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Abstract—Autonomous surveying systems for agricultural ap-
plications are becoming increasingly important. Currently, most
systems are remote-controlled or relying on a single global
map representation. Over the last years, several use-case-specific
representations for path and action planning in different contexts
have been proposed. However, solely relying on fixed represen-
tations and action schemes limits the flexibility of autonomous
systems. Especially in agriculture, the surroundings in which
autonomous systems are deployed, may change rapidly during
vegetation periods, and the complexity of the environment may
vary depending on farm size and season. In this paper, we
propose a context-aware system implemented in ROS that allows
to change the representation, planning strategy and execution
logics based on a spatially grounded semantic context. Our
vision is to build up an autonomous system called Autonomous
Robotic Experimental Platform (AROX) that is able to generate
crop maps over a whole vegetation period without any user
interference. To this end, we built up the hardware infrastructure
for storing and charging the robot as well as the needed software
to realize context-awareness using available ROS packages.

Index Terms—Autonomous systems, Context awareness, Nav-
igation, Path Planning

I. INTRODUCTION

To successfully deploy autonomous vehicles for long-term
autonomy in dynamic environments like agriculture, it is
necessary to take the current application context into account.
In agriculture, unlike classic indoor scenarious, the shape of
the environment may change rapidly. Hence, solely relying
on established gridmap-based solutions is not possible. De-
pending on the time of year, the state of the crops, and the
field’s layout, more specialized solutions are needed. On the
other hand, established methods for simpler use cases are well
tested and understood, and might still be able to solve specific
sub-problems. To fuse the usage of classic algorithms and
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novel, application-specific methods, we propose to take the
geometric and semantic context into account. More specifi-
cally, we present an autonomous system called AROX for crop
monitoring, that is deployed on a real farm. In addition to the
mobile robot, the system consists of a storage and charging
facility placed next to the monitored fields. The storage and
charging station provides the shelter for the AROX robot (cf.
Fig 1). In this scenario, the robot’s objective is to periodically
take scans of a maize field without user interaction. To achieve
this, we built a semantically annotated geometric environment
model that is divided into different navigation zones. Each
zone exhibits different surface properties that require specific
navigation algorithms or parametrization. For example, while
driving and maneuvering within the container with the charg-

Fig. 1. Overview of the used hardware components on the AROX robot (blue)
and storage container (orange) for autonomous long term crop monitoring.
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ing station, the robot will use classic gridmap based navigation
and action planning algorithms for docking. While driving
on the field, it shall use polygonal 3D environment maps
for path planning and execution, which include trafficability
and roughness estimations derived from the recorded sensor
data as described in [1]. The main idea of this work is to
use the most appropriate specialized planning and navigation
method based on the semantic context given in the geometric
environment model. Although such an zone-based approach
is not completely novel conceptually, for future development
we plan to focus more on the integration of semantics for
reasoning. In this paper, we contribute the low level implemen-
tation of the technical aspects of such a semantic system for
robust navigation based on a semantic environment map. We
present the system components of the used surveying system
and the implementation of context-awareness in ROS, and
give a preliminary report on the current state of the already
realized components of the planned system as well as a proof
of concept for the proposed context-aware navigation scheme.

The remainder of this paper is organized as follows: First,
we present state-of-the-art algorithms and environment rep-
resentations used in our context. Sec. III presents the hard-
ware infrastructure implemented on the actual farm. Sec. IV
presents the implementation of the context-aware planning
and navigation system. Sec. V presents the current state of
implementation by means of exemplary application scenarious.
The final section discusses the achieved results and shows the
planned extensions of the proposed system.

II. RELATED WORK

Previous works like the one by Marder-Eppstein et al. [2]
describe the software components needed for robust robot
navigation. Many of them can be found in various implemen-
tations collected in the ROS Navigation Stack. The usual setup
for such an autonomous system usually consists of an environ-
ment map, which is often some kind of occupancy gridmap [3],
means for localization within such a map like AMCL [4]
for indoor scenarios or the robot localization package by
Charles River Analytics in outdoor contexts to fuse GNSS
position data with IMU and the odometry measurements. Path
planning and execution are typically divided into global and
local planning. Global planning typically involves the static
information about distant parts of the environment encoded in
a topological graph. Local navigation copes with the dynamic
environment within the robots sensory horizon. For each of
those components, various approaches and implementations
already exist in ROS. The system presented in this paper is
similar in that respect to these conventional approaches, but
does not rely on fixed implementations of the single planning
and execution components.

