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Objectives

3

- What is Simultaneous Localization and Mapping ?
- What are Occupancy Maps ?
- How are SLAM and Scan Matching related ?
- SLAM in ROS – Hector Mapping
- Google Cartographer SLAM Overview
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Problem Setting

4
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A brief history of SLAM

5

Why do we need a map?
• In order to support path planning
• Limiting the error in state estimates, by providing the opportunity to ‘reset’
• Later… do we really need a map?

Historical Development (1986-2004): Probabilistic Foundations
• EKF (you will still find this in visual inertial odometry)
• Particle Filter (very efficient localization)
• We will cover these methods next class in the context of localization

Modern Era (2004-Now): Algorithmic Improvements
• Maximum a-posteriori Estimation
• Other names: factor graph optimization, graph-SLAM, smoothing and mapping (SAM), bundle adjustment
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Limitations : Basic Path Planning

• High Level Path Assignments

• 2nd right, 2nd right, 1st right, 1st left, 1st right 
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Race Lines
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Registering the first Scan

42
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Registering the first Scan

43
515



Scan Matching

44

Laser Scans w.r.t car at Time t = t1 Laser Scans w.r.t car at Time t = t2

Pose of the Car at t = t1
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Scan Matching

45

Laser Scans w.r.t car at Time t = t1 Laser Scans w.r.t car at Time t = t2

Pose of the Car at t = t1 Pose of the Car at t=t2
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Raw LiDAR Scans
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Baseframe Axes
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Scans after transforming by ∆ξ at each stage
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Mapframe Axes
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Map Update
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Multi-Resolution Map Representation
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20 cm Grid Cell 10 cm Grid Cell 5 cm Grid Cell

521



50

Saving the map
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Saving the map

51

• ROS Package called 
MAP Server

• Allows saving a map 
currently being published 
over /map topic

• The saved map can be 
loaded for future tasks.
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System Tf tree
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Map Frame

Odom Frame

Base Frame

Laser Frame

Tf Provided by 
Hector dometry

Tf required by  
Hector package
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Parameters for Hector SLAM : ROS

• map resolution
• map_update_distance_thresh
• map_update_angle_thresh
• laser_max_dist
• update_factor_free
• update_factor_occupied
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Google Cartographer Overview
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The Problem

55

Why did Google (not Waymo) make a SLAM package?
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What’s different about Cartographer

56

The contribution of this paper is a novel method for reducing the 
computational requirements of computing loop closure 
constraints from laser range data.
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Two regions in the map are found to be the same region in the world 
even though their position is incompatible given the uncertainty estimate 
in the map — the classic loop closure problem. 

The system must then be able to calculate the transformation needed to 
align these two regions to ‘close the loop’.
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Loop-closure
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Loop-closure
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System Overview: Sensor Inputs

Up to  four types of sensor 
measurements: (1) Range (II) 
Odometry (III) IMU (IV) Fixed 
Frame Pose

The F1/10 vehicle supplies 
two sensors:

2D LIDAR 
(Range)

VESC
(Odometry)
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System Overview: Frontend

Cartographer consists of two 
separate subsystems: local 
SLAM (frontend or trajectory 
builder) and global SLAM 
(backend).

The job of local SLAM is 
to generate good 
submaps.

The job of global SLAM is to 
tie the submaps consistently 
together.
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System Overview: Backend

Cartographer consists of two 
separate subsystems: local 
SLAM (frontend or trajectory 
builder) and global SLAM 
(backend).

The job of local SLAM is to 
generate good submaps.

The job of global SLAM 
is to tie the submaps 
consistently together.
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Frontend: Local SLAM
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What is a submap?

A submap is considered as complete 
when the local SLAM has received a given 
amount of range data. 

Submaps must be small enough so that 
the drift inside them is below the 
resolution of the occupancy grid, so that 
they are locally correct. 

On the other hand, they should be large 
enough to be distinct for loop closure to 
work properly. More on this later

Submaps are small chunks of the world 
filled with a fixed amount of registered 
range data.

The amount of 
range data 
should be large 
enough that 
submaps are 
distinguishable...

The addition of 
odometry helps 
deal with 
submaps like 
this….
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What is a submap?

Submaps each have their own static 
transform and contain a collection of 
registered range-measurements. 

Consecutive measurements are 
connected by constraints which are 
‘local’.

