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Calculating the Support Function of Complex
Continuous Surfaces With Applications to Minimum
Distance Computation and Optimal Grasp Planning
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Abstract—The support function of a surface is a fundamental
concept in mathematics and a crucial operation for algorithms in
robotics, such as those for collision detection and grasp planning.
It is possible to calculate the support function of a convex body
in a closed form. For complex continuous, especially nonconvex,
surfaces, however, this calculation can be far more difficult and no
general solution is available so far, which limits the applicability
of those related algorithms. This article first presents a branch-
and-bound (B&B) algorithm to calculate the support function
of complex continuous surfaces. An upper bound of the support
function over a surface domain is derived. While a surface domain
is divided into subdomains, the upper bound of the support function
over any subdomain is proved to be not greater than the one over the
original domain. Then, as the B&B algorithm sequentially divides
the surface domain by dividing its subdomain having a greater
upper bound than the others, the maximum upper bound over
all subdomains is monotonically decreasing and converges to the
exact value of the desired support function. Furthermore, with the
aid of the B&B algorithm, this article derives new algorithms for
the minimum distance between complex continuous surfaces and
for globally optimal grasps on objects with continuous surfaces. A
number of numerical examples are provided to demonstrate the
effectiveness of the proposed algorithms.

Index Terms—Bounding volume, branch-and-bound, collision
detection, computational geometry, distance, grasp planning,
support function.

I. INTRODUCTION

THE support function of a surface along a vector is defined
to be the maximum inner product of the vector with the

points on the surface and such a point at which the maximum
inner product is obtained is called the support mapping, where a
surface can be described by parametric functions and is generally
a set of infinite points in space. While the support function is a
fundamental concept in mathematics, it is a crucial operation
in algorithms for important problems in robotics, including
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collision detection and grasp planning. In some cases where the
surface is convex and the inner product of the vector with a point
on the surface is a convex function of the surface parameters, the
support function and mapping could be calculated by a convex
optimization algorithm or occasionally in a closed form. In many
more cases, however, a surface can be nonconvex, nonlinear, and
have no explicit expression, which makes it hard to compute
the global maximum value of the inner product and the exact
value of the support function, not to mention a closed-form
solution, and limits the application scopes of those important
algorithms. In this article, we first present a branch-and-bound
(B&B) algorithm to compute the support function and mapping
of complex continuous surfaces. Based on this algorithm, we,
then, propose not only extensions of existing algorithms but also
new algorithms for minimum distance computation and globally
optimal grasps on objects with continuous surfaces.

A. Related Work

The computing of support function and mapping is a key step
in several algorithms in robotics. First of all, the well-known
Gilbert-Johnson-Keerthi (GJK) algorithm [1], [2] calculates the
support function and mapping of a compact convex set at every
iteration to alter an inscribed simplex such that the minimum
Euclidean distance between the origin and the simplex converges
to the minimum Euclidean distance between the origin and the
set. Since the minimum distance is a natural choice of index
to determine if two sets or equivalently the origin and their
Minkowski difference are separated, the GJK algorithm has been
frequently used for collision detection, which is an essential
component in many software packages, such as robot motion
planners, simulators, and physics engines. Over the next decade
since it was initially proposed, the GJK algorithm has continued
to be improved to achieve higher computational efficiency on
convex polyhedra and moving bodies [3]–[6]. While the GJK
algorithm can calculate the minimum distance between two
separated sets, it cannot tell how deeply two sets penetrate each
other if they overlap. The penetration depth of two overlapping
sets is often defined as the minimum translation required to
separate them and also called the penetration distance [7]. For
compact convex sets, the penetration distance can be calculated
by the algorithm [8], which iteratively expands a polytope in
the Minkowski difference such that the minimum Euclidean
distance from the origin to the boundary of the Minkowski
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difference converges to the penetration distance. At every of
its iteration, the support function and mapping is calculated to
determine whether and how to continue expanding the poly-
tope. It has been noticed that the Euclidean separation (resp.
penetration) distance between two sets can also be expressed
as the maximum scale factor of the origin-centered unit ball
such that the scaled ball does not intersect (resp. exceed) the
interior of the Minkowski difference of the sets. Referring to
this, Zhu et al. [9]–[11] proposed a generalized distance function
by replacing the unit ball with a compact convex set as the
gauge set. Algorithms to compute the generalized distance for
compact convex sets were proposed in the work [12], in which
the computing of support function and mapping is still one
of the key operations. As a special case of the generalized
distance where the gauge set is taken to be a line segment,
the ray-shooting problem determines the intersection of a ray
with a set and can be solved by specialized algorithms, all of
which calculate the support function and mapping of the set at
every iteration [13]. In addition, computation and application
of distance can be extended to the case of a convex cone and a
point [14], which has been found useful in the equilibrium test
and contact force distribution of multicontact robotic systems as
well as whole-body locomotion generation and control of legged
robots [15]–[18].

In addition to collision detection, another important applica-
tion of distance functions, especially the penetration distance,
is to provide a quality measure for grasps; that is, the minimum
distance from the origin to the boundary of a so-called grasp
wrench set can be used as a quantitative index of how capable a
grasp is of applying wrenches to the grasped object [19]. During
the past two decades, variants of this grasp quality measure were
proposed to achieve metric invariance [10], [20], [21], reflect
task requirements [22]–[26], and incorporate the structural in-
formation of a robot hand [27] or the uncertainty of friction
coefficients [28], and more efficient and accurate algorithms
were developed to compute them [8], [29]–[31]. These measures
are often used in grasp planning to guide the computing of
optimal contact locations [10], [26], [28], [31]–[43]. While some
grasp planning algorithms are aimed at optimal grasps on 3-D
objects with piecewise smooth surface [10], [28], [33], [34], it
is hard to guarantee the actual optimality of the computed grasp
because the problem is a highly nonlinear optimization problem
with many local optima. Another approach is to discretize the
object’s surface and search contact locations within a set of
preselected discrete points [31], [36], [37], [40], [42]. By doing
this, the original nonlinear optimization problem is reduced to
a combinatorial optimization problem, whose best solution is
more attainable and can provide a reasonable approximation for
the globally optimal grasp on theoretically any object.

B. Our Work

In the aforementioned algorithms, the computing of support
function is currently limited to the case where a closed-form
expression can be derived. However, there are situations where
the computing of support function is a nonlinear optimization
problem, for which an exact numerical solution is hard and
a closed-form solution is even impossible to obtain. In this

article, we first present a B&B algorithm to calculate the support
function and mapping of complex continuous surfaces. An upper
bound of the support function over a surface domain is derived
and proved to be monotonically decreasing; that is, when the
domain is divided into subdomains, the upper bound of the
support function over any subdomain will not increase. Then,
in the sequential dividing of the surface domain as the B&B al-
gorithm iterates, the overall upper bound successively decreases
and converges to the value of the support function over the initial
domain. Furthermore, we apply the algorithm to several selected
problems including

1) Building bounding polyhedra: Since the support function
of a surface along a nonzero vector defines a supporting
plane of the surface, we use the proposed B&B algorithm
in the algorithm [44] to compute a sequence of supporting
planes enclosing and forming a convex bounding poly-
hedron of the surface. This computation can proceed and
finally lead to the convex hull of the surface.

2) Computing minimum distances: With the help of the B&B
algorithm for the support function, the aforementioned
distance computation algorithms [1], [2], [8] is extended
to separated or overlapping nonconvex sets such that the
minimum distance between their convex hulls can be
computed without explicitly calculating the convex hulls.
Moreover, an algorithm to compute the true minimum
distance between separated nonconvex sets is derived.