A. Flexible Navigation

An example for such a more or less static execution
stack is move base. However, more recently, Pütz et al. [5]
presented a flexible navigation framework called Move Base
Flex (MBF). It has been introduced specifically to address

the highly dynamic and heterogeneous nature of navigation
contexts, which may require highly different approaches to
solve the aforementioned sub-problems. The main benefit of
using move base flex is that it provides the possibility to easily
switch between different navigation approaches. It uses the
same software interfaces as move_base, but allows for online
reconfiguration and replacement of planning and recovery
movement strategies via a user implemented SMACH state ma-
chine [6]. In contrast to earlier approaches published by Con-
ner et al. [7], it avoids multi-instantiation of core components
and thus does not suffer from such computational overhead.

B. Semantic Context Mapping

Generally, maps for localization and navigation strictly rely
on spatial information. Beyond that, semantic meaning was
introduced early to enhance pure geometrical or topological
representations. Semantic maps add semantic attributes to
the geometric representation that allow to reason about the
environment. First approaches proposed a layered architecture
to fuse the different information domains [8], [9], resulting in
various modern forms of introducing context information to
maps by anchoring knowledge about objects, areas, and spaces
to the geometrical robotic map representation. This context
information is used to improve the performance in various
robotic tasks such as object detection, object retrieval, task
planning, navigation and more [8], [10]–[12].

However, these approaches regarding object localization are
confined to small-scale spaces and are usually limited to
small semantic domain models. In a more general and formal
approach, Lang and Paulus define semantic maps as a form of
hybrid map as defined by Buschka [13], combining geomet-
rical representations of an environment with knowledge about
the entities contained within the represented environment, their
classes and attributes, and the relations between them in a way
that allows inferencing [14].

Following this concept, we propose a way to handle het-
erogeneous navigation contexts derived from geometric layout
and semantic labels. In our setup, we use that information to
navigate on the farm and to switch between multiple, het-
erogeneous contexts requiring different localization methods,
planning algorithms, local planners and recovery strategies by
using a semantically annotated map and MBF.

III. (HARDWARE) INFRASTRUCTURE

For long-term autonomy in agricultural environments, a base
station is needed. In addition to the mobile robot platform, this
station stores required supply equipment and external com-
putation hardware. Furthermore, the overall hardware must
be protected from unauthorized access and extreme weather
conditions. In our setup, a 3.7m×2.55m×2.1m container is
used as base station. The so-called RYTLE HUB is mobile, so
it is possible to transport all parts as a ready-to-operate system.
Access through two electrical sliding gates is authorized with
Bluetooth beacons. Via a mechanically fold-out ramp, the
robot can reach the inductive charging station. Power supply
is provided by a battery system or common line voltage. This
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is required to operate the multi-band RTK GNSS reference
station. For data exchange between base and robot, a high
range WiFi network with 100 meter range is provided by the
container. This is also used to transmit correction data from
the RTK reference station to the rover. In addition to this WiFi
network, both are equipped with a LTE modem to connect to
the internet.

The AROX robot is a two-axes mobile platform based
on an Innok Heros1. For pose estimation, sensor data
from IMU, odometry and RTK GNSS are fused using the
robot localization ROS package. Besides these sensors for
dead-reckoning, two laser scanners, located at the front and
rear of the platform, are used for collision avoidance and local-
ization. For crop monitoring and environment mapping, a high
resolution 3D laser scanner with co-calibrated hyperspectral or
RGB-camera is used. The entire equipment of the base station
and the AROX robot is shown in Fig. 1.

IV. CONTEXT-AWARE NAVIGATION AND PLANNING

Our approach to deal with the rapidly changing and highly
variable environment in agricultural environments is context-
aware navigation and planning. Currently, we model the con-
textual data manually. The spatial dimension of each context
is defined using geo-referenced polygons which can be asso-
ciated with semantic labels. Additionally, we define specific
waypoints, where the robot can switch from one context to
another.

