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Abstract— Tactile feedback during cloth manipulation could
be crucial in addressing the huge challenges involved in closing
the loop during execution, complementing vision. However, up
to our knowledge, tactile sensing has only been successfully
used in cloth manipulation to classify type of fabrics, detect
how many layers were grasped, and estimate the grasping force.
In this work, we want to explore its potential to also provide
information about whether the task is executed as expected. Two
types of experiments are performed, in which a robot carries out
4 simple tasks, all involving a single finger manipulating a flat
cloth on a table. Firstly, we analyze the sensor’s signals once the
cloth manipulation has finished using Dynamic Time Warping
(DTW) to see if they are informative enough to classify the
tasks. Our results show that tactile feedback depends highly on
the type of manipulated fabric. Secondly, we analyze the tactile
feedback during the manipulation of the cloth using a recurrent
neural network (RNN). For each sensor measurement, the RNN
recognizes if the finger slides over the cloth, pulls it, flattens a
fold in it, or if it’s about to lose contact, with 95.7% accuracy.
These are promising results that show how tactile sensing has
the potential of providing crucial information that would be
very difficult to obtain with vision only.

I. INTRODUCTION

When manipulating rigid objects, a robot can only change

their position and orientation, namely six parameters. How-

ever, the manipulation of highly deformable objects such

as clothing involves a potentially infinite-dimensional shape-

state space [1]. This makes traditional geometry-based per-

ception algorithms developed for rigid-objects hardly ap-

plicable in the context of cloth manipulation. Advances in

perception techniques for clothes involve machine learning

approaches for recognizing cloth parts, such as corners or

necks [2], and applications of motions to the object to aid

state estimation of the garments. However, due to the huge

dimensionality of the cloth configuration space, it is often

difficult to understand its state and act accordingly during

manipulation.

In this context, more sensory information is crucial to

function, especially when environmental circumstances or

self-occlusions impair vision. Force and tactile sensors can

enable robots to manipulate objects with greater precision

and sensitivity and allow operation in less-structured envi-

ronments. In the case of cloth manipulation, which is so
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Fig. 1. Setup: A Stäubli robot arm with detail of the fingertip touch sensor
covered with a silk cover at the top-right, without the cover at the bottom-
right.

crucially based on complex and usually inefficient perception

techniques, tactile feedback may be essential to the develop-

ment of more natural, precise and robust manipulations.

The lack of efficient models and the difficulty of apply-

ing closed-loop control where the robot can react during

manipulation is one of the main challenges the community

is facing [3]. Providing additional tactile sensing could

compensate for the limitations of using only vision for task

monitoring and cloth state recognition. For instance, when

unfolding a textile object in the air, one can trace the edge

sliding over it with the second hand, without losing the grasp,

to get from one corner to the other [4]. In this case, tactile

feedback can be used to detect if such grasp has been lost,

or more importantly, if the robot is going to lose it in the

near future, in order to act to prevent it.

In this work, we show how tactile sensing can aid the

robot to recognize if the cloth is sliding, if it is tightly

grasped or if the commanded task is executed correctly. To

this end, we have designed a set of repeatable and measurable

tasks consisting of sliding or flattening a cloth on a table

with just one finger equipped with a touch sensor (see

Fig. 1). These are simple but representative tasks because

cloth manipulation very often involves handling flat clothes

on a table. In addition, sliding a cloth between a finger and a

table is a simplification of sliding it between two fingers. We

also consider different cloth types such as a kitchen cloth, a

thin cloth napkin, a cotton T-shirt, and a piece of denim.

First, from the whole tactile signal, we want to identify
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which of our four predefined tasks corresponds to it, using

Dynamic Time Warping as a similarity measure. [5]. This

analysis allows us to study differences when executing with

different clothes or using different forces. From this analysis,

we conclude that different fabrics produce distinct enough

signals, so that the fabric type needs to be included in the

task definition if we are to achieve accurate identifications.