3) Planning optimal grasps: We use the B&B algorithm
for the support function to compute an upper bound on
the quality of grasps over a surface domain based on
the Ferrari–Canny grasp quality measure [19]. With this
upper bound, we then propose another B&B algorithm
to compute the globally optimal grasps on objects with
continuous surfaces, which is an unsolved problem in
grasping research until now.

The rest of this article is organized as follows. Section II
describes the algorithm to compute the support function with
application to computing bounding polyhedra of complex con-
tinuous surfaces. Section III applies the algorithm to mini-
mum distance computation between complex bodies. Section IV
presents an algorithm for globally optimal grasps on objects
with continuous surface. Numerical examples are provided in
each of the three sections to verify the algorithm’s performance.
Section V concludes this article.

II. B&B ALGORITHM FOR SUPPORT FUNCTION

In this section, we present a B&B algorithm to compute the
support function of a continuous surface.

A. Problem Definition

Let S � {f(x)|x ∈ X} be a surface defined by a function
f : X → S, as depicted in Fig. 1, where X ⊂ Rm is the domain
of f comprising the intervals for the components ofx ∈ Rm and
S ⊂ Rn is the image ofX under f . Then,X is anm-dimensional
hyperrectangle in Rm. Assume that f has Lipschitz continuity
such that, for ∀x1,x2 ∈ X

‖f(x1)− f(x2)‖ ≤ L‖x1 − x2‖ (1)
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Fig. 1. Illustration of the support function hS(u) of a surface S along a
vector u. The surface S is described by a continuous function f over domain
X and sS(u) is a point on S called the support mapping such that hS(u) =
uT sS(u). x∗ consists of the variables such that sS(u) = f(x∗).

where L is a Lipschitz constant and ‖ · ‖ denotes the 2-norm of
vectors. In other words, S is a point set described by a Lipschitz
continuous function f over domain X .

The support function of S is defined as [1], [45]

hS(u) � max
s∈S

uTs = max
x∈X

uT f(x) (2)

where u is a nonzero vector in Rn. Any point on S where hS(u)
is attained is called the support mapping [1], i.e.,

sS(u) � argmax
s∈S

uTs. (3)

The hyperplane with normal u passing through sS(u) is a
hyperplane of support1 to S at sS(u), as depicted in Fig. 1.
If u is a unit vector, then hS(u) gives the distance from the
origin to the hyperplane. From (2), the computing of hS(u) is
generally an optimization problem. Let x∗ denote the optimal
solution, namely the value of x ∈ X such that sS(u) = f(x∗)
and hS(u) = uT f(x∗). When S is such a surface that uTs
over S or uT f(x) over X is convex, it is possible to calculate
the values of hS(u) and sS(u) as well as x∗ by an existing
convex optimization algorithm or even in a closed form [2]. In
the general case that S or uT f(x) is nonconvex, however, the
computation becomes much harder. While an analytic solution is
often unattainable, optimization algorithms could fall into a local
optimal solution, which is far from the global maximum. In the
following, we present an algorithm for the exact values ofhS(u),
sS(u), and x∗ in such a challenging but general situation.

B. Algorithm Description

B&B is known as an effective technique for solving nonlinear
optimization problems. Here, we apply it to the computing of
the support function and mapping.

1The hyperplane of support to or the supporting hyperplane of a point set
at one of its points is a hyperplane that passes through the point and bounds
the entire set to one side [45] It seems analogous to the tangent hyperplane but
actually a different concept. The tangent hyperplane is defined only at a regular
point on a surface and bounds the surface locally rather than globally, where
a surface is deemed as a point set. If the tangent hyperplane at a regular point
bounds the entire surface, then it is the unique supporting hyperplane of the
surface at this point. At a singular point, the tangent hyperplane is not defined
but there could exist nonunique hyperplanes supporting the surface.

We first derive an upper bound of hS(u) over X . From (1) it
follows that the value of uTs has Lipschitz continuity over X
as well, i.e.,

∣
∣uTs1 − uTs2

∣
∣ ≤ ‖u‖‖s1 − s2‖ ≤ Lh‖x1 − x2‖ (4)

where s1 = f(x1), s2 = f(x2), and Lh = L‖u‖. Let x̄ be the
center of X and s̄ = f(x̄). Substituting x∗ and x̄ into x1 and
x2 in (4), respectively, yields

hS(u)− uT s̄ ≤ Lh‖x∗ − x̄‖ ≤ Lh max
x∈X

‖x− x̄‖. (5)

From (5), we attain an upper bound of hS(u) over X as

ĥS(u) � uT s̄+ Lh max
x∈X

‖x− x̄‖. (6)

We next prove that the upper bound given by (6) is mono-
tonically decreasing in dividing X into smaller domains. Let
X be divided into 2m isometric subdomains Xj’s along its
center x̄ by bisecting each interval constituting X . Let x̄j

be the center of Xj . Then, maxx∈Xj
‖x− x̄j‖ = ‖x̄j − x̄‖ =

1
2 maxx∈X ‖x− x̄‖. From (4) and (6), we further derive

ĥSj
(u) � uT s̄j + Lh max

x∈Xj

‖x− x̄j‖

≤ uT s̄+ Lh‖x̄j − x̄‖+ Lh max
x∈Xj

‖x− x̄j‖

= uT s̄+ Lh max
x∈X

‖x− x̄‖

� ĥS(u). (7)

Therefore, the upper bound given by (6) is indeed monotonically
decreasing during the dividing of X .

In fact, the definitions of support function (2) and its upper
bound (6) can be extended to any domain. For a domain that is
infinitely small and only a singleton, the upper bound is equal
to the support function.

With the aforementioned upper bound, a B&B algorithm for
hS(u), sS(u), and x∗ is described in Algorithm 1. At every
iteration of the algorithm, from the list L of domains we select
the one X̂ for which the upper bound is the maximum, denoted
by ĥ, among all domains and divide X̂ into 2m subdomains Xj .
Then, we calculate the value of uTs at the center x̄j and the
upper bound ĥSj

(u) for each Xj and add Xj to the list L if its
upper bound is greater than the current best result h∗, which is
the greatest value of uTs that we have so far. Since the upper
bound is decreasing in the dividing of a domain as stated by (7),
ĥ is monotonically decreasing as the algorithm iterates. On the
other hand, h∗ is monotonically increasing, and hS(u) is always
bounded below by h∗ but above by ĥ. Therefore, it is guaranteed
that h∗ converges to hS(u). Furthermore, we can derive that the
difference of the final h∗ terminated by the condition ĥ− h∗ > ε
from the true value of hS(u) is bounded by the termination
tolerance ε, i.e.,

0 ≤ hS(u)− h∗ ≤ ε. (8)

C. More Discussions

Here, we discuss several factors that may affect the computa-
tional efficiency of Algorithm 1.
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Algorithm 1: Algorithm for hS(u) and sS(u).

