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Abstract—In this paper, we introduce SalsaNext for the
uncertainty-aware semantic segmentation of a full 3D LiDAR
point cloud in real-time. SalsaNext is the next version of Sal-
saNet [1] which has an encoder-decoder architecture consisting
of a set of ResNet blocks. In contrast to SalsaNet, we introduce
a new context module, replace the ResNet encoder blocks with a
new residual dilated convolution stack with gradually increasing
receptive fields and add the pixel-shuffle layer in the decoder.
Additionally, we switch from stride convolution to average
pooling and also apply central dropout treatment. To directly
optimize the Jaccard index, we further combine the weighted
cross entropy loss with Lovdsz-Softmax loss [2]. We finally inject
a Bayesian treatment to compute the epistemic and aleatoric
uncertainties for each LiDAR point. We provide a thorough
quantitative evaluation on the Semantic-KITTI dataset [3],
which demonstrates that SalsaNext outperforms the previous
networks and ranks first on the Semantic-KITTI leaderboard.

I. INTRODUCTION

Scene understanding is an essential prerequisite for au-
tonomous vehicles. Semantic segmentation helps gaining a
rich understanding of the scene by predicting a meaningful
class label for each individual sensory data point. Safety-
critical systems, such as self-driving vehicles, however,
require not only highly accurate but also reliable scene
segmentation with a consistent measure of uncertainty. This
is because the quantitative uncertainty measures can be
propagated to the subsequent units, such as decision making
modules to lead to safe manoeuvre planning or emergency
braking, which is of utmost importance in safety-critical
systems. Therefore, semantic segmentation predictions inte-
grated with reliable confidence estimates can significantly
reinforce the concept of safe autonomy.

In this work, we introduce a novel neural network archi-
tecture to perform uncertainty-aware semantic segmentation
of a full 3D LiDAR point cloud in real-time. Our proposed
network is built upon the SalsaNet model [1], hence, named
SalsaNext. The base SalsaNet model has an encoder-decoder
skeleton where the encoder unit consists of a series of
ResNet blocks and the decoder part upsamples and fuses
features extracted in the residual blocks. In SalsaNext, our
contributions lie in the following aspects:

o To capture the global context information in the full
360° LiDAR scan, we introduce a new context module
before encoder, which consists of a residual dilated con-
volution stack fusing receptive fields at various scales.
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o To increase the receptive field, we replaced the ResNet
block in the encoder with a novel combination of a set
of dilated convolutions (with a rate of 2) each of which
has different kernel sizes (3,5,7). We concatenated
the convolution outputs and combined with residual
connections yielding a branch-like structure.

o To avoid any checkerboard artifacts in the upsampling
process, we replaced the transposed convolution layer in
the SalsaNet decoder with a pixel-shuffle layer [4] which
directly leverages on the feature maps to upsample the
input with less computation.

o To boost the roles of very basic features (e.g. edges
and curves) in the segmentation process, the dropout
treatment was altered by omitting the first and last
network layers in the dropout process.

« To have a lighter model, average pooling was employed
instead of having stride convolutions in the encoder.

o To enhance the segmentation accuracy by optimizing
the Jaccard index, the weighted cross entropy loss was
combined with the Lovdsz-Softmax loss [2].

o To further estimate the epistemic (model) and aleatoric
(observation) uncertainties for each 3D LiDAR point,
the deterministic SalsaNet model was transformed into
a stochastic format by applying the Bayesian treatment.

All these contributions form the here introduced SalsaNext
model which is the probabilistic derivation of the SalsaNet
with a significantly better segmentation performance. The
input of SalsaNext is the rasterized image of the full LIDAR
scan in the panoramic view. The final network output is
the point-wise classification scores together with uncertainty
measures. To the best of our knowledge, this is the first
work showing the both epistemic and aleatoric uncertainty
estimation on the LiDAR point cloud segmentation task.

Quantitative and qualitative experiments on the Semantic-
KITTTI dataset [3] show that the proposed SalsaNext signifi-
cantly outperforms other state-of-the-art networks in terms of
pixel-wise segmentation accuracy while having much fewer
parameters, thus requiring less computation time. SalsaNext
ranks first place on the Semantic-KITTI leaderboard. We
release our source code and trained model to encourage
research on the subject .

II. RELATED WORK

As comprehensively described in [5], there exists two
mainstream deep learning approaches addressing the seman-
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tic segmentation of 3D LiDAR data only: point-wise and
projection-based neural networks.

Point-wise methods [6], [7] directly process the raw ir-
regular 3D points without applying any additional trans-
formation or pre-processing. Shared multi-layer perceptron-
based PointNet [6], the subsequent work PointNet++ [7], and
superpoint graph SPG networks [8] are considered in this
group. Although such methods are powerful on small point
clouds, their processing capacity and memory requirement,
unfortunately, becomes inefficient when it comes to the full
360° LiDAR scans.

