
IROS 2020 - ISRU Tutorials

Background

Space is hard. Robots make things slightly easier.

In 2018, the Florida Space Institute (https://fsi.ucf.edu) tasked 10 UCF computer science
students with creating an open-source, low cost, excavation robot (https://blogs.nasa.gov

/kennedy/2016/10/03/rassor-marco-polo-demonstrate-resource-utilization-on-mars/) from scratch. The
result is an actively-developed simulation that gives students and educators the ability
to drive a mining robot around the Moon, and provides researchers a platform to
investigate advanced space robotics algorithms such as new machine learning or
computer vision techniques off-world.

In the following tutorials you will learn how to operate the Easy Regolith Advanced
Surface Systems Operations Robot, or EZRASSOR for short. The EZRASSOR is
modeled after the NASA RASSOR, a robot designed to make living on the Moon
sustainable by autonomously collecting regolith for later human use. To learn more
about the background on our project, check out our introductory Medium post
(https://medium.com/ez-rassor/introducing-the-ez-rassor-35dd0eb5c121).

1 of 8

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 378

.

Introduction

Imagine you’re an astronaut tasked with mining regolith on the Moon’s surface and
depositing it into an in-situ hopper for processing. First, you’ll directly control the robot
(as if you were on the surface of the Moon next to the machine). Next you’ll plan the
robot’s movements ahead-of-time from Earth and upload a list of actions that the robot
will execute in order. Writing this list will take some trial-and-error (remember we said
space is hard!). Finally, you’ll give up control and watch the EZRASSOR navigate and
excavate on its own by providing it with a target dig site and turning on its autonomous
systems.

Tutorial 0: Setup

Before you begin, you must install the EZRASSOR software suite on your computer.
Note that the software and these tutorials assume you are using Ubuntu Bionic (18.04)
and Bash. The simulation runs best when a graphics card is available, however a
sufficiently modern integrated graphics card can these tutorials if necessary.

Install ROS Melodic

Full ROS installation instructions are available on the ROS wiki (http://wiki.ros.org/melodic

/Installation/Ubuntu), but we have consolidated the commands you need here:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt

sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B1

sudo apt update

sudo apt install ros-melodic-desktop-full

echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc

source /opt/ros/melodic/setup.bash

NOTE: The above commands add a line to your .bashrc . Feel free to remove this line
after completing the tutorial.

Install the EZRASSOR from Source

2 of 8
379

With ROS installed, you can now build the EZRASSOR from source. Execute these
commands (more details in the EZRASSOR README (https://github.com/FlaSpaceInst/EZ-

RASSOR/blob/mainline/docs/README.rst)):

sudo apt install python-pip python-rosdep python-rosinstall python-rosinstall-generator pyth

sudo rosdep init

rosdep update

git clone https://github.com/FlaSpaceInst/EZ-RASSOR.git

cd EZ-RASSOR

sh develop.sh setup

sh develop.sh link

sh develop.sh resolve

sh develop.sh build

sh develop.sh install

echo "source ~/ezrassor_ws/install/setup.bash" >> ~/.bashrc

source ~/ezrassor_ws/install/setup.bash

NOTE: The above commands add another line to your .bashrc . Feel free to remove
this line after completing the tutorial.

If you encounter Sub-process /usr/bin/dpkg returned an error code... , try to fix
the broken install with the following command, then rerun the original command:

sudo apt --fix-broken install

** RERUN ORIGINAL COMMAND **`

You should be all set! Proceed to the first tutorial.

Tutorial 1: Direct Operation

It’s time to drive on the Moon! Launch the EZRASSOR simulation with keyboard
controls via this command:

roslaunch ezrassor_launcher tutorial.launch tutorial:=iros1

The simulation should load in just a moment (the first load can take several minutes).
Once you can see the robot, you may want to right click it and hit Follow so the

3 of 8
380

camera moves with the robot. When you’re ready, manipulate the rover with the
following keybindings:

← -> move left

↑ -> move forward

↓ -> move backward

→ -> move right

U -> raise front arm

J -> lower front arm

I -> raise back arm

K -> lower back arm

Y -> dig with front drum (rotate forward)

H -> dump from front drum (rotate backward)

O -> dig with back drum (rotate forward)

L -> dump from back drum (rotate backward)

See if you can perform these actions:

Drive to the dig site (red half-dome) while avoiding rocks
Dig at the dig site with both arms down
Drive on top of the drums (with the wheels up off the ground)
Flip the rover over! (hint: use the arms)

Kill the simulation with Ctrl-C in the terminal window when you’re ready to move on.

Tutorial 2: Delayed Teleoperation

Direct control becomes infeasible at great distances (it can take up to 13 minutes to
send a signal to Mars). In real life, rovers are usually given a list of instructions/actions
which are then executed in order. The following tutorial demonstrates this form of
indrect control.