Secondly, considering the tactile signal at each time step

of the execution, we want to identify the specific contact

interaction between the finger, cloth and table using recurrent

neural network (RNN) techniques [6]. In other words, we aim

to identify if the finger is sliding over the cloth, moving it,

flattening a fold or losing contact. Using the RNN analysis,

we can identify with 95.7% accuracy what the particular

contact interaction at each time step is, regardless of the type

of cloth. These are promising results that can be crucial for

a robot to understand whether a commanded task is being

carried out correctly or corrections need to be made.

II. RELATED WORK

There is an extensive bibliography on cloth manipulation,

although it has received relatively little attention compared

to rigid object manipulation. Due to the complexity of the

problem, works often involve a variety of techniques [7] in

sensing, recognition, machine learning and manipulation, to

complete a task. Benchmarks [8] and frameworks [9] for

such manipulations have also been developed.

As far as the sensing strategies are concerned, the vast ma-

jority of works focus on 2D and 3D vision sensing. The two

main issues that need to be solved are grasp point detection

and cloth state estimation, and vision is usually combined

with induction of cloth movement through manipulation to

reduce uncertainty. A good survey of these techniques can

be found in [3]. For instance, [2] used 2D images and depth

data to detect collars or relevant parts to be grasped. Others

find grasp points by detecting contours [10] or edge dis-

continuities using depth data [11], and more recently, using

deep learning [12]. The problem of grasp point detection

often is tackled by detecting the lowest hanging point of a

cloth. As an example, [13] used Active Random Forest while

rotating the cloth. To estimate the cloth state, authors mostly

used 3D vision data to reconstruct a mesh [14], Hidden

Markov Models to estimate identity and track configuration

during a specific sequence of manipulations [15], or depth

data in combination with cloth motion [16]. Cloth can be

reconstructed by comparing its mesh to a database [17]. In

general, these works manipulate the cloth in order to bring

it to a known configuration, usually flat on a table. In [18],

RGB-D data is interpreted to locate wrinkles on a semi-flat

cloth on a table. Once a cloth is already flat, contours can

be used to define the cloth state, like in [19–21].

There is an extensive bibliography of tactile sensors to

identify textures, that has been recently extended to rec-

ognize different fabrics. For instance, very high accuracy

of recognition has been achieved with machine learning

Fig. 2. We applied our tasks to 4 different objects. O1 (top-left) is a large
kitchen cloth, here in the initial configuration of Task 1. O2 (top-right) is a
small and thin cloth napkin, here set in the initial configuration of Task 2.
O3 (bottom-left) is a T-shirt, here set in the initial configuration of Task 3,
and O4 (bottom-right) is a cut piece of denim cloth without hems, here in
the initial configuration of Task 4. Note that O4 is only used for Task 4.

techniques [22–24]. Particularly [24] could recognize, in

addition to the type of textile, how many layers were grasped

using a Support Vector Machine (SVM).

Many works on mechanical designs for cloth specialized

grippers include tactile sensors [25–27]. The sensors in [26]

are used to estimate appropriate grasping forces for different

cloth items. A specially designed tactile sensor is used in [27]

to develop a gripper controller and to classify different

fabrics.

There are a few works in sensor fusion. For instance,

in [28] RGB-D sensors are combined with photometric and

tactile data to simultaneously recognize the type of garment,

fabric pattern and material using various machine learning

techniques. Force feedback, in combination with vision,

has been used to build a controller to manipulate cloth

maintaining it in tension [29], or to use the force feedback

to better reproduce learned tasks [30].