Input: u and S given by f and X
Output: hS(u) and sS(u) as well as the optimal solution

x∗

1: x∗ ← the middle point in domain X
2: s∗ ← f(x∗)
3: h∗ ← uTs∗

4: ĥ ← the upper bound of hS(u) over X
5: X̂ ← X
6: L ← ∅
7: while ĥ− h∗ > ε do
8: Divide X̂ into subdomains Xj’s
9: for each Xj do

10: x̄j ← the middle point in domain Xj

11: s̄j ← f(x̄j)
12: h̄j ← uT s̄j
13: if h̄j > h∗ then
14: h∗ ← h̄j

15: s∗ ← s̄j
16: x∗ ← x̄j

17: end if
18: ĥj ← the upper bound of hS(u) over Xj

19: if ĥj > h∗ then
20: Add Xj to the list L
21: end if
22: end for
23: ĥ ← the maximum upper bound for domains in the

list L
24: X̂ ← the domain in the list L whose upper bound

is maximal
25: Remove X̂ from the list L
26: end while
27: return h∗, s∗, and x∗

First, the choice of the Lipschitz constant Lh in (6) affects the
number of iterations required by Algorithm 1. One may simply
take a sufficiently large Lh such that (4) holds for the entire
domain X . However, this will lead to an overestimated upper
bound as given by (6) and a slow convergence of the algorithm.
Instead, if function f is differentiable over X , we can estimate
L in (1) as follows and, then, take Lh = L‖u‖ to be used in (4)

L = max
x∈X

∥
∥
∥
∥

∂f(x)

∂x

∥
∥
∥
∥
F

(9)

where ∂f/∂x is the Jacobian matrix of f and ‖ · ‖F is the
Frobenius norm. Another way to estimate Lh is to directly use
the gradient of uTs = uT f(x) over X , i.e.,

Lh = max
x∈X

∥
∥
∥
∥
∥

∂
(

uT f(x)
)

∂x

∥
∥
∥
∥
∥
. (10)

Usually (10) gives a smaller constant and is used in this article.
Second, we notice that Algorithm 1 could sometimes yield

a number of domains with their upper bounds all close to each
other and slightly greater than hS(u). The reason is that, for
a domain containing or approaching the optimal solution x∗,
the value uT s̄ may be slightly less than hS(u) but its upper

Algorithm 2: Algorithm for hS(u) and sS(u).

Input: u and S given by f and X
Output: hS(u) and sS(u) as well as the optimal solution

x∗

1: x∗ ← the middle point in domain X
2: s∗ ← f(x∗)
3: h∗ ← uTs∗

4: ĥ ← the upper bound of hS(u) over X
5: X̂ ← X
6: L ← ∅
7: k ← 0
8: while ĥ− h∗ > ε and k < K do
9: Divide X̂ into subdomains Xj’s

10: for each Xj do
11: x̄j ← the middle point in domain Xj

12: s̄j ← f(x̄j)
13: h̄j ← uT s̄j
14: if h̄j > h∗ then
15: h∗ ← h̄j

16: s∗ ← s̄j
17: x∗ ← x̄j

18: end if
19: ĥj ← the upper bound of hS(u) over Xj

20: if ĥj > h∗ then
21: if |Xj | > εX then
22: Add Xj to the list L
23: else
24: Let h̃j , s̃j , and x̃j be the values of hSj

(u),
sSj

(u), and x∗
j computed by any

optimization solver over domain Xj

25: if h̃j > h∗ then
26: h∗ ← h̃j

27: s∗ ← s̃j
28: x∗ ← x̃j

29: end if
30: end if
31: end if
32: end for
33: ĥ ← the maximum upper bound for domains in the

list L
34: X̂ ← the domain in the list L whose upper bound

is maximal
35: Remove X̂ from the list L
36: k ← k + 1
37: end while
38: return h∗, s∗, and x∗

bound is greater than h∗ due to the term Lh maxx∈X ‖x− x̄‖
in (6). Dividing such a domain could generate more suchlike
subdomains and for a subdomain to be ruled out, the constant
Lh and/or the size of the subdomain must be sufficiently small
such that its upper bound is less than h∗. This may cause
Algorithm 1 to iterate many times before the termination con-
dition ĥ− h∗ > ε can be reached. To avoid this situation, we
propose a variant of Algorithm 1, as described in Algorithm 2,
in which a local optimization solver is called to compute hSj

(u)
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Fig. 2. Worst cases of computing the support function of (a) an ellipsoid, (b) one eighth of a torus, (c) a heart, and (d) a seashell. The blue arrow and the red dot
represent a given direction u and the corresponding support mapping sS(u), respectively. The gray plane is the plane with normal u passing through sS(u) and
a plane of support to the body S.

for any sufficiently small domain Xj (i.e., |Xj | ≤ εX ) instead
of adding it to the list L, where |Xj | denotes the size of Xj

and εX is the tolerance on |Xj |. In addition, we set a maximum
allowable iteration number K for Algorithm 2.

Here, Algorithm 2 has three user-specified parameters,
namely the termination tolerance ε on the value ĥ− h∗, the
tolerance εX on |Xj |, and the allowable iteration numberK. The
tolerance ε directly controls the accuracy of the computed result,
as indicated by (8). It should be taken to be as small as needed
in specific applications. For the number K, one can simply
choose a relatively large value to avoid the early termination
of the algorithm while ĥ− h∗ is still big. The tolerance εX also
affects the accuracy and efficiency of the algorithm. In general,
it should be set to a sufficiently small value such that the local
optimization solver can confidently compute hSj

(u) over any
such small domain. Nevertheless, it should also be noted that a
too small εX will lead to more domains being added to the listL,
causing more domain divisions and iterations of the algorithm. In
the following numerical tests, we try different values for εX and
it turns out that 10−1 is small enough for attaining an accurate
support function on four given bodies with an increasing level
of complexity (from convexity to high nonconvexity).

D. Numerical Examples

We verify the performance of Algorithms 1 and 2 with nu-
merical examples. The algorithms have been implemented in
MATLAB and run on a desktop with an Intel Core i7-6700
3.40 GHz CPU and 16 GB RAM. The termination tolerance
ε for ĥ− h∗ is set to 10−6, the number of iterations is limited
to K = 105, and the size |Xj | of a domain is defined to be the
maximum interval in Xj . In Algorithm 2, for a domain whose
size is below a threshold εX , we call the “trust-region-reflective”
algorithm with its default setting provided by the optimization
toolbox of MATLAB to compute the support function over that
domain.

Example 1: First, we use the algorithms to compute the
support function of several 3-D bodies including an ellipsoid,
one eighth of a torus, a heart, and a seashell, as shown in Fig. 2.
Their parametric expressions are as follows.

1) Ellipsoid:

s =

⎡

⎢
⎢
⎣

cos θ cosφ

2 cos θ sinφ

3 sin θ

⎤

⎥
⎥
⎦

where θ ∈ [−π/2, π/2] and φ ∈ [0, 2π].
2) Torus:

s =

⎡

⎢
⎢
⎣

(6 + 1.5 cosφ) cos θ

(6 + 1.5 cosφ) sin θ

1.5 sinφ

⎤

⎥
⎥
⎦

where θ ∈ [0, π/2] and φ ∈ [0, 2π].
3) Heart:

s =

⎡

⎢
⎢
⎣

16 sin3 θ cosφ

8 sin3 θ sinφ

13 cos θ − 5 cos 2θ − 2 cos 3θ − cos 4θ

⎤

⎥
⎥
⎦

where θ ∈ [0, π] and φ ∈ [0, 2π].
4) Seashell:

s =

⎡

⎢
⎢
⎣

(1− eθ/6π) cos θ(1 + cosφ)

−(1− eθ/6π) sin θ(1 + cosφ)

1− eθ/3π − (1− eθ/6π) sinφ

⎤

⎥
⎥
⎦

where θ ∈ [0, 6π] and φ ∈ [0, 2π].
On the ellipsoid, the support function hS(u) and mapping

sS(u) can be calculated in a closed form as [2]

hS(u) =
√

u2
x + 4u2

y + 9u2
z,

sS(u) =

[
ux

hS(u)

4uy

hS(u)

9uz

hS(u)

]T

where ux, uy, and uz are the three components of u. However,
the computation of hS(u) and sS(u) is much harder on the
other bodies. In each case, we then let Algorithms 1 and 2
compute the support function along 103 random directions and
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TABLE I
RESULTS OF ALGORITHM 1

e—The value obtained by the closed-form solution minus the one obtained by the algorithm;
eo—The value obtained by the algorithm minus the one obtained by one-time optimization;
t—CPU running time of the algorithm (unit: second);
N—Number of iteration of the algorithm;
The subscripts “max,” “min,” and “ave” represent the maximum, minimum, and average values of
the corresponding quantities obtained in the tests, respectively.