Here local means derived from odometry 
or recent scan overlaps and resultant 
scan matches. 

Localization: the robot’s 
trajectory in a submap is 
computed via scan matching.
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What is a submap?

Submaps each have their own static 
transform and contain a collection of 
registered range-measurements. 

Consecutive measurements are 
connected by constraints which are 
‘local’.

Here local means derived from odometry 
or recent scan overlaps and resultant 
scan matches. 

65

Once a motion between two scans is found by the scan 
matcher, it goes through a motion filter. A scan is inserted 
into the current submap only if its motion is above a certain 
distance, angle or time threshold.
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Submap Representation

Submaps can store their range data in a probability grid. For 2D a signed 
distance field representation is also possible.

Probability grids are a 2D table where each cell has a fixed size and 
contains the odds of being obstructed. 

Odds are updated according to “hits” (where the range data is measured) and 
“misses” (the free space between the sensor and the measured points). 
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Updating the submap
1. For every hit, we insert the closest grid point

into the hit set. 
2. For every miss, we insert the grid point 

associated with each pixel that intersects 
one of the rays between the scan origin and 
each scan point, excluding grid points which are 
already in the hit set.

3. If a grid point has yet to be observed it is 
assigned a value phit or pmiss depending on which 
set it is in. 

Define the submap as: Recall the definition of the odds function:

Then the map is updated according to the following operation: Compute new p from odds...539
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Loop-closure
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Scan Matching:

How do we know that ‘hits’ and misses map to a particular cell in the probability grid?

● The collection of scan points relative to a moving reference frame attached to 
the robot are, H = {hk} for k=1…K where hk is a point in R2. 

● These points are placed in a submap at pose ξ in the global reference frame by 
applying a rigid body transform to each (rotation and translation).

● Submap construction is the iterative process of repeatedly aligning scan and 
submap coordinate frames. Sound familiar?

So we can understand why scan matching alone is insufficient for robust localization and 
explore the basics. 
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Does Cartographer use ICP?
No. Cartographer needs to support 3D LIDARs and the correspondence problem is 
insidious. 

● Scan matching variants:
○ Iterative closest point (ICP)
○ Scan-to-scan
○ Scan-to-map
○ Map-to-map
○ Feature-based 
○ RANSAC for outlier rejection
○ Correlative matching

Cartographer uses the Ceres-solver to formulate a nonlinear least-
squares correlative scan matching problem. 
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Correlation-based Scan Matching

● In ICP, correspondences between two scans are explicitly computed, allowing a 
rigid-body transformation to be computed. 

● Susceptible to local minima; poor initial estimates lead to incorrect data 
associations and divergence.

● Correlation based methods search for a rigidbody
transformation (without computing correspondences) that 
projects one set of LIDAR points (the query scan) on top of a 
reference map. 

● The reference map is generally implemented as a look-up table that assigns a cost 
for every projected query point. 
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Correlation-based Scan Matching

Pose in local submap 
reference frame

Sum over each scan 
point

Bicubic interpolation 
of probability grid

Transform scan point 
from scan frame to 
local submap frame

Coordinate of 
scan return
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Backend: Global SLAM

546



75

Closing Loops

Goal: is our current scan in one of the 
submaps we have already seen?

Constraints take the form of relative 
poses ξij and associated covariance 
matrices Σij . Relative poses now 
include both submap and scan 
poses.

For a pair of submap i and scan j, the 
pose ξij describes where in the submap 
coordinate frame the scan was matched.

Pose of the submap is now a decision 
variable.

This would be a 
good candidate 
for loop closure. 

Probably won’t 
get a loop 
closure here.
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Loop Closure

Submap poses

Sum over each scan, 
submap combination

Relative pose 
between submap 
and scan

Residual, 
see paper

Covariance 
matrix

Scan poses

Huber loss, 
outlier 
rejection
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Huber Loss
Uses a Huber loss to make the objective less susceptible to spurious constraints which are often 
added in symmetric environments… False positive is a disaster
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Problem Setting
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Input
1. Laser Scan
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Overview

552
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Overview

Input
1. Laser Scan
2. Control Input
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Overview

Input
1. Laser Scan
2. Control Input
3. Map
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Overview

Input
1. Laser Scan
2. Control Input
3. Map

Output
1. Pose
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Overview

Input
1. Laser Scan
2. Control Input
3. Map

Output
1. Pose
2. Particles
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Particle Filter Localization
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The key idea of Bayes filtering is to estimate a probability density over the 
state-space conditioned on the data. This posterior is typically called the 
belief and is denoted:
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Key Idea