Recent works in the literature explore the tactile sensing

task using high-accuracy 3D data. One paper [31] explores

how pure tactile sensing can be used to accurately manipulate

cables, which are similar deformable objects to fabrics, using

high-resolution sensors based on the GelSight. A similar

topic is discussed in [32], using a BioTac sensor to follow

the contour of a ziplock bag. To the best of our knowledge

though, nobody has used tactile sensing with the simpler

3-axis domed force sensors to recognize the type of cloth

manipulation task the robot is executing or to recognize the

contact interaction with the cloth. This kind of recognition

could be crucial to successfully monitor task execution

during cloth manipulation, especially when combined with

vision, for example in slip detection and adjusting during

folding of textiles.
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(a) (b)

Fig. 3. The two initial states of cloth considered, with and without clamping
on the Q line. For the experiments the parameters were set to d1 = d2 =

10%L, d3 = 50%L where L is the total length of the piece of cloth in the
X direction.

III. DATA COLLECTION

The study of the literature from the previous section does

not provide any dataset for our task. To this end, we generate

a data collection, that will be published, to validate our work.

In this section, we explain the data generation and annotation

process. The data collection generated comprises two sets of

annotations for each sample: a manipulation task that defines

the end result of each sample and the contact interactions

which indicates the effect of the manipulation on the cloth

during their manipulation. The manipulation task annotation

comprises one action for the full sequence while the contact

interactions annotation is provided for each sample of the

force sensor.

We use a Stäubli RX60 6-DOF robot arm to execute

repeatable trajectories for the trials. On its tool center point

(TCP) we attached an Optoforce OMD-20-SE-40N sensor,

to which we added a silk textile covering to reduce friction.

A picture of the setup can be seen in Fig. 1. The same touch

sensor has been used in cloth manipulation grippers in [25].

It returns 3-dimensional feedback of linear forces in the X ,

Y and Z directions. Precise and repeatable rectilinear trajec-

tories are generated with constant orientation to get results

with consistent vertical forces. Trajectories are generated and

executed through the MoveIt! [33, 34] framework, sensor

data is obtained using the ROS driver for the sensor set to

333 Hz and a 1.5 Hz filter [35].

We define a manipulation task as a sequence of contact

interactions between the finger and the cloth/environment, to

perform a task, such as flattening or pulling a cloth on a

table. The different types of contact interactions are defined

as the different relative motions that occur during a task

between the finger, the cloth, and the environment.

We consider 4 tasks, consisting of pulling on clothes with

a single finger contact. When the cloth is clamped, the finger

slides over it and the clamp prevents the overall cloth motion.

When the cloth is not clamped, the same trajectory results in

pulling and moving it. When a fold is present, pulling flattens

the cloth. Although these are simple tasks, they produce up

to 9 different contact interactions that are very relevant to

cloth manipulation.

TABLE I

TYPES OF CONTACT INTERACTIONS DURING TASK EXECUTIONS

Description

Rel.
motion
F-C

Rel.
motion
C-T

m1

Finger moves the cloth, flattening

the fold no yes
*Sub-types:

-m1a: Finger on the hem
-m1b: Finger not on the hem

m2 Finger moves the whole cloth no yes
*Sub-types:

-m2a: Finger on the hem
-m2b: Finger not on the hem

m3

Finger slides on the cloth

without moving it yes no

m4

Finger is starting to go

over the hemline yes no

m5

Finger slides over a hemless

edge of the cloth yes no

m6

Finger has just lost contact

with the cloth yes no

m7 No contact with the cloth no no

F stands for finger, C for cloth and T for table.

We designed the tasks so that they all use the same motion.

They all start with the finger from an initial contact located

at the point P and move the finger along the X direction, as

in Fig. 3.

The four tasks are:

• Task 1: Flatten pulling a cloth

Initial configuration: The cloth is on the table with

a fold along the Y direction (Fig. 3-(a)), without any

attachment to the table. An example can be seen in

Fig. 2-(top-left).

Expected result: The fold is flattened. Once flat, the

cloth is moved by the finger on the table.

• Task 2: Pulling a flat cloth

Initial configuration: The cloth is flat on the table

(Fig. 3-(b)), free to move. An example can be seen in

Fig. 2 -(top-right).