Your goal is to drive the EZRASSOR (green arrow) to the target dig site (red
structure) by providing a list of actions (drive forward, turn right, etc) which will
be executed in order.

4 of 8
381

First, start the simulation:

roslaunch ezrassor_launcher tutorial.launch tutorial:=iros2

Before writing your action list, your should do some experimentation in the simulation
to figure out what actions you need to reach your goal. Open up another terminal
window and launch the Python interpreter:

export ROS_NAMESPACE=ezrassor1

python

The ROS_NAMESPACE variable ensures that your terminal window is configured with the
correct namespace for the spawned robot. Next, import our TeleopActionClient class
and instantiate it:

from ezrassor_teleop_actions import TeleopActionClient

client = TeleopActionClient()

Now you can use this client to send actions to the EZRASSOR. Each action is a string

5 of 8
382

containing a command and a duration (in seconds) for the command. The client
accepts actions as a list. Try the client out by raising the arms of the EZRASSOR (you
don’t want them to drag on the ground while you drive!):

client.send_movement_goal(["raise-front-arm 2.0", "raise-back-arm 2.0"])

Here is the full list of available commands with some useful tips:

Command Tips

move-forward 1.25 seconds => 1 meter displacement

move-backward 1.25 seconds => 1 meter displacement

rotate-left 1.0 second => 90 degree left turn

rotate-right 1.0 second => 90 degree right turn

raise-[front|back]-arm 2.0 seconds => 90 degree raise

lower-[front|back]-arm 2.0 seconds => 90 degree lower

dig-[front|back]-drum 1.25 seconds => 1 complete revolution

dump-[front|back]-drum 1.25 seconds => 1 complete revolution

stop stops the robot

Fiddle with sending actions to the robot and try to reach the dig site! Keep track of
your actions so you can produce a finished list later, and know that this is difficult…
like really really difficult, even for us.

Once you feel ready to try your finished list of actions, kill the simulation with Ctrl-C
in the original terminal window, then create a new text file. Feel free to close the
Python interpreter as well.

Add your actions to the text file, new-line separated, like this:

6 of 8
383

move-forward 1.5

rotate-left 2.2

move-backward 8.1

etc, etc...

Then relaunch the simulation:

roslaunch ezrassor_launcher tutorial.launch tutorial:=iros2

Finally, open up another terminal window and upload your action list:

export ROS_NAMESPACE=ezrassor1

rosrun ezrassor_teleop_actions process_actions /path/to/your/action/list

Did you make it to the dig site? If so, congratulations! If not, keep trying!

If you’d like to see or execute our action list solution, execute these commands in a
separate window with the simulation running:

export ROS_NAMESPACE=ezrassor1

cat ~/ezrassor_ws/src/ezrassor_teleop_actions/examples/tutorial-solution.txt

rosrun ezrassor_teleop_actions process_actions ~/ezrassor_ws/src/ezrassor_teleop_actions/exa

Kill the simulation with Ctrl-C in the terminal window when you’re ready to move on.

Tutorial 3: Autonomous Operation

Direct control and action lists require human time and effort, and are prone to human
error. Also, when a robot is controlled by a person it becomes much more difficult and
costly to maintain consistent uptime (where the robot is actively harvesting resources).
Can we build robots that require no manual intervention?

The answer is yes! The EZRASSOR includes many autonomous systems that allow
the robot to operate continously without additional inputs or instructions. It can
navigate to a dig site, dodge rocks and obstacles along the way, dig for a set amount

7 of 8
384

of time, and then return home safely to dump its load and repeat the process.

To watch the robot do work on its own, first launch the simulation:

roslaunch ezrassor_launcher tutorial.launch tutorial:=iros3

Now press 2 on your keyboard and the robot will execute its “auto-dig” procedure.
Press 3 to see the “auto-dump” procedure.

That’s not all! To start “full autonomy”, press 5 . The robot will navigate to a pre-
programmed dig site, dig for some time, journey back home, and dump its drum
contents. It will continue this cycle over and over until the simulation closes or you hit
0 .

NOTE: Autonomy is hard to perfect. Our system has a number of small bugs and
idiosyncrasies. If something weird happens during this tutorial, or if the robot gets
stuck, try restarting the simulation and consider creating an issue in our repository
(https://github.com/FlaSpaceInst/EZ-RASSOR/issues).

That concludes this set of tutorials for the EZRASSOR! Consider giving us a star on
our repository (https://github.com/FlaSpaceInst/EZ-RASSOR) if you enjoyed this or reach out with
feedback/issues (https://github.com/FlaSpaceInst/EZ-RASSOR/issues).

8 of 8
385