For example, one zone is the container. The corresponding
semantic information is that the robot must navigate carefully
and accurately due to the confined space. For this, the robot
uses classic gridmap-based navigation and action planning.
Another zone is the grass area in front of the container where
the robot can navigate faster and less accurately. For this the
robot uses a polygonal 3D environment map, that encodes the
trafficability of the rough surfaces [1]. An example of such a
waypoint is the gate that separates the container and the grass
area as shown in Fig. 2.

A. Waypoint Server

The waypoint server takes the created zones and waypoints
to build a topological graph. This graph includes all waypoints
as vertices and inserts edges between all waypoints belonging
to the same zone. Each waypoint is associated with both
zones it connects. For each zone, the waypoint server stores
the corresponding path planner, controller, recovery behaviors,
and environment representation, and computes the locomotion
costs for every edge in the graph. To query the waypoint server
for the shortest path between pose A and pose B, both poses
are first added as temporary vertices. Subsequently, edges
are created to connect both of the new vertices to all other
waypoints belonging to the same zones, and the locomotion
costs for these edges are computed. If both poses belong to the
same zone, a direct edge between them is also created. In this
temporary extended graph, the shortest path from A to B is

1https://www.innok-robotics.de/en/products/heros

Fig. 2. A schematic map with waypoints and semantic associations.

Fig. 3. The SMACH state machine for path decomposition.

then calculated using a shortest path algorithm. An exemplary
result is displayed in Fig. 2. The result of the query are the
edges between pose A to B including the contextual dependent
information of the traversed zones .

B. Path Decomposition State Machine

To provide an abstract interface for this process, the Path
Decomposition State Machine acts as an adapter and execution
layer for the waypoint server and the navigation components. It
is implemented as a SMACH hierarchical finite state machine
within an actionlib wrapper to easily integrate into the ROS
architecture of the robot as shown in Fig 3. Initially, it
will be instantiated in s0 by the action wrapper and given
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Fig. 4. Context-Aware Navigation state machine.

a goal pose which includes the geometric target pose and
a robot coordinate frame known to the robot within its tf-
tree coordinate frame. From there, it will request the current
location of the robot, ask the waypoint server for the shortest
path from this to the set goal, and transition to the execution
state s1. The retrieved path consists of a list of sub-goals
defined as tuples of geometric poses and parameters such as
the local and global planner plugin to be used, and a list of
recovery strategies. As long as the list of sub-goals is not
empty, the first entry will be removed from the list and passed
along the transition to the navigation state s2, which is a nested
state machine interfacing directly to MBF. When this nested
state machine terminates, the outcome will either be escalated
to the action interface in case of failure, or it will transition
back to the execution state s1 where the next sub-goal will be
passed or, in case the list of sub-goals is empty, terminate to
a success outcome.

C. Sub-Path Execution

The actual movement of the robot to a sub-goal is executed
by the sub-path execution state machine. For this purpose,
the path-decomposition passes a sub-goal to the sub path
execution, which is located in a zone together with the robot.
This zone is associated with a path planner and controller

