Laser Scans w.r.t carat Timet=t,

44

Scan Matching

Pose of the Caratt =11

Pose of the Car at t=t2

Laser Scans w.r.tcarat Timet=t;

517

Laser Scans w.r.t carat Timet=t,

45

Activities RW * Sun 0037 T % C) »
move_base_configrviz® -~ RViz

File

b Interact

Baseframe Axes

Raw LiDAR Scans

ROS Elapsed 6.38 Nall Time 145¢)7 78 b 5.3 E:‘Ln_‘.'nrnrxl!,},

Left-Click: Rotate. Middle~Click: Mave X/Y. Right=-Click: ¥m. Shift: More options

Activities RWW: . Sun 0039 r ¥ 0.

Scans after transforming by A¢ at each stage

\ETHEINERAVES

@ Time

ROS Time 1277.14 ROS Elapsed S5.84 Time 145 572.8 lapSed 28.0C El",_:c_‘.’ll’u_'li._\

Left~Click: Rotate. Middle-Click: Mave XJY. Right=Click:: Zoom. Shift: More options

move_base_configrviz® - RViz
Panels Help

. oAy =~ ey A . TR
&] Interact X Move Camera L. : k> Focus Camera =0 Measure M 2D Pose Estimate * 20 Nav Goal v Publish Pont

Map Update

(© Time

ROS Time: 1288.50 ROS Elapsed: | 17.33 Wall Time: | 1459056336.31 Wall Blap22d: 57.23
48

Reset Left~Click: Rotate. Middle~Click: Mave X/Y. Right=Click:: Zoom. Shift: More options.

Multi-Resolution Map Representation

20 cm Grid Cell 10 cm Grid Cell 5 cm Grid Cell

521

49

Saving the ma

Saving the map

* ROS Package called
MAP Server

* Allows saving a map

currently being published
over /map topic

* The saved map can be
loaded for future tasks.

|

523

System Tt tree

Map Frame

Odom Frame

Tf Provided by
Hector dometry

Base Frame

Tf required by
Hector package

Laser Frame

524

Parameters for Hector SLAM : ROS

* map resolution

* map_update distance_thresh
* map_update _angle thresh

* laser_max_dist

e update_factor_free

e update_factor_occupied

525

Google Cartographer Overview

The Problem

Why did Google (not Waymo) make a SLAM package!

55

What's different about Cartographer

The contribution of this paper is a novel method for reducing the
computational requirements of computing loop closure
constraints from laser range data.

56

Loop-closure

Two regions in the map are found to be the same region in the world
even though their position is incompatible given the uncertainty estimate
in the map — the classic loop closure problem.

The system must then be able to calculate the transformation needed to
align these two regions to ‘close the loop’.

529

57

‘ .

System Overview: Sensor |Inputs

Up to four types of sensor
measurements: (1) Range (ll)
Odometry (lll) IMU (IV) Fixed
Frame Pose

The FI/10 vehicle supplies
two sensors:

2D LIDAR
(Range)

VESC
(Odometry)

Input Sensor Data

Range Data
(Laser scan/

Laser range/
Point cloud)

Voxel Filter
(fixed size)

Adaptive

Voxel Filter

Scan Matching
(ceres)

+

Odometry
Pose

IMU Data

(Linear

PoseExtrapolator

acceleration,
Angular

. ImuTracker
(gravity alignment)

N velocity)

Y

Fixed Frame

Pose

h

PoseEstimate

PoseObservation

Motion Filter Still
(linear/angular
motion or time)

Dropped

Movement or Old

Submaps

Compute Constraints
(INTRA: node + 2
insertion submaps

INTER: loop closure)

Sparse Pose
Adjustment

}

Extrapolate all
poses that were
added later

Voxel Grid
Update
(active)

range data,
submaps)

InsertionResult
(time, pose,

59

System Overview: Frontend

Cartographer consists of two
separate subsystems: local

SLAM (frontend or trajectory
builder) and global SLAM

(backend).

The job of local SLAM is

to generate good
submaps.