TABLE II
RESULTS OF ALGORITHM 2

No—Times of the optimization algorithm called in Algorithm 2. The unit for the CPU running time is second.

Fig. 3. Value of uT s on the (a) ellipsoid, (b) one eighth of the torus, (c) heart, and (d) seashell in the cases shown in Fig. 2. The red dot indicates the solution
yielded by Algorithm 2, which gives the global maximum of uT s in these worst cases.

take the threshold εX of the domain’s size to be 10−1, 10−2,
or 10−3. Tables I and II exhibit the performance of the two
algorithms, respectively. We first compare the results from the
proposed algorithms on the ellipsoid with the ones obtained by
the abovementioned closed-form expression, as displayed in the
second column of Table I and third column of Table II, which
shows that the proposed algorithms are accurate. For the other
three objects, since no closed-form expression for the support
function can be easily derived, we compare our results with the
ones by using the MATLABs optimization algorithm to solve (2)
over the initial domain with the domain’s centroid as the initial
point, as shown in the next columns of the tables. It can be
seen that the one-time optimization cannot guarantee the global
maximum and the computed values are notably less than the
results of our algorithms.

From Tables I and II, we further see that the two algorithms
can achieve comparable levels of accuracy, but Algorithm 1
needs much longer computation time except on the ellipsoid.
Fig. 2 shows several worst cases where both algorithms need
a great number of iterations to terminate and Fig. 3 plots the
value of uTs over the initial domains for θ and φ in these
cases. It can be seen that the values of uTs are very close
to each other or even the same somewhere and unfortunately
some or even all of them are the global maximum of uTs. In
such a case, Algorithm 1 will generate a large number of tiny
domains in order to reach the termination condition ĥ− h∗ ≤ ε.
The use of local optimization for sufficiently small domains
in Algorithm 2 successfully prohibits unnecessary dividing of
those domains and significantly reduces the number of iterations
while keeping the result at the same level of accuracy. On the
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Fig. 4. Bounding polyhedra of the ellipsoid (first column), torus (second column), heart (third column), and seashell (fourth column) with axis-aligned planes
(first row) and additional 30 (second row), 60 (third row), and 90 (fourth row) planes.

four objects, Algorithm 2 can achieve both high computational
accuracy and efficiency by setting the threshold εX = 0.1, as
shown in Table II.

Example 2: Since the support function defines a plane that
bounds and supports a body, we can compute a bounding poly-
hedron or even the convex hull of the body by computing the
support function along a series of directions and forming a group

of planes supporting the body. Such an iterative algorithm has
been described in the work [44]. Applying this algorithm with
the proposed method for computing the support function, we
can calculate bounding polyhedra for complex as well as simple
geometric bodies, as shown in Fig. 4. As the algorithm iterates,
more supporting planes are determined and the bounding poly-
hedron gets tighter and can eventually converge to the convex
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Fig. 5. CPU running time for computing bounding polyhedra. The threshold
εX in Algorithm 2 is set to (a) 10−1 and (b) 10−2, respectively.

hull of the body. Fig. 5 depicts the CPU running time of this com-
putation in which Algorithm 2 is used to compute the support
function.

III. MINIMUM DISTANCE COMPUTATION BETWEEN

CONTINUOUS SURFACES

Distance is one of the most basic concepts in mathemat-
ics and has various applications in robotics. There are many
definitions of distance and a common definition is the minimum
Euclidean distance between points in two sets. Algorithms have
been available for computing the minimum distance between
compact convex sets [1], [2], [8]. For infinite point sets with
nonconvex smooth boundaries, however, the computing of their
minimum distance is difficult. In this section, based on the
previous algorithm, we discuss a solution to this problem.

A. Mathematical Definitions

Let A and B be two infinite compact sets in Rn, as depicted
in Fig. 6. The Minkowski difference between them is the set
defined as

A−B � {a− b |a ∈ A, b ∈ B}. (11)

It can be proved that A ∩B = ∅ (or A ∩B �= ∅) is equivalent
to 0 /∈ A−B (or 0 ∈ A−B). Throughout the following dis-
cussion, we assume that A−B is of dimension n and has a
nonempty interior in Rn. The Euclidean distance between A

Fig. 6. Illustration of the minimum distance d between compact convex sets
A and B. (a) A separated from B: The GJK algorithm iteratively generates a
sequence of simplices in A−B using the support mapping of A−B and a
face of the previous simplex such that the minimum distance d̂ from the origin
to the simplex in the sequence converges to d [1], [2]. The iteration can be
terminated once d̂+ hA−B(u) < εd, where u is the unit vector representing
the direction of the minimum distance from the simplex to the origin and εd is
the termination tolerance. (b) A intersecting with B: The algorithm iteratively
expands a polytope inA−B by adding the support mapping ofA−B as a new
vertex to the polytope such that the minimum distance ď from the origin to the
facets of the polytope converges to d [8], [12]. The iteration can be terminated
once hA−B(u)− ď < εd, where u is the unit outward normal of the facet
giving the minimum distance ď and εd is the termination tolerance. Please refer
to relevant references for more details.

and B is defined as [46]

d(A,B) �
{

d+(A,B) ifA ∩B = ∅
−d−(A,B) ifA ∩B �= ∅ (12)

where d+(A,B) and d−(A,B) are the Euclidean separation and
penetration distances, respectively, which are defined as

d+(A,B) � min
t∈A−B

‖t‖ = min
t∈bd(A−B)

‖t‖ (13)

d−(A,B) � min
t∈A−B\int(A−B)

‖t‖ = min
t∈bd(A−B)

‖t‖ (14)

where int(·) and bd(·) denote the interior and the boundary of
a set, respectively. From (13), we see that d+(A,B) equals the
minimum Euclidean distance from the origin to the points in
A−B. Since 0 /∈ A−B due to A ∩B = ∅ and we assume
int(A−B) �= ∅, d+(A,B) is obtained at a boundary point of
A−B, as depicted in Fig. 6(a). As for d−(A,B), since A−
B \ int(A−B) is nothing but the boundary of A−B when
int(A−B) �= ∅, d−(A,B) is the minimum Euclidean distance
from the origin to the boundary of A−B, where the difference
from d+(A,B) is 0 ∈ A−B because of A ∩B �= ∅, as shown
in Fig. 6(b).
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B. Distance Algorithms

When both A and B are convex, d+(A,B) and d−(A,B)
can be computed by the well-known GJK algorithm [1], [2]
and the expanding polytope algorithm [8], [12], as depicted in
Fig. 6(a) and (b), respectively. Starting with a simplex in A−
B, the GJK algorithm calculates the support mapping of A−
B along the normal of the face containing the closest point in
the simplex to the origin and uses the support mapping with
the face to form a new simplex. By this iteration, the simplex
progressively approaches the origin and the minimum distance
between them converges to the minimum distance between the
origin and A−B or just d+(A,B) if A ∩B = ∅. To compute
d−(A,B) when A ∩B �= ∅, the expanding polytope algorithm
iteratively grows a polytope containing the origin in A−B by
adding the support mapping of A−B along the normal of the
polytope’s closest facet to the origin as a new vertex. As the
algorithm iterates, the minimum distance from the origin to the
facets of the polytope converges to the minimum distance from
the origin to the boundary of A−B or d−(A,B).