names, as well as with a list of recovery behaviors as fallback
strategies. In order to be able to flexibly execute and switch
these sub-components of robot navigation, we use the MBF
package mbf costmap nav, which provides a MBF naviga-
tion server based on the well known layered costmap 2d
occupancy gridmap implementation. MBF is used as middle
layer in between the higher level state machine and the low
level navigation modules for planning, motion control, and
recovering, which are implemented as plugins. It allows to
load and run multiple plugins of the same type in a parallel
fashion, e.g, with different configurations and different names.
The actionlib interface of MBF allows to call path planners,
controllers, and recovery behaviors with an associated name
separately to support a high level of flexibility. According
to the MBF interface, the sub-path execution consists of the
three states GetPath, ExePath and Recovery. Using GetPath,
MBF is called with the dynamically specified planner plugin
name and the required start and goal pose parameters, as
well as optional parameters such as the distance and angle
tolerance to the goal pose. Based on this, MBF executes the
corresponding path planning plugin and returns the computed
path if the planning was successful, and a specified error code
otherwise. The called path planner is using the underlying
map representation to compute a path towards the given sub-
target which has been defined as action goal for GetPath. This
path is then used to call the controller within the ExePath
state, in order to move the robot along this execution path.
Using ExePath, MBF is called with a specified controller
name and a list of poses defining the path to periodically
execute the corresponding loaded controller / local planner
plugin in order to move the robot towards the goal pose.
The called navigation controllers manage the robot locomotion
with different implemented strategies. This way, the controllers
try to follow the given path while detecting dynamic obstacles.
In case of error or failure, the MBF transitions to aborted
and back-propagates the controller error code to the SMACH
task level execution. Depending on the outcome, different
strategies and recovery behaviors can be called in order to
resolve the problem, e.g., by clearing the costmap, rotating to
get an overview, waiting for an obstacle to pass, or moving
backwards to escape from a possible collision or local dead
end. However, when the robot reaches the sub-goal, the sub-
path execution transitions to the terminal state succeeded. In
cases of error, i.e., the controller failed, recovery behaviors
which are domain-specifically associated with a certain zone,
are executed by calling the MBF Recovery action with the
corresponding recovery name. If the robot is able to free itself
from a difficult situation with one of the recovery behaviors,
the task level architecture resumes to the sub-path execution.

V. APPLICATIONS

A. Demo Scenario

To show the capabilities of our planning system, we are
currently building an outdoor field survey scenario. Within this
test site, we plan to deploy the AROX robot autonomously in
specified intervals to monitor the development of the crops
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TABLE I
THE DIFFERENT ZONES, DOMAIN-SPECIFIC CONTROLLER AND RECOVERY

CONFIGURATIONS, AND LOCALIZATION METHODS.

Zone Type Controller ID Recovery ID Localization

z1 container docking wait AMCL
z2 grassland dynamic green rotate GNSS
z3 field infield wait GNSS
z4 field infield wait GNSS
z5 grassland dynamic green rotate GNSS
z6 garden safety ctrl wait GNSS
z7 courtyard safety ctrl wait GNSS
z8 public road - stop GNSS

on the surrounding fields. For maize, we aim to acquire a
series of 3D laser scans with the terrestrial laser scanner every
week at specific poses to document the growth of the crops.
After the data acquisition, the collected data shall be sent to a
central server where it is processed automatically. Up to now,
we installed the container with the power charging station,
network connection, and GNSS RTK reference base. With
this setup, we are currently able to safely drive to specified
target locations using different controllers and representations
to take 3D laser scans. An exemplary point cloud created from
multiple 3D laser scans is shown in Fig. 5. A virtual fly-
through of that scene video demonstrating the high quality
the recorded colored 3D-point is available at our Youtube
channel2.

For the task at hand, we manually created a map of the
working area using digital ground models (DGM) provided
by the National Agency for Geoinformation and State Survey
of Lower Saxony (LGLN). Within this geo-referenced map,
we marked the respective zones in UTM coordinates to
allow localization of AROX using the installed differential
GNSS system. On top of the zone descriptions, we added a
topological waypoint graph to model the transitions between
the different areas as shown in Fig. 2. Each zone in this
map is associated with a certain controller, a list of recovery
behaviors and localization techniques. The different settings
and zones configurations in the presented environment are
shown in Tab. I.

The Controller ID column in Tab. I and Tab. II correspond
to each other and specify the callable controller name used
in ExePath. Further, Tab. II shows the used controller / local
planner plugin with the specific configuration. For our setup,
we use the elastic-band-planner (EBand) [15], the dynamic
window approach (DWA) [16], and a custom local planner to
dock the robot to the charging station.

B. Navigation Example

In the scenario shown in Fig. 2, the robot is located in
the garden zone z6 and has to navigate to a specific point
inside the northern field zone z4 before returning via z2 to the
container z1 for charging. As listed in Tab. I, the robot starts
in the garden zone (z6) with an safety ctrl controller. It uses

2https://youtu.be/HyhkOWYah34

TABLE II
LIST OF CONTROLLER CONFIGURATIONS WITH PARAMETERS.