The job of global SLAM is to
tie the submaps consistently
together.

|

|

|

|

|

|

|

|

|

Odometry !
Pose |
|

|

|

|

|

[

|

Range Data
(Laser scan/

Laser range/
Point cloud)

Voxel Filter
(fixed size)

Adaptive

Voxel Filter

Local SLAM

Scan Matching
(ceres)

+

IMU Data

(Linear

PoseExtrapolator

acceleration,
Angular

N\, velocity)

Y

Fixed Frame

. ImuTracker
(gravity alignment)

Pose

PoseEstimate

PoseObservation

Motion Filter Still
(linear/angular
motion or time)

Dropped

Movement or Old

Submaps

Compute Constraints
(INTRA: node + 2
insertion submaps

INTER: loop closure)

Voxel Grid
Update
(active)

Sparse Pose
Adjustment

!

Extrapolate all
poses that were

added later

range data,
submaps)

InsertionResult
(time, pose,

60

System Overview: Backend

Cartographer consists of two
separate subsystems: local

SLAM (frontend or trajectory
builder) and global SLAM

(backend).

The job of local SLAM is to
generate good submaps.

The job of global SLAM
is to tie the submaps
consistently together.

Range Data
(Laser scan/

Laser range/
Point cloud)

Scan Matching
(ceres)

(Linear

acceleration,
Angular
velocity)

[\

Fixed Frame

Voxel Filter Adaptive
(fixed size) Voxel Filter
+
PoseExtrapolator
PoseEstimate
ImuTracker

"| (gravity alignment)

PoseObservation

Motion Filter Still
(linear/angular
motion or time)

Dropped

Movement or Old

Submaps

Pose

Global SLAM (background thread)

Compute Constraints
(INTRA: node + 2
insertion submaps

INTER: loop closure)

533

Sparse Pose
Adjustment

!

Extrapolate all
poses that were
added later

Voxel Grid
Update
(active)

range data,

InsertionResult
(time, pose,
submaps)

6l

Frontend: Local SLAM

What is a submap!?

A submap is considered as complete
when the local SLAM has received a given
amount of range data.

Submaps must be small enough so that
the drift inside them is below the
resolution of the occupancy grid, so that
they are locally correct.

On the other hand, they should be large
enough to be distinct for loop closure to
work properly. More on this later

Submaps are small chunks of the world
filled with a fixed amount of registered

)

| range data.
- o
— 7
[7
/ﬁ The addition of
- A odometry helps
| /@ deal with
— 4 A submaps like
) > this. . ..
L, e
A5 s
The amount of | /S
range data _ _?f
should be large

enough that
s3sSubmaps are

distinguishable...

What is a submap!?

Localization: the robot’s
trajectory in a submap is

: : computed via scan matching.
Submaps each have their own static ? s

transform and contain a collection of ‘ - T
registered range-measurements. - :
Consecutive measurements are | '3
connected by constraints which are / L

‘local’. | / /

Here local means derived from odometry - f ‘
or recent scan overlaps and resultant \ l e
scan matches.

536

What is a submap!?

Submaps each have their own static
transform and contain a collection of
registered range-measurements.

Consecutive measurements are
connected by constraints which are
‘local’.

Here local means derived from odometry

or recent scan overlaps and resultant
scan matches.

Once a motion between two scans is found by the scan
matcher, it goes through a motion filter. A scan is inserted
into the current submap only if its motion is above a certain
distance, angle or time threshold.

—————
A b e ——— L

. \\ &

N / L
/ / -

L.._ {: \

537

Submap Representation

Submaps can store their range data in a probability grid. For 2D a signed
distance field representation is also possible.

Probability grids are a 2D table where each cell has a fixed size and
contains the odds of being obstructed.

Odds are updated according to “hits” (where the range data is measured) and
“misses” (the free space between the sensor and the measured points).

| Max Range ¢
% + . b + + 4 4
nsor ‘ |__Sensor| | |
am

I 7
-
|

“Robot

-k

[v }—4
LT T 1

Updating the submap

For every hit, we insert the closest grid point
into the hit set.

For every miss, we insert the grid point

associated with each pixel that intersects

one of the rays between the scan origin and

each scan point, excluding grid points which are

already in the hit set. e
If a grid point has yet to be observed it is

assigned a value p;,ic OF Pmiss depending on which

set it is in.
Define the submap as: Recall the definition of the odds function:
M :rd <X rd — [pmz’nv pmaaz] odds (p) =S P
1—p
Then the map is updated according to the following operation: Compute new b from odds..