An essential operation in both algorithms is to calculate the
support function hA−B and mapping sA−B of A−B, which
can be simplified as

hA−B(u) = hA(u) + hB(−u) (15a)

sA−B(u) = sA(u)− sB(−u). (15b)

Thus, computing hA−B and sA−B has the same complexity as
computing hA, sA and hB , sB separately, and there is no need
to calculate the Minkowski difference A−B. When A and B
are described by continuous parametric functions, their support
functions can be computed by Algorithm 1 or 2.

Since the support function and mapping of the convex hull of
a set are equal to those of the set itself [2], [45], if we apply the
distance algorithms [1], [2], [8], [12] to the case where A or B
is not convex, the yielded value, denoted by ď(A,B), is actually
the minimum separation or penetration distance between the
convex hull of A and the convex hull of B but it is worth
noticing that none of the convex hulls is explicitly calculated.
This can already be useful in some scenarios, such as collision
detection between bodies as needed in robot motion planning
and simulation. Nevertheless, we are still interested in the true
minimum distance between A and B, for which a potential
algorithm is discussed as follows.

In fact, ď(A,B) provides a lower bound of d(A,B), since
A or B is contained in its own convex hull and the minimum
distance ď(A,B) between their convex hulls is less than or equal
to their true minimum distance d(A,B). DividingA into smaller
subsets Aj’s, we can deduce ď(A,B) ≤ ď(Aj , B) for ∀j and
ď(A,B) ≤ minj ď(Aj , B), which implies that the lower bound
is increasing in the dividing of A. The same property can be
derived for B as well. With this lower bound, we can derive a
B&B algorithm as described in Algorithm 3. Assume that A and
B are specified by parametric functions with all the parameters
written as x for which the total domain is denoted by X . At
every iteration of the algorithm, X∗ is the domain in the list L
whose lower bound is minimal and it is divided into subdomain
Xj’s, by which we divide corresponding sets into subset Aj’s

Algorithm 3: Algorithm for the Minimum Distance.
Input: Sets A and B
Output: The minimum distance d(A,B)
1: d∗ ← ď(A,B)
2: X∗ ← domains of all parameters for A and B
3: L ← ∅
4: while |X∗| > εX do
5: Divide X∗ into subdomains Xj’s
6: for each Xj do
7: ďj ← the lower bound ď(Aj , Bj) over Xj

8: Add Xj to the list L
9: end for

10: d∗ ← the minimum lower bound for domains in
the list L

11: X∗ ← the domain in the list L whose lower bound
is minimal

12: Remove X∗ from the list L
13: end while
14: return X∗ and d∗

and Bj’s. Then, the lower bound ď(Aj , Bj) is calculated for
each Xj added to L. The iteration stops when the domain X∗ is
small enough. When A ∩B = ∅, there always exists a domain
in the list L such that the corresponding subsets of A and B
contain the pair of points whose distance is the true minimum
distance d+(A,B) between A and B. In this case, therefore,
the minimum lower bound d∗ in L is always bounded above by
d+(A,B) and guaranteed to converge to d+(A,B) even though
A and B are not convex. In case that A ∩B �= ∅, however, d∗

is bounded above by and, thus, converges to zero rather than
d−(A,B) as the algorithm iterates. It is worthwhile noting that
this is still a useful result as it indicates that there are intersections
between two sets and implies potential collisions to be noticed
by motion planning algorithms.

C. Numerical Examples

Here, we report some numerical tests on minimum distance
computation with the aid of Algorithm 2 or by Algorithm 3.

Example 3: We first use the GJK algorithm [1], [2] and the
expanding polytope algorithm [8], [12] to compute the minimum
distance between the convex hulls of two hearts, which are
nonconvex bodies, as shown in Fig. 7(a). Originally, the two
algorithms cannot be applied to this case because the computa-
tion of the support function of nonconvex bodies is unavailable.
Now, we can do so with the aid of Algorithm 2. We first use
the GJK algorithm [1], [2] to determine if two convex hulls
intersect and then calculate their minimum separation distance
when they do not. In case that they intersect, the algorithm [8] is
called to compute the minimum penetration distance between the
convex hulls. The support function of each heart is calculated
by Algorithm 2 with εX = 10−1, which has turned out to be
small enough for accurately calculating the support function,
as revealed by the test results reported in Table II. We conduct
103 trials with randomized relative positions and orientations
between two hearts and obtain the average computation times
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Fig. 7. Examples of minimum distance computation between (a) two hearts
and (b) a torus and a seashell. The torus is divided into eight segments in
the computation. The green and red lines represent the minimum distance
between the convex hulls of and the true minimum distance between two bodies,
respectively, where the true values are notably greater in the shown cases.

and numbers of iterations of the two distance algorithms with
respect to different termination tolerances, as displayed in the
left half of Table III. In the old case, where the given bodies are
convex and their support functions can be calculated analytically,
the computation times of the two distance algorithms range from
several to tens of milliseconds on a modern PC [12]. Here,
their computation times are two to three orders of magnitude
longer while the numbers of iterations remain at almost the same
level. The increase in the computation time is purely due to the
computing of the support function with an iterative numerical
algorithm rather than in an analytical way.

We also compute the true minimum separation distance be-
tween two hearts rather than their convex hulls with Algorithm 3
in the abovementioned random trials where the convex hulls
of two hearts are determined to be separate. Here, we take
εX = 10−1, 10−2, and 10−3, respectively, for Algorithm 3 and
εd = 10−4 for the distance algorithms [1], [2], [8]. The results
are collected in the left half of Table IV. From the second column
of Table IV, we see that the true minimum distance between two
hearts is often greater than the minimum distance between their
convex hulls, which is in accordance with the fact that the hearts
are concave and their convex hulls expand the actual bodies,
leading to a reduced distance between them. Fig. 7(a) depicts
one case where the true minimum distance is notably greater.

Example 4: We also conduct the same distance computa-
tion between a torus and a seashell, as depicted in Fig. 7(b).
The torus is divided into eight identical segments as in
Fig. 4. The minimum distance between the convex hulls of the
seashell and each segment is computed by the distance algo-
rithms [1], [2], [8] and the results are reported in the right half
of Table III.

The right half of Table IV exhibits the results of Algorithm 3
to compute the true minimum separation distance between the
seashell and each segment of the torus. These results reflect the
same performance of the distance algorithms [1], [2], [8] with
the aid of Algorithm 2 and of Algorithm 3 as in Example 3 for
the minimum distance computation.