Projection-based methods instead transform the 3D point
cloud into various formats such as voxel cells [9], [10],
[11], multi-view representation [12], lattice structure [13],
[14], and rasterized images [1], [15], [16], [17]. For in-
stance, voxel-based methods discretize the 3D space into
3D volumetric space and assign each point to the corre-
sponding voxel. Sparsity and irregularity in point clouds,
however, yield redundant computations since many voxel
cells may stay empty. A common attempt to overcome this
sparsity problem is to project 3D point clouds into 2D
image space either in the Bird-Eye-View [1], [18], [19]
or spherical Range-View (RV) [20], [15], [16], [17], [21].
Unlike point-wise and other projection-based approaches,
such 2D rendered image representations are more compact,
dense and computationally cheaper as they can be processed
by standard 2D convolutionals. Therefore, our SalsaNext
model projects the LiDAR point cloud into 2D RV image.

Bayesian Neural Networks (BNNs) learn approximate
distribution on the weights to further generate uncertainty
estimates. There are two types of uncertainties: Aleatoric
which can quantify the intrinsic uncertainty coming from the
observed data, and epistemic where the model uncertainty is
estimated by inferring with the posterior weight distribution,
usually through Monte Carlo sampling. Bayesian modelling
helps estimating both uncertainty types.

Gal et al. [22] proved that dropout can be used as
a Bayesian approximation to estimate the uncertainty in
classification, regression and reinforcement learning tasks
while this idea was also extended to semantic segmentation
of RGB images by Kendall et al. [23]. Loquercio et al. [24]
proposed a framework which extends the dropout approach
by propagating the uncertainty that is produced from the
sensors through the activation functions without the need
of retraining. Recently, both uncertainty types were applied
to 3D point cloud object detection [25] and optical flow
estimation [26] tasks. To the best of our knowledge, BNNs
have not been employed in modeling the uncertainty of
semantic segmentation of 3D point clouds, which is one of
the main contributions in this work.

III. METHOD

SalsaNext is built upon the base SalsaNet model [1] which
follows the standard encoder-decoder architecture with a
bottleneck compression rate of 16. The original SalsaNet
encoder contains a series of ResNet blocks each of which is
followed by dropout and downsampling layers. The decoder
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blocks apply transpose convolutions and fuse upsampled
features with that of the early residual blocks via skip
connections. To further exploit descriptive spatial cues, a
stack of convolution is inserted after the skip connection.
We, in this study, improve the base structure of SalsaNet
with the following contributions:

Point Cloud Representation: We project the unstructed
3D LiDAR point cloud onto a spherical surface to generate
the LIDAR’s native Range View (RV) image. This leads
to dense and compact representation which allows standard
convolution operations. Following the work of [20], we con-
sidered the full 360° field-of-view in the projection process.
During the projection, 3D point coordinates (x,y,2), the
intensity value (7) and the range index (r) are stored as
separate RV image channels. This yields a [w X h x 5] image.

Contextual Module: The global context information gath-
ered by larger receptive fields plays a crucial role in learning
complex correlations between classes [29]. To aggregate the
context information in different regions, we place a residual
dilated convolution stack that fuses a larger receptive field
with a smaller one by adding 1 x 1 and 3 x 3 kernels right at
the beginning of the network. This helps us capture the global
context alongside with more detailed spatial information.

Dilated Convolution: Receptive fields play a crucial role
in extracting spatial features. A straightforward approach to
capture more descriptive spatial features would be to enlarge
the kernel size. This has, however, a drawback of increasing
the number of parameters drastically. Instead, we replace the
ResNet blocks in the original SalsaNet encoder with a novel
combination of a set of dilated convolutions having effective
receptive fields of 3,5 and 7. We further concatenate each
dilated convolution output and apply a 1 x 1 convolution
followed by a residual connection in order to let the network
exploit more information from the fused features coming
from various depths in the receptive field. Each of these new
residual dilated convolution blocks is followed by dropout
and pooling layers.

Pixel-Shuffle Layer: The original SalsaNet decoder in-
volves transpose convolutions which are computationally
expensive layers in terms of number of parameters. We
replace these standard transpose convolutions with the pixel-
shuffle layer [4] which leverages on the learnt feature maps to
produce the upsampled feature maps by shuffling the pixels
from the channel dimension to the spatial dimension. More
precisely, the pixel-shuffle operator reshapes the elements of
(H x W x Cr?) feature map to a form of (Hr x Wr x C),
where H, W, C, and r represent the height, width, channel
number and upscaling ratio, respectively. We additionally
double the filters in the decoder side and concatenate the
pixel-shuffle outputs with the skip connection before feeding
them to the additional dilated convolutional blocks.