Expected result: The finger moves the cloth on the table.

• Task 3: Flatten pulling a fixed cloth

Initial configuration: The cloth is in the same con-

figuration as Task 1 (Fig. 3-(a)), attached to the table

with a clamp along Q. An example can be seen in

Fig. 2-(bottom-left).

Expected result: The fold is flattened but the cloth does

not move because it is clamped to the table. The finger

passes over the edge

• Task 4: Sliding finger over a cloth

Initial configuration: The cloth is in the same config-

uration as Task 2 (Fig. 3-(b)), attached to the table

with a clamp along Q. An example can be seen in

Fig. 2-(bottom-right).

Expected result: The finger slides on the cloth without

moving it until it loses contact, going over the hem at

the edge.
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Tactile feedback signal of an execution of Task 1 with the kitchen cloth.

Finger unfolds (m1b) until cloth is flat, then slides over it (m3) until

it reaches the hem, then it pulls the whole cloth (m2a) until it stops

Signal of an execution of Task 2 with a small napkin. The finger

pulls and moves the whole cloth (m2b) until it stops.

Execution of Task 3 with the T-shirt. The finger slides over

the cloth (m3) until it reaches the hemline and starts pulling, flattening

the fold (m1a). When it is flat, finger goes over the hemline (m4), loses

contact (m6) and keeps moving without cloth under it (m7) until it stops.

Execution of Task 4 with the hemless cloth. The finger starts sliding

over the cloth (m3) until it crosses the edge (m5). Then it keeps

moving without cloth under it (m7) until it stops. As expected, it differs

a lot from the other graphs where hemlines are involved

Fig. 4. Examples of the tactile signals and the different contact interactions for each task.

We executed the tasks with three objects: two different

napkins and a T-shirt. Task 4 was also executed with a cut

piece of denim without seams to generate loss of contact

data with and without hems. Each trial is annotated by the

task performed and the cloth used. This divides the data into

classes, corresponding to the task and the cloth used. All

the objects are shown in Fig. 2. Each Task was executed

10 times per object, with a few being discarded due to

problems in setup and recording, with a vertical force of

1.5N . The intensity of the force was chosen empirically to

flatten the fold without creating additional wrinkles, as we

observed they affected the robustness of the results. Data

was logged using rosbags, including video, sensor data and

joint positions. We gathered a total of 125 trials. In the

complementary video [36] we show examples of all the task

executions with the different items.

From the executions of the manipulation tasks above, we

identified 9 types of contact interactions between finger (F),

cloth (C) and table (T). Each contact interaction identified

carries valuable information during the cloth manipulation

task, such as if the finger is moving the whole cloth, if it’s

flattening the fold or if a hemline is present. The complete

list of interactions is defined in Table I. In Fig. 4 we can see

examples of how the intervals of all the tactile signals have

been labeled. Labels are manually assigned checking both

the video and the signal recorded during execution.

IV. MANIPULATION TASK CLASSIFICATION

We start the experimental part assessing the manipulation

task. In our analysis, we want to study how similar the execu-

tions from the same task are, and if they can be recognized.

We expect similar signals from elements of the same class, so

that they can be properly classified. We define the similarity

between two 3-dimensional signals in terms of the Dynamic

Time WarpingAdaptive : DTWA distance defined in the work

of Shokoohi-Yekta et al. for multidimensional time series [5].

The DTWA distance depends on a threshold parameter

that decides whether to use the dependent (DTWD) or

independent (DTWI ) distance. We use the threshold set to

1, meaning we take the minimum of them. Given two tactile

signals S = (Sx, Sy, Sz) and T = (Tx, Ty, Tz), we will write

DTWA(S,T) to refer to the distance defined in [5].