From the CPU running time and the number of iterations
shown in Table IV, we notice that the current implementation
of Algorithm 3 is not fast enough for real-time uses. To en-
hance its computational efficiency, we also tried the parallel
implementation of the for-loop in Algorithm 3 to compute the
lower bound ď(Aj , Bj) over each subdomain Xj using the “par-
for” command provided by the parallel computing toolbox of
MATLAB. The “parfor” command distributes the loop iterations
onto a parallel pool of available local workers (four workers
on the used desktop). By this straightforward parallelism, the
computation time of Algorithm 3 is reduced by about three times,
which is smaller than the ideal speed up of a factor of four on
four workers due to the parallel overhead including the time
required for data transfer. It is noted that we have the option to
parallelize the for-loop in Algorithm 2, which actually runs as a
subalgorithm in the for-loop in Algorithm 3. Then, parallelizing
both for-loops causes nested parfor-loops, which is not allowed
in MATLAB. Hence, we choose to parallelize the outer loop,
namely the for-loop in Algorithm 3, which incurs a smaller
parallel overhead. In the future, we will explore other parallel
implementations, such as nested parallelism, to further improve
the computational efficiency of the algorithms.

IV. OPTIMAL GRASP PLANNING ON CONTINUOUS SURFACES

A grasp on an object can be modeled as a set of contacts
on the object’s surface and the goal of optimal grasp planning
is to compute the contact locations providing the best perfor-
mance quality. Owing to the nonlinearity of a grasp quality
measure and a general object’s surface, which can be piecewise
parameterized as nonlinear functions, optimal grasp planning
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TABLE III
RESULTS OF DISTANCE COMPUTATION BY EXISTING ALGORITHMS

εd—Termination tolerance for the distance algorithms [1], [2], [8] as explained in the caption of Fig. 6;
t,N—Average CPU running time (unit: second) and number of iterations of a distance algorithm;
Superscript “+/0” refers to the GJK algorithm [1], [2] in the separation/penetration case;
Superscript “−” refers to the algorithm [8] for the penetration distance.

TABLE IV
RESULTS OF TRUE DISTANCE COMPUTATION BY ALGORITHM 3

Δ—The minimum separation distance between two bodies minus the minimum distance between their convex hulls;
t—CPU running time of Algorithm 3 (unit: second);
N—Number of iterations of Algorithm 3 (106 is the maximum number of iterations allowed).

is a highly-nonlinear optimization problem, for which comput-
ing the globally optimal solution is extremely difficult. In this
section, we attempt to solve this problem with another B&B
algorithm, in which the proposed B&B algorithm for the support
function is used in calculating an upper bound of grasps’ quality
over any domain of the object’s surface.

A. Preliminary Knowledge

Consider using m contacts to form a grasp on a 3-D object.
Letpi ∈ R3 for i = 1, 2, . . . ,m be the position of contact iwith
respect to the object coordinate frame attached at the center of
mass of the object. Assume that the object’s surface is continuous
and the three components of pi are all specified by continuous
functions of the same surface parameter xi ∈ R2. Let Xi be
the domain of xi. By differentiating pi with respect to xi, we
can derive two orthogonal unit tangent vectors oi ∈ R3 and ti ∈
R3 as well as the inward unit normal ni ∈ R3 at pi such that
ni = oi × ti. Then, oi, ti, and ni establish a local right-handed
coordinate frame at pi. Moreover, we can deduce that pi, ni,
oi, and ti have Lipschitz continuity, i.e.,

‖pi(xi)− pi(x
′
i)‖ ≤ Lpi‖xi − x′

i‖ (16a)

‖ni(xi)− ni(x
′
i)‖ ≤ Lni‖xi − x′

i‖ (16b)

‖oi(xi)− oi(x
′
i)‖ ≤ Loi‖xi − x′

i‖ (16c)

‖ti(xi)− ti(x
′
i)‖ ≤ Lti‖xi − x′

i‖ (16d)

where x′
i is a value of the surface parameter other than xi and

Lpi, Lni, Loi, and Lti are nonnegative real constants, which can
be estimated from the parametric expressions of pi, ni, oi, and
ti, respectively, similarly to (9).

The contact force f i ∈ R3 at pi can be expressed in the local
coordinate frame as f i = [fi1 fi2 fi3]

T , where fi1, fi2, and fi3
are the components off i alongni,oi, and ti, respectively. It can
be converted to a wrenchwi with respect to the object coordinate

frame by

wi = Gif i

where Gi is a linear mapping that can be written as

Gi =

[

ni oi ti

pi × ni pi × oi pi × ti

]

∈ R6×3. (17)

To avoid slippage at contact, f i must belong to the following
convex cone, known as the friction cone [47]

Fi �
{

f i ∈ R3 | fi1 ≥ 0,
√

f2
i2 + f2

i3 ≤ μifi1

}

(18)

where μi is the Coulomb friction coefficient. The primitive
contact force set Ui consists of contact forces with unit normal
component on the boundary of Fi [14]

Ui �
{

f i ∈ R3 | fi1 = 1,
√

f2
i2 + f2

i3 = μi

}

. (19)

The image Wi of Ui through Gi as given below is called the
primitive contact wrench set

Wi = Gi(Ui). (20)

The grasp wrench set is defined as the convex hull of the union
of Wi, i = 1, 2, . . . ,m for all contacts [19], [48], i.e.,

W � CH

(
m⋃

i=1

Wi

)

(21)

where CH(·) denotes the convex hull of a set. The set W
consists of all the wrenches that can be applied to the object
by all m contacts with unit sum of normal contact forces. A
well-known grasp quality measure is defined in terms of the
minimum distance (12) from the origin to W [19], [21], i.e.,

σ � −d(W,0) = min
uTu=1

hW (u) (22)
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where hW (u) is the support function of W along a vector
u ∈ R6. The value σ is positive and nonpositive for a grasp
having and not having force closure, respectively, and a greater
σ implies a better grasp. Physically, σ reflects the overall ability
of a grasp to apply wrenches to the object in all directions.

From the abovementioned arguments, σ depends on the pa-
rameters xi’s specifying the contact locations. Then, the goal of
optimal grasp planning is to compute xi ∈ Xi, i = 1, 2, . . . ,m
such that σ is maximal, which can be written as

{

maximize σ

subject to xi ∈ Xi, i = 1, 2, . . . ,m
. (23)

Because the object’s surface, the friction cone (18), and the
distance function in (12) are all nonlinear, σ is a nonlinear
function of xi’s and (23) is a nonlinear optimization problem
with many local maxima. It is extremely hard to compute the
globally optimal solution to such a problem. To the best of
authors’ knowledge, there is no effective algorithm to solve this
problem without any approximation until now.

B. Planning Algorithm

For problem (23), we propose a B&B algorithm, which is
aimed at yielding a solution with guaranteed or even global
optimality. To do this, we first introduce an upper bound of σ
over the domain X = X1 ⊗X2 ⊗ · · · ⊗Xm of the problem,
where ⊗ represents the Cartesian product of sets. Referring to
the primitive contact wrench set Wi defined by (20) for a singe
contact point, we can define a wrench set Ŵi for the piece of the
object’s surface corresponding to the domain Xi as the union of
Wi for all points in the piece

Ŵi �
⋃

xi∈Xi

Wi. (24)

Then, similarly to the grasp wrench set W and quality value
σ, we can define a set Ŵ as (21) with Ŵi replacing Wi and a
scalar value σ̂ as (22) with Ŵ replacing W . From (24), the grasp
wrench set W for any grasp in the domain X is contained in Ŵ ,
by which we obtain hW (u) ≤ hŴ (u) for ∀u and σ ≤ σ̂ from
(22). Hence, σ̂ is an upper bound of σ over X . Furthermore,
for the same reason, we can derive Ŵ ′ ⊂ Ŵ and σ̂′ ≤ σ̂ for
any subdomain X ′ ⊂ X , where Ŵ ′ and σ̂′ are the wrench set
and the upper bound for X ′, respectively. This implies that the
upper bound is monotonically decreasing during the dividing of
a domain as needed in a B&B algorithm.