Central Encoder-Decoder Dropout: Lower network lay-
ers extract basic features such as edges and corners which
are consistent over the data distribution and dropping out
these layers will prevent the network to properly form the
higher level features in the deeper layers. We, therefore,
insert dropout only to the central encoder and decoder layers
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TABLE 1

QUANTITATIVE COMPARISON ON SEMANTIC-KITTI TEST SET (SEQUENCES 11 TO 21). IoU SCORES ARE GIVEN IN PERCENTAGE (%).

which leads to higher network performance.

Average Pooling: In the base SalsaNet model the down-
sampling was performed via a strided convolution which
introduces additional learning parameters. Given that the
down-sampling process is relatively straightforward, we hy-
pothesize that learning at this level would not be needed.
Thus, to allocate less memory SalsaNext switches to average
pooling for the downsampling.

Uncertainty Estimation: In SalsaNext, the epistemic un-
certainty is computed using the weight’s posterior which
is approximated by using dropout as shown in [22]. By
following the work in [24], we compute the optimal dropout
rate for an already trained network by applying a grid
search on a log-range of a certain number of possible
rates. To measure the epistemic uncertainty, we employ a
Monte Carlo sampling during inference: we run n trials with
this optimal dropout rate and compute the average of the
variance of the n predicted outputs. To be able to track the
aleatoric uncertainty, we propagate the known LiDAR noise
characteristic through the network via Assumed Density
Filtering (ADF) [30]. A forward pass in this ADF-based
modified network finally generates output predictions with
their respective aleatoric uncertainties [24].

Loss: To cope with the imbalanced class problem, we
follow the same strategy in SalsaNet and add more value
to the under-represented classes by weighting the softmax
cross-entropy loss with the inverse square root of class
frequency. This reinforces the network response to the classes
appearing less in the dataset. In contrast to SalsaNet, we
here also incorporate the Lovdsz-Softmax loss [2] in the
learning procedure to maximize the intersection-over-union
(IoU) score, i.e. the Jaccard index. The IoU metric is the
most commonly used metric to evaluate the segmentation
performance. Nevertheless, IoU is a discrete and not deriv-
able metric that does not have a direct way to be employed
as a loss. In [2], the authors adopt this metric with the help
of the Lovasz extension for submodular functions. Finally,
the total loss function of SalsaNext is a linear combination
of weighted cross-entropy and Lovdsz-Softmax losses.

Optimizer and Regularization: As an optimizer, we
employed stochastic gradient descent with an initial learning
rate of 0.01 which is decayed by 0.01 after each epoch.
We also applied an L2 penalty with A 0.0001 and
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a momentum of 0.9. The batch size and spatial dropout
probability were fixed at 24 and 0.2, respectively. To prevent
overfitting, we augmented the data by applying a random
rotation/translation, flipping randomly around the y-axis and
randomly dropping points before creating the projection.
Every augmentation is applied independently of each other
with a probability of 0.5.

Post-processing: We further applied the kNN-based post-
processing technique [20] to prevent the projection-based
information loss when the RV image is re-projected back
to the original 3D space.

IV. EXPERIMENTS

We evaluate the performance of SalsaNext and com-
pare with the state-of-the-art semantic segmentation methods
on the large-scale challenging Semantic-KITTI dataset [3]
which provides over 43K LiDAR data. Obtained quanti-
tative results compared to state-of-the-art point-wise and
projection-based approaches are reported in Table I. Our Sal-
saNext model considerably outperforms the others by leading
to the highest mean IoU score (59.5%) which is +3.6% over
the previous state-of-the-art method [17]. In contrast to the
original SalsaNet, we obtain 14% improvement.

Following the work of [24], we further computed the
epistemic and aleatoric uncertainty without retraining the
SalsaNext model. Fig. 1 depicts the quantitative relationship
between the epistemic (model) uncertainty and the number of
points that each class has in the Semantic-KITTI test set. This
plot has diagonally distributed samples, which clearly shows
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Fig. 1. The relationship between the epistemic uncertainty and the number

of points (in log scale) in each class.



Fig. 2. A sample qualitative result. At the bottom, the range-view image
of the network response is shown. The top camera image on the right shows
the projected segments whereas the middle and bottom images depict the
projected epistemic and aleatoric uncertainties, respectively. Note that the
lighter the color is, the more uncertain the network becomes.

that the network becomes less certain about rare classes
represented by low number of points (e.g. motorcyclist).
Fig. 2 shows sample qualitative segmentation and uncer-
tainty results. In this figure, only for visualization purposes,
segmented object points are also projected back to the
respective camera image. Note that these camera images have
not been used for training of SalsaNext. As depicted in Fig. 2,
SalsaNext can, to a great extent, distinguish road, car, and
other object points. In Fig. 2, we additionally show the es-
timated epistemic and aleatoric uncertainty values projected
on the camera image for the sake of clarity. In line with
Fig. 1, we obtain high epistemic uncertainty for rare classes
such as other-ground (see Fig. 2). We also observe that high
level of aleatoric uncertainty mainly appears around segment
boundaries and on distant objects as shown in Fig. 2. In the
supplementary video?, we provide more qualitative results.