To classify our data, we use a Nearest Centroid Clas-

sifier [37, 38]. In this method, the training data is manu-

ally separated by clusters and each cluster i is represented

by its centroid Ci. We use DTW Barycenter Averaging

on all the elements of the cluster to compute its cen-

troid [39]. Then, each new signal S is classified by finding

the minimum DTWA distance to each of the centroids:

min
i
(DTWA(S,Ci)). We repeat the process 100 times to

validate our results, and in each iteration we randomly
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sample 70% of our data to define sets of clusters based on

the different criteria we want to test for: by task, by type of

cloth, by task and type of cloth, etc. The random sampling

is equally distributed among our classes of trials. Then, we

used the remaining 30% of the data to test.

A. Results

In this section we analyze the classification accuracy of

the dynamic time warping based classification with different

setups. First, we provide results with all the clothes aggre-

gated together. Then, we analyze if we can improve the

classification differentiating between cloth types.

Fig. 5. Classification by task. We can see that we can only make a good
distinction between the case where the cloth is free to move (Tasks 1 and 2)
and the cloth is clamped on the table (Tasks 3 and 4). The signals as seen
in fig. 4 are too similar for DTW to make a reliable distinction between
them.

1) Task identification without separating by cloth type:

We first wanted to evaluate if the executed task could be

identified from the tactile feedback signal, regardless of what

type of cloth it was executed on. To this end, we grouped

data in 4 clusters corresponding to the 4 different tasks,

without taking the cloth item into account The obtained

confusion matrix is shown in Fig. 5. Each cell cij contains

the percentage of times the task Ti was classified as Tj for

all our test set. We can see how we can clearly distinguish

between tasks in which the cloth is clamped (Tasks 3 and 4)

with respect to tasks where the cloth can move freely

(Tasks 1 and 2). However, with this grouping, ”flattening a

fold” vs. ”moving the finger over an already flattened cloth”

has high confusion and cannot be distinguished reliably.

This result indicates that signals of different cloth types are

too different and should not be grouped in the same cluster

for classification.

2) Task identification for each of the cloth types: Follow-

ing the results in the previous section, we considered dividing

our data by the three types of cloth (O1 to O3 in Fig. 2), and

identifying the tasks for each of the three sets. The resulting

three confusion matrices can be seen in Fig. 6.

In this case the classification is better in almost all the

cases. In the worst case, we get a 91.67% correct classifica-

tion for the kitchen cloth (T2), while the rest are properly

classified 100% of the times. That is, the method classifies

Task 2 (where the finger pulls the cloth moving it) as Task 1

(where the finger pulls a fold flattening it), only in 8.3% of

the cases. Bearing in mind how similar these tasks are, this

is a promising result. This confusion is similar to that of the

T-shirt and worse for the thin napkin where, in addition, the

method classifies Task 1 (flatten a fold) as Task 2 (pull a flat

cloth) in 30% of cases.

Kitchen cloth Thin napkin T-shirt

Fig. 6. Classification results for each individual object: the two napkins
and the T-shirt.

For the first two objects, we can distinguish between Tasks

3 and 4 very well, but with the T-shirt, Task 3 is confused

with Task 4 in 83% of cases. In Task 3 the finger first flattens

the fold and keeps sliding over the cloth and over the hem.

In Task 4 it just slides and goes over the hem. In both cases,

the cloth is clamped on the table, therefore, it cannot move.

In other words, 83% of times with the T-shirt, the method

cannot feel that the finger is flattening the fold, and it thinks it

is just sliding over the cloth. We believe that this is related

to the fact that there are two layers of fabric present In a

T-shirt, which is reported to provide significantly different

tactile feedback by [24].

Ti and Oi refer to Task i and object i, i ∈ {1, 2, 3, 4}.

Fig. 7. Classification by task and object, considering all the data together.
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3) Task and cloth type identification: Our results so far

suggest that even when performing the same task, different

types of cloth result in very different tactile signals. In other

words, if we want to recognize the task from only the tactile

signal, the task definition should include the type of cloth.