The wrench set Ŵ and/or the scalar value σ̂ have been
proposed before for discrete surface point sets [42], special
surface elements (points, line segments, and convex facets) [49],
and the entire object’s surface [22]. However, the computing
of σ̂ is limited to the special cases and there is no algorithm
to compute σ̂ for a general continuous surface. Prior to the
discussion on how to compute the upper bound σ̂, we recall
how the grasp quality measure σ is computed. As defined in
terms of the minimum distance in (22), σ can be calculated by
the distance algorithms [2], [8], as depicted in Fig. 6, and the
support function hW (u) and mapping sW (u) of W need to be
calculated at every iteration. Luckily, hW (u) and sW (u) for

any u can be calculated in a closed form as [14]

hW (u) = hWi∗ (u) (25a)

sW (u) = sWi∗ (u) (25b)

where i∗ = argmaxi=1,2,...,m hWi
(u). Furthermore, hWi

(u)
and sWi

(u) can be calculated by

hWi
(u) = di1 + μi

√

d2i2 + d2i3 (26a)

sWi
(u) = Gi

[

1
μidi2

√

d2i2 + d2i3

μidi3
√

d2i2 + d2i3

]T

(26b)

where di1, di2, and di3 are the components of di given by

di = uTGi. (27)

In case that
√

d2i2 + d2i3 in (26) is zero, which rarely happens
though, sWi

(u) can be taken to be the first column of Gi, i.e.,
sWi

(u) = [nT
i pT

i × nT
i ]

T , such that hWi
(u) = di1.

Also defined as the minimum distance, the upper bound σ̂ can
be calculated by the same distance algorithms [2], [8] as used
to compute σ. However, we shall compute hŴ (u) in this case,
which is more difficult than the computing of hW (u), since Ŵ
is defined over m domains Xi’s rather than m contact points. A
closed-form expression of hŴ (u) might be derivable for some
special surfaces, such as a planar surface. In general, for a curved
continuous surface we can only compute hŴ (u) numerically.
To do this, similarly to (25), we first have

hŴ (u) = hŴi∗
(u) (28a)

sŴ (u) = sŴi∗
(u) (28b)

where i∗ = argmaxi=1,2,... ,m hŴi
(u). From (24), we further

derive

hŴi
(u) = max

xi∈Xi

hWi
(u) (29a)

sŴi
(u) = hW ∗

i
(u) (29b)

whereW ∗
i is the primitive wrench contact setWi atx∗

i for which
hWi

(u) is maximal over Xi. Comparing (29a) with (2), we see
thathŴi

(u) can be calculated in the same way ashS(u) if we can
derive a monotonically decreasing upper bound for hWi

(u) as
for uT f(x). From (17), (26a), and (27) as well as the Lipschitz
continuity of pi, ni, oi, and ti described by (16), it is not so
difficult to deduce that hWi

(u) has Lipschitz continuity as well,
which can be written as

∣
∣hWi

(u)− hW ′
i
(u)

∣
∣ ≤ Lhi‖xi − x′

i‖ (30)

where W ′
i is the primitive contact wrench set at x′

i and x′
i is

an arbitrary point in Xi. Equation (30) is similar to (4). Then,
following (5) and (6), we attain an upper bound of hWi

(u) as

ĥWi
(u) � hW̄i

(u) + Lhi max
xi∈Xi

‖xi − x̄i‖ (31)

where x̄i is the center of domain Xi and W̄i is the primitive
contact wrench set at x̄i. Furthermore, similarly to (7), we
can prove that the upper bound given by (31) is monotonically
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Algorithm 4: Algorithm for the Optimal Grasp.
Input: Object surface functions with domains Xi,

i = 1, 2, . . . ,m
Output: Solution x∗ giving an optimal grasp on the object
1: X̂ ← X
2: σ̂ ← the upper bound of σ over X
3: x∗ ← ∅
4: σ∗ ← 0
5: L ← ∅
6: while X̂ �= ∅ and σ̂ − σ∗ > ε do
7: Use any heuristic to find a relatively better grasp in

domain X̂ with corresponding surface parameters
x̃ and quality value σ̃

8: if σ̃ > σ∗ then
9: x∗ ← x̃

10: σ∗ ← σ̃
11: end if
12: if |X̂| > εX then
13: Divide X̂ into subdomains Xj’s
14: for each Xj do
15: σ̂j ← the upper bound of σ over Xj

16: if σ̂j > σ∗ then
17: Add Xj to the list L
18: end if
19: end for
20: end if
21: σ̂ ← the maximum upper bound for domains in

the list L
22: X̂ ← the domain in the list L whose upper bound

is maximal
23: Remove X̂ from the list L
24: end while
25: return x∗ and σ∗

decreasing in dividing Xi. With this upper bound, therefore,
hŴi

(u) can be calculated similarly by Algorithm 1 or 2 and
consequently σ̂ by the distance algorithms [2], [8].

With the upper bound of the grasp quality over a domain, the
B&B algorithm for solving (23) is described in Algorithm 4.
At every iteration of the algorithm, a local search or sampling
in the selected domain X̂ is performed first to quickly obtain a
grasp with relatively higher quality in X̂ and possibly update
the current best grasp. If X̂ is small enough, it is believed that
the attained grasp is close enough to the optimal grasp in X̂
and X̂ will not be further divided; otherwise, X̂ is divided into
subdomains, which will be added to the list L if their upper
bounds are greater than the quality value σ∗ of the current best
grasp. Finally, X̂ is updated with the domain in L whose upper
bound is maximal. In case that L is empty at this moment, we
can simply set X̂ to empty to stop the algorithm.

Algorithm 4 is aimed at solving (23) globally, for which the
condition is that the local optimizer can compute the globally
optimal grasp in any domain X̂ with its size |X̂| ≤ εX . To
ensure this, the tolerance εX on |X̂| tends to be small, which
will facilitate the computing of the globally optimal grasp in
X̂ but on the other hand cause more domains to be added to

Fig. 8. Grasps with three contacts on the ellipsoid yielded by Algorithm 4 at
the (a) 3rd iteration with σ = 0.0730 and (b) 139th iteration with σ = 0.1632.

Fig. 9. Grasps with four contacts on the ellipsoid yielded by Algorithm 4 at the
(a) 0th iteration with σ = 0.2017 and (b) 2nd iteration with σ = 0.2385. The
shadow areas indicate the domains in which the contact locations are obtained
by the local search using the interior-point algorithm.

the list L and increase the required number of iterations by
Algorithm 4. In practice, we may set other stopping criteria,
such as the maximum allowable iteration number or running
time, for the algorithm to compute near-optimal grasps within
an acceptable time and give consideration to both its result’s
optimality and computational efficiency.

C. Numerical Examples

We again implemented Algorithm 4 in MATLAB on the
desktop with an Intel Core i7-6700 3.40 GHz CPU and 16 GB
RAM and tested it on several objects. To seek a good grasp in the
selected domain X̂ at every iteration of Algorithm 4, we call the
interior-point algorithm provided by the optimization toolbox of
MATLAB with its default setting and the middle point of X̂ as
the initial point to solve the optimization problem same as (23)
over X̂ . The tolerance εX on |X̂| is taken to be 10−1 and |X̂|
is defined to be the maximum interval in X̂ . In addition, we set
the maximum running time allowed for Algorithm 4 to 48 h.