V. CONCLUSION

We presented a new uncertainty-aware semantic segmen-
tation network that can process the full 360° LiDAR scan in
real-time. SalsaNext builds up on SalsaNet and can achieve
over 14% more accuracy. In contrast to state-of-the-art meth-
ods, SalsaNext returns +3.6% better mloU score. SalsaNext
can also estimate both data and model-based uncertainty.
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VI. SUPPLEMENTARY MATERIAL
A. Ablation Study

In this ablative analysis, we investigate the individual
contribution of each improvements over the original SalsaNet
model. Table I shows the total number of model parameters
and FLOPs (Floating Point Operations) with the obtained
mloU scores on the Semantic-KITTI test set before and after
applying the kNN-based post processing.

As depicted in Table II, each of our contributions on
SalsaNet has a unique improvement in the accuracy. The
post processing step leads to a certain jump (around 2%) in
the accuracy. The peak in the model parameters is observed
when dilated convolution stack is introduced in the encoder,
which is vastly reduced after adding the pixel-shuffle layers
in the decoder. Combining the weighted cross-entropy loss
with Lovdsz-Softmax leads to the highest increment in the
accuracy as the Jaccard index is directly optimized. We can
achieve the highest accuracy score of 59.5% by having only
2.2% (i.e. 0.15M) extra parameters compared to the original
SalsaNet model. Table II also shows that the number of
FLOPs is correlated with the number of parameters. We note
that adding the epistemic and aleatoric uncertainty compu-
tations do not introduce any additional training parameter
since they are computed after the network is trained.

B. Runtime Evaluation

Runtime performance is of utmost importance in au-
tonomous driving. Table III reports the total runtime perfor-
mance for the CNN backbone network and post-processing
module of SalsaNext in contrast to other networks. To obtain
fair statistics, all measurements are performed using the
entire Semantic-KITTI dataset on the same single NVIDIA
Quadro RTX 6000 - 24GB card. As depicted in Table III, our
method clearly exhibits better performance compared to, for
instance, RangeNet++ [20] while having 7 less parameters.
SalsaNext can run at 24 Hz when the uncertainty computation
is excluded for a fair comparison with deterministic models.
Note that this high speed we reach is significantly faster
than the sampling rate of mainstream LiDAR sensors which
typically work at 10 Hz [31]. Fig. 3 also compares the
overall performance of SalsaNext with the other state-of-
the-art semantic segmentation networks in terms of runtime,
accuracy, and memory consumption.

As illustrated in Fig. 3, there is a clear split between
projection-based and point-wise networks in terms of ac-

mean IoU  mean IoU  Number of

(w/o kNN) (+kNN) Parameters FLOPs
SalsaNet [1] 43.5 44.8 6.58 M 51.60 G
+ context module 44.7 46.0 6.64 M 69.20 G
+ central dropout 44.6 46.3 6.64 M 69.20 G
+ average pooling 47.7 49.9 585 M 66.78 G
+ dilated convolution 48.2 50.4 9.25 M 161.60 G
+ Pixel-Shuffle 50.4 53.0 6.73 M 125.68 G
+ Lovdsz-Softmax loss 56.6 59.5 6.73 M 125.68 G

TABLE II

ABLATIVE ANALYSIS.
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Processing Time (msec)

CNN kNN Total Speed (fps) ~ Parameters FLOPs
RangeNet++ [20] 63.51 2.89  66.41 15 Hz 50 M 720.96 G
SalsaNet [1] 35.78 2,62 3840 26 Hz 6.58 M 51.60 G
SalsaNext [Ours] 38.61 2.65 41.26 24 Hz 6.73 M 125.68 G
TABLE IIT

RUNTIME PERFORMANCE ON THE SEMANTIC-KITTI TEST SET

curacy, runtime and memory consumption. For instance,
projection-based approaches (shown in green circles in
Fig. 3) achieve the state-of-the-art accuracy while run-
ning significantly faster. Although point-wise networks (red
squares) have slightly lower number of parameters, they can-
not efficiently scale up to large point sets due to the limited
processing capacity, thus, they take a longer runtime. Sal-
saNext falls into the projection-based networks and achieves
the highest score while achieving real-time performance
with relatively low number of parameters. It is also highly
important to note that unlike SalsaNext, both point-wise
and projection-based approaches in Fig. 3 lack uncertainty
measures, i.e. confidence scores, for their predictions.
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