M pew(z) = clamp (odds™ ' (odds(Meyia(x)) odds(phit))

‘ .

Scan Matching:

How do we know that ‘hits’ and misses map to a particular cell in the probability grid?

e The collection of scan points relative to a moving reference frame attached to
the robot are, H = {h,} for k=1...K where h_is a point in R2.

e These points are placed in a submap at pose ¢ in the global reference frame by
applying a rigid body transform to each (rotation and translation).

e Submap construction is the iterative process of repeatedly aligning scan and
submap coordinate frames. Sound familiar?

So we can understand why scan matching alone is insufficient for robust localization and
explore the basics.

541

Does Cartographer use ICP?

No. Cartographer needs to support 3D LIDARs and the correspondence problem is
insidious.

e Scan matching variants:
o lterative closest point (ICP)
o Scan-to-scan
o Scan-to-map
o Map-to-map
o Feature-based
o RANSAC for outlier rejection
o Correlative matching

Cartographer uses the Ceres-solver to formulate a nonlinear least-
squares correlative scan matching problem.

542

Closest-Point Matching

= Find closest point in other the point set

Closest-point matching generally stable,
but slow and requires preprocessing

Correlation-based Scan Matching

In ICP, correspondences between two scans are explicitly computed, allowing a
rigid-body transformation to be computed.

Susceptible to local minima; poor initial estimates lead to incorrect data
associations and divergence.

Correlation based methods search for a rigidbody
transformation (without computing correspondences) that
projects one set of LIDAR points (the query scan) on top of a
reference map.

The reference map is generally implemented as a look-up table that assigns a cost
for every projected query point.

544

Correlation-based Scan Matching

S h Transform scan point Coordinate of
um over each scan scan return

A ONCK ot s e U/
. 2
argming » (1 — Mgnootn(Tehi))

/ k=1 /

Pose in local submap Bicubic interpolation
reference frame of probability grid

Backend: Global SLAM

Closing Loops

Goal: is our current scan in one of the
submaps we have already seen!?

Constraints take the form of relative
poses ¢; and associated covariance
matrices 2; . Relative poses now
include both submap and scan
poses.

For a pair of submap i and scan j, the
pose ¢; describes where in the submap

coordinate frame the scan was matched.

547

Pose of the submap is now a decision

variable. \

o

e

L5

get a loop)
closure here.

/A

—____ o ’ :
ym— =

/ , —
/ /ﬁ Probably won’t |

| = -

S

e

o' —

| —

)

7
Thi Id b j’ﬁ

is would be a S
good candidate \:{5

for loop closure.

Loop Closure

Covariance
Residual, matrix

see papel\ /

argmm:m =25 Z/O E* 5m Zi,jafij))

/ Huber loss, .

, Relative pose
outlier

Submap poses Scan poses between submap
rejection
and scan

Sum over each scan,
submap combination

Huber Loss

Uses a Huber loss to make the objective less susceptible to spurious constraints which are often
added in symmetric environments... False positive is a disaster

8

7

i %az for |a| <9,

L —
s(a) d(|al — %5), otherwise.

549

Topic

Alpha

Color Scheme
Draw Behind
Resolution
Width

Height

+ Position

»~

Orientation
Path

+ Status: Ok

Add

(O Time

ROS Time:

Reset

Imap
0.7

map

0.05
2048
2048

-51.225; -51.225; 0
0:0:0:1

4

1458504023.35

ROS Elapsed: 2.01

Wall Time:

mapping_demo.rviz® — RViz

* 20D Nav Goal 9 Publish Point

1460591289.42

Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click:: Zoom. Shift: More options.

Wall Etap228: 22.83

Hector
SLAM

X

Experimental

30 fps

Problem Setting

L.aser

Scans ; L
i ~ Localization «0,

Robot pose in map
(x,y,0)

@ .

Odometry

551

79

Overview

Input
I. Laser Scan

80

Overview

Input

I. Laser Scan
2. Control Input

8l

Overview

Input

I. Laser Scan
2. Control Input
3. Map

Overview

Input

I. Laser Scan
2. Control Input
3. Map

Output
I. Pose

Overview

Input

I. Laser Scan
2. Control Input
3. Map

Output

. Pose
2. Particles

Particle Filter Localization

Key Idea

The key idea of Bayes filtering is to estimate a probability density over the
state-space conditioned on the data. This posterior is typically called the

belief and is denoted:

Bel(x:) = p(xy

Belief or/v / \

osterior)
P Robot state Attimet

do..t)
\

The data from
time 0 to t. 86

Questions

I. How would you describe the robot state in the localization

problem!?
2. Is the belief a probability distribution, what kind, how do you

write it down!
3. How would you describe the data from the Fltenth car?