In this section, therefore, we analyze the data from all

clothes together, this time separating the data into 13 clusters

corresponding to task and object pairs. That is, 4 tasks

with the 3 different objects plus Task 4 with Object 4,

corresponding to a seamless piece of cloth. In this case,

for each tested data element, we want to identify both

the object and task that has been executed. The confusion

matrix can be seen in Fig. 7. Results show there is little

confusion across different objects, leading to diagonal sub-

matrices with results similar to those seen in the previous

case (Fig. 6). We only find one cases where cross-object

confusion occurs, 9.379% of the times Task 1 on The kitchen

cloth was misidentified as Task 1 on the T-Shirt, and similarly

Task 1 on the T-Shirt was misidentified as Task 1 on the

kitchen cloth 10.7% of the time.

These results show that, in the case of cloth manipulation,

we need to consider both task and type of cloth to be able

to recognize what task we are carrying out. It also shows

how tasks that are very similar, such as pulling to flatten

vs. pulling to move the whole cloth (which we perceived

to be difficult to distinguish using tactile information alone),

could still be identified, albeit with less precision. Thus, addi-

tional sensing information may be useful in identifying them

correctly. These are promising results which indicate that

taking into account tactile information can greatly improve

the current methods of estimating the task and cloth state.

However, when we need to identify more tasks and objects,

considering both type of cloth and task for classification may

not scale well. We plan more experiments with additional

types of cloth in the future to study the scalability of those

results.

V. IDENTIFYING CONTACT INTERACTION TYPES

In the previous section, the signal is analyzed as a whole.

Even if we could classify with full accuracy, we would

only be able to recognize the task once it had been fully

executed. However, one of the main open challenges of cloth

manipulation is to be able to close the loop during execution,

that is, to be able to identify what is happening while we

manipulate a cloth, and react accordingly. To achieve this,

it would be very useful if for each sensor measurement we

could identify the type of contact interaction that is occurring

between finger, cloth and table.

When considering the closed loop scenario, the robot

should be able to react while executing a trajectory. Thus, we

cannot wait for all the data to be ready to start classifying.

Instead, we interpret the sensor data shown in Fig. 4 as a

time series. In this case, for each force sample Ft, we have to

classify between the 9 contact interactions defined in Table I.

Data collected has been divided with a distribution of

80% training and 20% test. Despite the results obtained in

the previous section, where we identify that it is better to

differentiate between different clothes, we consider all the

data from the different objects together. That is, for instance,

that elements from the class m1a will contain executions

with different clothes. The annotation used in the contact

interaction experiment is richer than the one in the previous

section and allows higher generalization capabilities.

Fig. 8. Identifying contact interactions: network architecture. At each time
step the sensor forces Fi are fed to the RNN, which updates the hidden
states Hi. The output of the hidden state is used to obtain the current contact
interaction Yi at each time instant.

The network proposed for this purpose consists of an

RNN followed with a fully connected layer [40] to classify

among the k possible classes defined in Table I. The network

proposed for this task is depicted in Fig. 8. For each

input force sample, it returns the probabilities of each of

the k output categories. Among RNN, we compare Long

Short Term Memory (LSTM) [6] and Gated Recurrent Unit

(GRU) [41] as both allow learning long term dependencies

that regular RNN can not due to the vanishing/exploding

gradients problem.

At each time instant a new Fi sample, consisting of the

force in the X, Y and Z directions, is generated. This data

is introduced into the RNN which classifies the action being

taken by the robot according the new sample and the current

hidden states Hi. The status of the network at each instant

is updated by modifying the hidden states Hi. The output

Yi are generated with a fully connected layer from the Hi.

The benefit of using a RNN is that the classification of

new samples can be done in real-time. Since the inference

time of the net is lower than the elapsed time between

sensor measurements the detection of the contact interaction

between the cloth and the robot can be done in real-time.

