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Abstract— Tactile feedback is a key sensory channel that
contributes to our ability to perform precise manipulations.
In this regard, sensor skin provides robots with the sense of
touch making them increasingly capable of dexterous object
manipulation. However, in applications like teleoperation, the
complex sensory input of an infinite number of different
textures must be projected to the human user’s skin in a
meaningful manner. In addressing this issue, a deep gated
recurrent unit-based autoencoder (GRU-AE) that captured
the perceptual dimensions of tactile textures in latent space
was deployed to implicitly understand unseen textures. The
expression of unknown textures in this latent space allowed
for the definition of a control law to effectively drive tactile
displays and to convey tactile feedback in a psycho-physically
meaningful manner. The approach was experimentally verified
by evaluating the prediction performance of the GRU-AE on
seen and unseen data that were gathered during active tactile
exploration of objects commonly encountered in daily living. A
user study on a custom-made tactile display was conducted in
which real tactile perceptions in response to active tactile object
exploration were compared to the emulated tactile feedback
using the proposed tactile feedback loop. The results suggest
that the deep GRU-AE for tactile display control offers an
efficient and intuitive method for efficient end-to-end tactile
feedback during active tactile texture exploration.

I. INTRODUCTION

Besides visual perception, tactile sensing constitutes a
major sensory channel in the perception of physical prop-
erties. The physical contact enables direct transmission of
forces and vibrations, which inform us not only about macro-
geometric object and micro-geometric surface properties but
also about physical quantities like weight distributions in
otherwise unstructured environments. Human tactile percep-
tion is made possible by the combination of proprioceptive
(intrinsic) and cutaneous (extrinsic) mechanoreceptors. The
latter are distributed sets of sensory cells that are directly lo-
cated in the human skin. They provide direct tactile feedback
by perceiving forces, pressure, vibrations, and temperatures
across the skin.
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Fig. 1. Allegro robot hand with implemented soft sensor skin manipulates
typical objects of daily living via teleoperation using the CyberGlove II
[3]. Tactile feedback from anthropomorphic robots interacting with their
environment is useful to human operators as it facilitates human-robot
interaction.

In modern industrial applications as well as in emerg-
ing fields like social and service robotics, anthropomorphic
dexterous robot hands are increasingly deployed, because
they exhibit higher manipulation capabilities and therefore a
higher flexibility [1], [2]. In this context, it has been shown
that autonomous robot operation tremendously benefits from
tactile sensing as it provides intrinsic and extrinsic tactile
feedback that facilitates safe operation and robust, dexterous
object manipulation [1], [2].

The implementation of a wearable tactile feedback system
that can transmit the tactile sensor data from a robot onto
a human operator’s skin would establish the tactile sensory
information flow between robots and humans, thus, enable
powerful and immersive teleoperation. One core challenge
in developing such a tactile feedback loop is the trans-
formation of the tactile sensor data that arises from the
robot’s active exploration of a potentially infinite number of
different contact surfaces into an actuator driving signal that
provides physiologically meaningful stimulation of the cuta-
neous mechanoreceptors by a tactile display. An end-to-end
mapping from tactile sensor data to a tactile actuator driving
signal, which results in convincing tactile stimuli with respect
to the technical design and transduction principles of both
the deployed tactile sensor and the tactile actuator would be
desirable.

In this paper, we introduce an end-to-end tactile feedback
loop for teleoperation applications using anthropomorphic
robot hands. We used a uSkin sensor module to actively
explore textures and deployed a deep gated recurrent unit-
based autoencoder (GRU-AE) to encode the retrieved tactile
sensor readings into perceptual coordinates of a psychophys-
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ically meaningful latent space. The auto-compression of
tactile sensor data into the psychophysical layer of human
material perception enabled an end-to-end mapping from
tactile sensor data to tactile actuator driving signal. In this
manner, we were able to drive a custom-made tactile display
module based on shape-memory alloy actuators that can
generate convincing tactile stimuli even for new, unseen
textures alone from the skin sensor readouts.

The remainder of the paper is organized as follows: In
Section II we review related works of recent tactile sensor
and state-of-the-art tactile display developments. Following
this, in Section III, we present the system architecture. Then,
Section IV describes the experimental setup and procedure
that were used to evaluate our system on experimental data
with users. Section V shows the results of our study and
evaluates them in the light of human tactile recognition.
Finally, Section VI draws conclusions and gives directions
for future works.

