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Abstract— This paper describes the system architecture for
an autonomous interactive drink serving robot developed for
use in public spaces and at social events. The proposed system
design focuses on finding the balance between technological
readiness and social readiness levels thus enabling a technology
that can be deployed in real-world environments along with
social acceptance. We describe different components required
for designing such a system and discuss both their technical
feasibility and social acceptance aspects. We also present a
behavior tree based software architecture for integrating these
components, which results in modular design and promotes
their re-usability.

I. INTRODUCTION

Dehydration can have adverse effects on our mental,
cognitive and emotional health[1], [2]. Thus, it is important
to drink water frequently to prevent dehydration. It is advised
to drink more than 2 litres of water every day even when we
are not thirsty[3]. However, studies[4] have shown that just
being conscious about these facts is not sufficient to motivate
people to drink water as there are no immediate rewards.
An effective way of solving this is by constantly motivating
people and reducing friction[4], [5] i.e. make it as easy as
possible for people to drink water. Drinking water regularly
is even more important for elderly individuals[6]. In elderly
care homes, health care workers have to spend their time
encouraging people to drink more water.

II. OBJECTIVES

We present a mobile robot which motivates and encour-
ages people to drink more water while offering them a cup.
The robots primary task is to detect people, approach them
in a socially acceptable manner, interact with them and offer
them water.

The targeted application poses various challenges in the
robotics context:

« Reliable drink serving

o Safe and socially aware navigation around humans

o Approaching humans in a socially acceptable manner

o Understanding human intentions and interacting with

them intuitively

e A modular and reactive behavior control architecture

that simplifies safety certification process and enables
long term deployments
Our work focuses on finding solutions to these problems that
are socially acceptable as well as ready to deploy in real-
world environments. In the following sections, we present
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our approach to solving these challenges and discussions
about future work.

III. SYSTEM OVERVIEW
A. Hardware

We use the SMOOTH robot for the given task[7]. It is a
penguin-shaped[8] mobile social robot as shown in Fig. 1.
Even a simple task such as pouring water, grasping or releas-
ing a glass of water is still a challenging task for robots[9],
[10]. Thus, they cannot be deployed reliably in un-controlled
environments. Hence, instead of using a manipulator arm, we
have developed a drink serving tray which can be installed
on the robot as an add-on module as shown in Fig. 1 . It
has infrared sensors for each cup on the bottom of the tray
which provides feedback to the robot on how many glasses
were taken from the tray. Intuitive interaction methods[11]
are then used to motivate and encourage people to take a
glass of water from this tray.

Fig. 1. SMOOTH robot with an add on tray module for serving drinks

B. Behavior control architecture

In complex software systems such as robotics, it is desir-
able to design systems from reusable and maintainable com-
ponents. This becomes even more important during long term
deployment and for the safety certification process. In recent
years, behavior trees have emerged as a reliable solution
for reactive and modular architectures in robotics[12]. They
enable to create behaviors that are configurable, composable,
reusable and reactive[13]. Our behavior control architecture
has been designed using a behavior tree. Behavior tree
nodes implement simple behaviors such as go to goal, turn
by specific degrees, detect people, group people, plan, get
attention, interact with people etc. In some cases, these
nodes communicate with external components to provide
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navigation and human-robot interaction. All these simple
behaviors are combined using standard nodes in the behavior
tree to execute drink serving behavior.

C. Perception

Perception component is used for estimating 3D pose and
gaze angle of the person. The 3D position of the person is
estimated using a human pose estimation CNN on RGB-D
data and orientation is estimated based on facing direction of
people in the camera’s field of view (FoV). A tracker is used
to assign unique IDs to the detections as well as reducing
noise on them, in order to provide temporal consistency[14].
Gaze angle of the person is estimated using OpenFace[15].
The 3D pose estimation of people is used for approaching the
people, while the gaze estimation angle is used to determine
if a person is interested in interacting with the robot.

D. Approaching humans

People maintain a certain distance while interacting with
a person. In case of a close friend it is usually between
45 cm to 120 cm. While in the case of acquaintances, it is
normally more than 120 cm[16]. Similarly, for static social
groups there exists a concept of o-space which is an area
reserved explicitly for interaction. It exists in the form of
a circle as shown in Fig. 2. Anyone interested in joining
the conversation is expected to place themselves just outside
the o-space to express intention to join the interaction[16].
We identify F-formations among the detected people using a
hierarchical clustering method which employs a customary
distance function for the incorporation of the body ori-
entation. Multiple approach points are then generated for
approaching detected F-formations by incorporating various
social rules as discussed above (see Fig. 2). Approach-points
are prioritized based on social conventions. The robot selects
the first way-point to which it can successfully plan the
motion from the prioritized list of way-points and starts the
interaction.

E. Socially-aware navigation

As robots are moving into social environments, it has
resulted in the need for human-aware or socially-aware
navigation[16], [17] which is the intersection between
human-robot interaction and robot motion planning. While
these ideas are still evolving, ROS navigation stack provides
a stable solution for navigating in indoor environments[18].
However, since it’s solely based on geometric details of the
environment, it doesn’t exhibit socially acceptable behaviors.
We follow the approach described in [19] and added a
social layer to enable human-aware navigation using a ROS
navigation stack. The social layer adds costs to the cost-
map based on the o-space of detected humans and their F-
formations[20] as shown in Fig. 2. The robot then plans its
motion using this cost-map.

F. Human-robot interaction

Human-robot interaction involves various steps such as
getting the attention of the person, understanding a person’s

Fig. 2. Detected F-formations, social cost-map and approach points.(Yellow
arrows indicates detected people, red arrows indicates planned approach
points and blue circles indicate the o-space circles added to the costmap
based on detected people and F-formations)

intention and then effectively communicating the robot’s
intentions to the person. We use speech to initiate the com-
munication. The robot then tries to understand the person’s
intention for interaction by estimating their gaze angle and
starts a conversation to offer a drink accordingly. In the case
of F-formation where there are multiple people, the robot has
to ensure that it is addressing every member of the group.
We achieve this by using robot’s eye gaze to select each
person[11] as shown in Fig. 3. DialogOS - an open-source
dialog manager[21] is used for managing the dialog.

Fig. 3. Robot interacting with people using gaze and speech and offering
them drinks

IV. CONCLUSIONS AND FUTURE WORK

We expect that the designed and implemented system for
social interaction will be adequate for solving the drink
serving scenario. In the near future, we will continue refining
our interaction models contained in the behavior trees. We
further plan to conduct human-robot interaction studies with
invited participants and also “in-the-wild”. We will continue
upgrading our system based on information gathered during
tests. We believe that SMOOTH will be successful at offering
water to people and thus make sure that they keep hydrated.
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