A. Results

Two configurations have been tested as base elements for

the RNN: LSTM and GRU units. Each configuration has

been tested with a number of hidden units ranging from 10

to 200, we checked empirically that augmenting the number

of hidden units doesn’t improve the results provided.

The results are evaluated for each sensor measurement,

comparing the output of the network with the annotation

of the sequence at that time instant. As data has been

labeled manually, the transition between contact interactions

is marked at a particular time instant. We introduce a time
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tolerance factor while evaluating the net transitions, if one

transition between contact interactions of the net is correct

(the net detects correctly the present and future contact

interaction) but not aligned perfectly with the labeled data it

is considered correct. We measured that this has an impact

of between 2% and 3% of improvement in the accuracy of

the RNN models.

Accuracy results for multiple network sizes are presented

in Table II. The performance of the method achieves over

90% accuracy on unseen data when using more than 50 hid-

den units for both LSTM and GRU models. Considering that

we classify amongst 9 different classes, the results achieved

with the RNN allow differentiating between interactions with

high confidence. Given the limited data available, results

obtained are outstanding and can be improved with a larger

set of robot trajectories.

TABLE II

ACCURACY RESULTS FOR MULTIPLE RNN CONFIGURATIONS.

Training Test

Num. hidden units LSTM GRU LSTM GRU

10 0,787 0,891 0,725 0,835

20 0,876 0,919 0,847 0,895

50 0,934 0,963 0,917 0,934

100 0,967 0,980 0,945 0,954

200 0,963 0,976 0,951 0,957

GRU based networks slightly over-perform LSTM ones. The performance
of GRU networks ranges from 72,5% accuracy with a small network to
95,7% using 200 hidden units. The accuracy of the net does not increase
when adding more hidden units.

LSTM and GRU based networks in this experiment have

obtained similar results when using the same number of

hidden units, as reported in previous works [42]. In our

experiments, GRU units obtain a slightly better performance.

Additional results stacking multiple RNN layers have ob-

tained similar results than using only one RNN layer.

To further analyze the RNN results, the best model among

the ones in Table II is selected. The Confusion matrix over

test data for the RNN model using 200 hidden GRU units

is shown in Fig. 9. The contact interactions m1b and m2b

are the most difficult to classify for the net, having problems

identifying if the finger is flattening a fold or moving the

whole cloth. This behavior is consistent across different

configurations, indicating that m1b and m2b have similar

force sensor patterns.

VI. CONCLUSIONS

In this work, we use tactile information to recognize

robotic manipulations of clothing. We study the problem with

two classification tasks, in the first task we identify the whole

manipulation process while the second identifies the contact

interaction that occur at each time step.

For the first classification task, our method could dis-

tinguish very well between a cloth that is clamped on the

table, i.e., fixed, and a cloth that can move. However, it had

more difficulties distinguishing between similar tasks, such

Fig. 9. Confusion matrix in the test data using the GRU network with 100
hidden units. Contact interactions m1b, m2b and m3 are the most difficult
to classify for the network.

as moving the entire cloth with a finger, and moving just

a part of the cloth to flatten a fold. Still, considering how

similar the tasks are, we could achieve a good accuracy in

most of the cases when we were also identifying the object.

Our results show that we need to consider the fabric type

in the task identification, as depending on the type of cloth

the tactile feedback is different enough to lead to confusion

between tasks. That may be difficult to scale.

For the second classification task, our method is able to

identify contact interactions with high accuracy even without

knowing the object type. In future work, we will test if the

accuracy improves if we identify the object too, as we would

need to collect more data for that. Interestingly, our solution

is able to identify when the robot is about to lose the cloth

(types m4 and m5). This paves the road to enable the robot

to react appropriately even before the cloth is actually lost.

The robot can also correctly identify if the finger is sliding

over a cloth, moving it or flattening a fold. This kind of

information can be crucial in helping the robot understand

the manipulation it is performing, helping to close the loop in

control algorithms, and also provide information to estimate

the state of the cloth.
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