Bel(x:) = p(x¢ | do.. +)

Belief or

osterior)
P Robot state At time t The data from
559 time 0 to t. 87

Getting more specific...

For mobile robots, we distinguish two types of data: perceptual
data such as laser range measurements, and odometry data,
which carries information about robot motion. Denoting the

former by o (for observation) and the latter by a (for action), we
have:

Bel(xy) = p(xt | 04, a¢-1,0¢—1,...)

Lo [N]

Belief or Perceptual Odometry History...
posterior Robot state Observation

88

Recursion

After some simplification (see additional resources) we have:

Integrate out over previous beliefs. In practice finite
«~~ approximation

Bel(x) = n plog | x¢) [p(as | 24—1,ai—1)Bel(wi—1)dri

N\ | |

Previous Belief

Normalization Sensor Model Motion Model D “icles with
Constant Make sure Compute how likely your ~ Simulate noisy dynamics ralw your tpa Ic eds. W .
. . : replacement according to
everything adds up to ! measurements were given Of particles based on imP ortance weisht 8
updated particles. control input. P &t

Read left to right
In practice we represent the distributions non-parametrically

using particles (a finite set of samples). More in the next slides.
561 89

Initialization

Now let’s look at particle
filters in three dimensions
and the process of using
them in our car. Here we
see a part of a map
previously generated using
Cartographer. The black
pixels on the map denote
the walls and the grey
pixels denote free space.

Initialization

The red arrow indicates
our initial pose obtained
from user input. Lets use
particle filters to solve the
pose tracking problem
and localize more
accurately in the map.

Odometry pose

Initialization

First we need to generate
a set of hypothesis for our
first position. These the
discrete particles drawn
from a Gaussian
distribution of mean being
the initial guess and with a
small covariance.

Motion Model

Applying the measured
control input to the
motion model (with
noise), yields an updated
set of possible poses.

Sensor Model

For each particle we can
create a ‘fake’ laser scan
by raycasting against the
map at the particles pose.

Questions

How hard is creating the
fake laser scan relative to
computing the motion

model update!

What is special about the
sensor model?

Questions

How hard is creating
the fake laser scan
relative to
computing the
motion model
update?

Way harder.

What is special
about the sensor
model?

It’s embarrassingly

Raycasting

Efficient methods for
raycasting such as
Breshenham’s Line
method can be deployed.
Alternately a signed
distance field can be pre-
computed.

Computing Particle Weights

Recall, we have the ‘real’
laser scan which the car
observed (shown in
green). Note we don’t
know where the green
dot is but we do know
the range measurements.

Computing Particle Weights

We can compute a score
for the fake laser scan:

1 (0f —7%)2

o; |) = e 207
p(t‘t) O'\/%

The Algorithm

a single recursive update step of the MCL algorithm
def MCL(X,_;,a,;,0):
X, =14
for i in range(m):
sample a pose from the old particles according to old weights. Samples
implicitly represent the prior prob. dist. Bel(x {t-1}) in egn. (3)
x'r—l ~Xp
update the sampled pose according to the motion model
xlr = p(xl |xl—|’ ar—l)
weight the updated pose according to the sensor model
w' = plo|x',)
add the new pose and weight to the new distribution
X,=X,U{(,w)}
normalize weights, should sum to 1
X, = normalize(X,)
return X,

iterative application of the MCL algorithm
def particle filter():

X = Bel(x,) <« initial particles

while true:

a = get_last_odometry()
o = get_last_sensor_readings()
X = MCL(X,a,o0)

inferred pose < expected value over particle distribution
pose = Ex[X] 572 100

Particle Filter without Resampling

| I I | | | I |

Weights

573

Particles

N
’
j,/

Resampling

j) (“) O (f (T) "T)

~
@

(

Resampling

-9-9-@—@ @ O(EQ -Q | Original Particles

\// /\/ \// \\

v b P
‘” oo e o After N iterations

"