Controller ID Controller Plugin Basic Parameters

dynamic green EBand vel x: 0.1 - 3.3 m/s
vel rot: 0.05 - 0.8 rad/s
xy goal tol: 1.0 m
yaw goal tol: 0.8 rad

infield EBand vel x: 0.1 - 2.2 m/s
vel rot: 0.05 - 0.4 rad/s
xy goal tol: 0.15 m
yaw goal tol: 0.25 rad

safety ctrl DWA vel x: 0.1 - 1.0 m/s
vel rot: 0.05 - 0.4 rad/s
xy goal tol: 0.5 m
yaw goal tol: 0.8 rad

docking AI-trained vel x: 0.1 - 0.5 m/s
custom vel rot: 0.05 - 0.4 rad/s

xy goal tol: 0.025 m
yaw goal tol: 0.05 rad

the DWA local planner plugin with a configuration sketched
in Tab. II to ensure an effective dynamic obstacles reaction.

When the robot passes the first waypoint into the grassland
zone z2, the controller is switched to dynamic_green. To
account for the available space and good driveability, the
EBand controller plugin is configured with a higher maximum
velocity and less strict pose tolerances. The last zone that the
robot passes through in the direction of the goal position is the
field zone z4 using the infield controller. Currently this con-
troller is based on a more restricted EBand parameterization as
shown in Tab. II, with lower maximum speed and tolerances
to the goal position, due to the expected high wheel slip in
the loose soil.

To return to the container z1 for battery charging, the robot
has to traverse the grassland zone z2 again as described before.
The waypoint to enter the container is located just before the
container’s ramp.

By passing this point the system will have to switch from
an outdoor multi-band RTK GNSS with fused odometry and
IMU data as means of localization, to AMCL [4]. Currently,
switching the corresponding ROS nodes have yet to be inte-
grated to blend into the system as a whole. As further future
steps we will integrate new path planners and controllers for
the infield zone and additional maps for the outdoor scenario.
Additionally, semantic annotation of the zones should be used
not only to look up predefined configurations, but also to
infer them using reasoning algorithms based on the well
known rete algorithm [17]. Another step to accommodate for
heterogeneous terrain navigation in addition to the 2D gridmap
navigation, 3D polygonal representations will be provided for
some areas, which can be used for 3D Mesh based navigation
as described in previous work by Pütz et al. [1].

C. Towards long-term autonomy

With the current implementation, we realized a working
prototype that is able to safely navigate within the modeled
environment across different zones. To achieve self-sufficient
long-term autonomy, besides robust navigation, an execution
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Fig. 5. Colored 3D point cloud of the data collected with the terrestrial laser scanner of the AROX robot. Color values are derived from the integrated RGB
camery. Annotation with hyperspectral data is also possible.

monitoring system is required to detect unforeseen events and
abnormal behavior of the system. For that, we plan to augment
the current environment representation with a fully symbolic
semantic model.

Having such a representation allows to use rule-based
reasoning to detect process states. In previous work [18],
we combined spatial representations like the one used in
this scenario, to monitor machine states and generate process
events in a maize harvesting campaign. For that, we used
our SEMAP framework [11] that allows to deduct qualitative
spatial relations with explicitly modeled semantic background
knowledge about the involved machines, used facilities and
process events.

The transfer of such a model into the currently developed
system is straight-forward and would allow to monitor the
current state of the autonomous surveying systems. In the
given context, such a semantic monitoring system allows to
automatically detect high level process states like ”charging”,
”driving” or ”scanning” based on the sensor data and semantic
environment model. On the other hand, abnormal or illegal
states could also be detected by defining simple rules like ”the
AROX robot should never be outside the defined zones”, or
”the robot should never start a measurement campaign without
having charged in the container before”. With an according
spatio-semantic model, these and similar rules could be defined
easily to improve the monitoring during the desired long-term
deployment of the autonomous system.

VI. DISCUSSION

In this paper we presented the first work towards a fully au-
tonomous robotic system in an agricultural surveying scenario.
The system is completely implemented in ROS allowing the
use of proven standard methods as well as more application-
specific algorithms and representations. The current state pre-
sented here serves as an extensible foundation to realize safe
navigation in dynamic environments. In future work it will
be combined with an actual semantic mapping framework to
enable more complex planning and execution monitoring, and
to increase the capabilities of the autonomous system.
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