Example 5: We first use the algorithm to compute optimal
grasps with three and four contacts on the ellipsoid, as shown
in Figs. 8 and 9, respectively. Since the ellipsoid is a symmetric
object, there will be many equivalent subdomains if we set the
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TABLE V
RESULTS OF ALGORITHM 4 ON THE ELLIPSOID

t, N—CPU running time (unit: second) and number of iterations of the algorithm.

Fig. 10. Intuitive search for the globally optimal grasp with three contacts
on the ellipsoid. One contact (marked by the black square) is outermost on the
(a) −x, (b) −y, (c) −z axis and the other two are symmetrically located on the
boundary of the (a) xy or xz, (b) yx or yz, (c) zx or zy cross section.

Fig. 11. Quality value σ of the grasp with respect to the variable α as depicted
in Fig. 10.

Fig. 12. Intuitive search for the globally optimal grasp with four contacts on
the ellipsoid. One contact (in red color) moves on one eighth of the ellipsoid in
the first octant and the other three (in different colors) move accordingly. The
pair of solid and hollow arrows in the same color as a contact indicates two
moving directions of the contact. The movements of contacts indicated by the
solid or hollow arrows are described by the same parameter θ or φ, and the
points shown in the figure are the initial contact locations.

Fig. 13. Quality value σ of the grasp with respect to the variables θ and φ as
depicted in Fig. 12. The values σ for nonforce-closure grasps are forced to be
zero in these plots.

initial domain for each contact to be θ ∈ [−π/2, π/2] and φ ∈
[0, 2π]. To avoid this, we set the initial domain as listed in the
first column of Table V. In the case of three contacts, after 3
iterations of Algorithm 4 in about 20 min, we obtain the first
force-closure grasp withσ = 0.0730, as shown in Fig. 8(a). After
139 iterations in nearly 36 h, we obtain a much better grasp
with σ = 0.1632, as shown in Fig. 8(b), which is the best grasp
that we obtain within the time limit. Intuitively, the globally
optimal grasp should be attained at one of the cases where one
contact is located at the outermost point on the ellipsoid along the
−x (resp. −y and −z) direction and the other two contacts are
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Fig. 14. Grasps with three contacts on the heart yielded by Algorithm 4 at the
(a) 0th iteration with σ = 0.1439 and (b) 84th iteration with σ = 0.1817.

symmetrically distributed on the boundary of the cross section
by the xy or xz (resp. yx or yz and zx or zy) plane, as depicted
in Fig. 10. The quality values of all grasps in the six cases are
plotted in Fig. 11, in which the maximumσ = 0.1673 is obtained
at α = 0.9094 in the zy case depicted in Fig. 10(c) and the
corresponding grasp is very close to the one shown in Fig. 8(b).

The results in the case of four contacts are also displayed
in Table V. The first force-closure grasp and the final grasp
obtained within the time limit are shown in Fig. 9(a) and (b),
respectively. Again, to verify the global optimality of the final
grasp, we let four contacts move on the ellipsoid in two ways
as indicated in Fig. 12(a) and (b), respectively, where we think
the globally optimal grasp should exist. Fig. 13 describes the
quality values of those grasps in the two cases. In Fig. 13(a),
the maximum value of σ is 0.2399 and obtained at θ = 0.7250
and φ = 1.3690, while in Fig. 13(b) the maximum value of σ is
0.2202 and obtained at θ = 0.8055 and φ = 1.3690. Both give
a grasp similar to the one shown in Fig. 9(b).

Example 6: We now apply Algorithm 4 to more complex
objects, the heart and the seashell, as depicted in Figs. 14–17.
Tables VI and VII show the results and key performance of
the algorithm. On the heart, which is a symmetric object, it is
relatively easier to attain a force-closure grasp with good quality

Fig. 15. Grasps with four contacts on the heart yielded by Algorithm 4 at the
(a) 0th iteration with σ = 0.2640 and (b) 37th iteration with σ = 0.3963.

Fig. 16. Grasps with three contacts on the seashell yielded by Algorithm 4 at
the (a) 1st iteration with σ = 0.0245 and (b) 66th iteration with σ = 0.0670.

as such a grasp has been found in the initial domain in both
three- and four-contact cases, as indicated by the fourth column
of Table VI. The final grasp accords with our intuition for being
the optimal grasp, as shown especially in Fig. 15(b). By contrast,
forming a good grasp on the irregular seashell is much more
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TABLE VI
RESULTS OF ALGORITHM 4 ON THE HEART

t, N—CPU running time (unit: second) and number of iterations of the algorithm.

TABLE VII
RESULTS OF ALGORITHM 4 ON THE SEASHELL

t, N—CPU running time (unit: second) and number of iterations of the algorithm.

Fig. 17. Grasps with four contacts on the seashell yielded by Algorithm 4 at
the (a) 8th iteration with σ = 0.1149 and (b) 12th iteration with σ = 0.1641.

difficult. The algorithm needs some iterations to produce the first
force-closure grasp and the quality value σ of the final grasp is
notably smaller.

From the abovementioned examples, we see that Algorithm 4
tends to yield the optimal grasp but its major limitation lies
in the need of significant amount of computation time. A sim-
ilar parallel implementation to Algorithm 3 as discussed in
Section III-C can speed up Algorithm 4 by two to three times.
Being intended for the optimal grasp planning in a highly non-
linear form, however, the algorithm takes hours to give a good
result so far. The termination condition X̂ �= ∅ or σ̂ − σ∗ > ε
was not reached in the reported examples and the algorithm was
terminated because its running time exceeded the given limit.
This leaves the risk that the computed grasp is not guaranteed to
be the globally optimal grasp.

V. CONCLUSION

In view of the necessity of computing the support function
in many existing algorithms and its current limitation to simple
convex sets, in this article we first presented a B&B algorithm
to calculate the support function of complex sets that were
described by functions with Lipschitz continuity and can have
continuous nonconvex boundaries. Based on the Lipschitz con-
tinuity, we derived an upper bound on the support function of
such a set and prove that the upper bound was decreasing and
converges to the exact value of the support function through a
B&B procedure. With this new general computational method
for the support function, we, then, can 1) compute the bounding
polytope of a complex set, 2) extend the existing algorithms to
compute the minimum distance between the convex hulls of and
derive a new algorithm to compute the true minimum separation
distance between two complex sets, and finally 3) develop an
algorithm for globally optimal grasps on objects with continuous
surfaces.

In terms of future work, first, we would like to explore
possibilities to enhance the computational efficiency of the
proposed algorithms. We may consider more appropriate up-
per/lower bounds and branching strategies such that a B&B
procedure can more quickly narrow down the candidate domain
and determine the optimal solution. Moreover, we can take
advantage of parallel computing to speed up some operations in
the algorithms, such as the computing of upper/lower bounds for
subdomains. Second, we can extend the algorithms to other types
of continuous functions, such as Hölder continuous functions,
which possess a more general form of continuity than Lipschitz
continuity. Third, the computation of the true minimum penetra-
tion distance between overlapping nonconvex sets remains as an
open problem, which deserves further exploration. In addition,
we will explore other situations that need the computing of
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support function and can benefit from this new computational
technique.
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