Belief or 
posterior Robot state At time t The data from 

time 0 to t. 558



1. How would you describe the robot state in the localization 
problem?

2. Is the belief a probability distribution, what kind, how do you 
write it down? 

3. How would you describe the data from the F1tenth car? 
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Questions

Belief or 
posterior Robot state At time t The data from 

time 0 to t. 559



For mobile robots, we distinguish two types of data: perceptual 
data such as laser range measurements, and odometry data, 
which carries information about robot motion. Denoting the 
former by o (for observation) and the latter by a (for action), we 
have:
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Getting more specific… 

Belief or 
posterior Robot state

Perceptual 
Observation

Odometry History...
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After some simplification (see additional resources) we have:
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Recursion

Normalization 
Constant Make sure 
everything adds up to 1!

Sensor Model
Compute how likely your 
measurements were given 
updated particles.

Motion Model
Simulate noisy dynamics 
of particles based on 
control input. 

Previous Belief
Draw your particles with 
replacement according to 
importance weight.

In practice we represent the distributions non-parametrically 
using particles (a finite set of samples). More in the next slides. 

Read left to right 

Integrate out over previous beliefs. In practice finite 
approximation
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Now let’s look at particle 
filters in three dimensions 
and the process of using 
them in our car. Here we 
see a part of a map 
previously generated using 
Cartographer. The black 
pixels on the map denote 
the walls and the grey 
pixels denote free space.

Initialization
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Odometry pose

The red arrow indicates 
our initial pose obtained 
from user input. Lets use 
particle filters to solve the 
pose tracking problem 
and localize more 
accurately in the map.

Initialization
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First we need to generate 
a set of hypothesis for our 
first position. These the 
discrete particles drawn 
from a Gaussian 
distribution of mean being 
the initial guess and with a 
small covariance. 

Initialization
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Applying the measured 
control input to the 
motion model (with 
noise), yields an updated 
set of possible poses. 

Motion Model
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For each particle we can 
create a ‘fake’ laser scan 
by raycasting against the 
map at the particles pose. 

Sensor Model
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How hard is creating the 
fake laser scan relative to 
computing the motion 
model update?

What is special about the 
sensor model? 

Questions
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How hard is creating 
the fake laser scan 
relative to 
computing the 
motion model 
update?
Way harder.

What is special 
about the sensor 
model?
It’s embarrassingly 
parallel. 

Questions
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Efficient methods for 
raycasting such as 
Breshenham’s Line 
method can be deployed.
Alternately a signed 
distance field can be pre-
computed.  

Raycasting
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Recall, we have the ‘real’ 
laser scan which the car 
observed (shown in 
green). Note we don’t 
know where the green 
dot is but we do know 
the range measurements. 

Computing Particle Weights

570



We can compute a score 
for the fake laser scan:

Computing Particle Weights

571



100

The Algorithm
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Particle Filter without Resampling

Particles

W
ei

gh
ts
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Resampling

After N iterations

Resampling574



After N iterations

Resampling

Resampling

Original Particles
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Resampling

After N iterations

Resampling

Original Particles
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Particles
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Particle Filters in ROS

• Adaptive Monte Carlo Localization Package

• Localization for a robot moving in a 2D space

• Localizes against a pre-existing map
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min_particles
Default: 100
The minimum number of particles to be used for 
calculating correlation

AMCL Parameters

max_particles
Default: 500
The maximum number of particles to be used for 
calculating correlation
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update_min_d
Default: 0.2m
The minimum translation movement required by the 

vehicle before an pose update is published

AMCL Parameters

update_min_a
Default: ⁄π " radians
The minimum angular movement required by the 

vehicle before an pose update is published
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initial_pose_x Default: 0
initial_pose_y Default: 0

initial_pose_a Default: 0

The initial mean position of the particles to initialize the particle filter

AMCL Parameters
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initial_cov_xx Default: 0
initial_cov_yy Default: 0

initial_cov_aa Default: 0

The covariance of particles distributed around the mean

AMCL Parameters
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Tf tree – Where does AMCL fit in

world_frame

map

odom

base_frame

Odometry (Hector)

Odometry
Drift

(AMCL Localization)

583



Video of AMCL particles
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