@@

Resampling

Original Particles

After N iterations

Resampling

Particles
#

—
-y
—
= —

—— a2 S

- ——
- - —= -

- -~ -

Particle Filters in ROS

* Adaptive Monte Carlo Localization Package
* Localization for a robot moving in a 2D space

* Localizes against a pre-existing map

AMCL Parameters

min particles
Default: 100

The minimum number of particles to be used for
calculating correlation

max particles
Default: 500

The maximum number of particles to be used for
calculating correlation

AMCL Parameters

update min d
Default: 0.2m

The minimum translation movement required by the
vehicle before an pose update is published

update min a
Default: '/, radians

The minimum angular movement required by the
vehicle before an pose update is published

AMCL Parameters

1nitial pose X Default: 0
1nitial pose y Default: 0
1nitial pose a Default: O

The initial mean position of the particles to initialize the particle filter

AMCL Parameters

initia:__cov_xx Default: 0
1nitial cov yy Default: 0
initiai__cov_aa Default: 0

The covariance of particles distributed around the mean

Tf tree — Where does AMCL fit in

world_frame

«— Odometry (AMCL Localization)
Drift
< Odometry (Hector)

base_frame

¥ ROS INDIGO

nav.rviz* - RViz ¥ I 2 0 839AaM B

) Move Camera If_‘j nteract
3 Displays

v @ Global Options
Fixed Frame
Background Color
Frame Rate
Global Status: Ok
Grid

Odometry o~
v Status: Ok
Topic Jodom
Color @ 221; 200;
Position Tolerance 0.1
Angle Tolerance 0.1
Keep 100
Length 0.6
Odometry EKF
RobotModel ~
Map o~
v’ Status: Ok
Topic /map
Alpha 0.5
Color Scheme map
Draw Behind ™
Resolution 0.05
width 576
Height 544
Position
Orientation
Local Plan
Global Plan
Marker
LaserScan
Mouse Goal
Goal Pose
Pose Array

N
~N

&&'&&K&i
o

>

\\\\\‘l.\\v v

Alpha
Amount of transparency to apply to the
map.

Add

Reset Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click:: Zoom. Shift: More options

amcl_config.rviz® - RViz

20 Pose Estimats 20 Nav Goal 9 Publssh Pont L =

r-. Map v”
5 [E® Map
e
$ / Pose 4
//" PoseArray "4
/\ Odometry 4

Keep

Number of arrows to keep before removing the oldest. O means

keep all of them

'
Add .
Co X
ROS Tume: | 1458504970.57 | ROS Elapsed: | 7.28 Wall Time: 1460587807.26 Wall Elapsed: | 153.53 585 Experimental
Reset Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click/Mouse Wheel:: Zoom. Shift: More options 30 fps

References

S. Thrun, W. Burgard. “Probabilistic Robotics.” Chapter 4 and Chapter 8.

http://www.probabilistic-robotics.org/

S. Thrun. “Artificial Intelligence for Robotics, Lesson 3.” Udacity.

https://www.udacity.com/course/artificial-intellisence-for-robotics--cs373

S. Thrun, D. Fox, W. Burgard and F. Dellaert. “Robust Monte Carlo Localization for Mobile Robots.” Artificial Intelligence Journal. 2001.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.601 6&rep=rep | &type=pdf

D. Fox, W. Burgard, and S. Thrun. “Markov localization for mobile robots in dynamic environments,” Journal of Artificial Intelligence Research , vol. I I, pp. 391427, 1999.

http://www.jair.org/media/6 1 6/live-6 | 6- 1 819-jair.pdf

D. Fox. “KLD-sampling: Adaptive particle filters,” Advances in Neural Information Processing Systems 14 (NIPS), Cambridge, MA, 2002. MIT Press.

https://papers.nips.cc/paper/1998-kld-sampling-adaptive-particle-filters.pdf

D. Bagnell “Particle Filters: The Good, The Bad, The Ugly”
http://www.cs.cmu.edu/~ 1683 1-fl2/notes/F14/16831 lecture05 gseyfarth zbatts.pdf

C. Walsh, S. Karaman. “CDDT: Fast Approximate 2D Ray Casting for Accelerated Localization.” Arxiv, 2017.
http://arxiv.org/abs/1705.01 167

586

| 14