II. RELATED WORKS

A. Tactile sensors and skin sensors

Recently, the development and potential applications of
tactile sensors attracted much interest leading to the develop-
ment of a variety of tactile sensors with different transduction
principles and design criteria [2], [4]. For example, the tactile
sensor GelSlim [5] is a high-resolving optical tactile sensor.
Even though it has a comparatively low frequency response,
it is capable of detecting very detailed macro-geometric and
fine micro-geometric object features. The sensor uses a clear
elastomer with a reflective coating, colored lights, and a
camera to capture highly detailed images of objects. The
BioTac sensor [6] is a multi-modal sensor combining three
transduction principles. Normal forces are measured with
an array of 24 electrodes with a resolution of 0.01N at
up to 100Hz. Moreover, vibrations ranging from 10-1040Hz
can be measured using the integrated pressure sensor that
senses the oscillations of a fluid contained in the sensor’s
finger tip. These sensors have been integrated into several
anthropomorphic robot hands, e.g. the Shadow Hand [7] , the
BarretHand [8] and the Allegro Hand [9]. In this regard, our
lab has been developing uSkin: a compact and soft 3-axis skin
sensor [10] for the implementation into anthropomorphic
robot hands [11]. Each tactile sensor element consists of a
small magnet that is suspended on top of a Hall-effect sensor
with an air gap in between allowing for the sensing of 3D
force vectors. One uSkin sensor module carries an array of
16 3-axis taxels in an area of 26x27mm and is only 4mm
thick.

B. Tactile texture recognition

Tactile sensing allows for the discrimination of objects
and, moreover, the estimation of physical properties for
which reason it is of great interest to the robotics community
[2], [4]. Commonly, texture recognition requires sensors
with high sampling frequency and fast frequency response
for identifying textures: Fishel et al. deployed their BioTac
sensor in combination with an approach termed Bayesian

exploration for direct identification of a total of 117 textures
by analyzing reaction forces and occurring vibration signals.
Kaboli and Cheng [12] proposed a set of defined tactile
descriptors inspired by Hjorth parameters deployed in real-
time electroencephalography signal analysis. In terms of
texture recognition, this approach allowed for the robust
recognition of 120 materials by analyzing the vibro-tactile
signals while executing human-like exploratory movements
using a plurality of different and multi-modal tactile sensors.
Chathuranga et al. [13] combined the calculation of a set
of descriptors with artificial neural networks to discriminate
seven wooden textures with their biomimetic soft fingertip
sensor. Takahashi and Tan [14] employed a convolutional
autoencoder technique to implicitly relate the tactile sensor
data that was gathered during experiments with a Sawyer
robot stroking across 25 surfaces of different materials to
the respective images of these material surfaces in order
to enable the visual perception of tactile properties. In this
context, Polic and co-workers [15] employed a convolutional
autoencoder to perform unsupervised feature extraction from
tactile sensor data on the basis of an optical-based tac-
tile sensor in order to identify a universally useful set of
features that could be used for a variety of manipulation
tasks. Clearly, the complementation of robotic manipulators
with tactile sensors has demonstrated great potential, as the
availability of physical information about the interactions
with the environment across the robot hand greatly enhances
automation and manipulation capabilities [1], [2], [4].

C. Tactile displays

In contrast to tactile sensors, tactile displays are arrays of
actuators that stimulate the cutaneous receptors in order to
resemble the extrinsic sense of touch by the projection of
forces, pressure, vibration or temperatures onto the human
skin. The realization of tactile displays yields the potential
of rich and direct cutaneous tactile feedback in the form
of wearable devices, however, poses severe challenges in
regards to the actuator technology [16], [17]. Mizukami
[18], Fukuyama [19] and co-workers investigated the use
of an array of up to nine shape-memory alloy wires that
produce micro-vibrations to transmit sensations of moving
patterns and surface properties. Wang et al. [20] developed
a biomechanically optimized tactile display that relies on
lateral skin deformation. It implements 60 laterally moving
skin contactors with a spatial resolution of 1.8×1.2mm2.
Kajimoto et al. [21] presented an electro-tactile display with
512 electrodes that displayed tactile images based on camera
data of a smartphone by electrical stimulation. Mun and
co-workers [22] developed a soft tactile actuator based on
an electro-active polymer that activates with an electrical
voltage and moves vertically to push the skin of the wearer.
The maximum protrusion is 650µm with a maximum force of
255mN. One actuator has a diameter of around 15mm and can
be worn on the finger phalanges and the forearm. Young and
Kuchenbecker [23] presented a 6-DOF parallel manipulator
for tactile stimulation of the fingertip. This device uses a
single end-effector to display normal and shear forces at any



location on a fingertip. A more comprehensive review on
tactile displays and related technology can be found in [16],
[17], [24].

Yet, the projection of tactile sensor data onto the human
skin by the use of tactile displays, i.e., the generation of
convincing tactile stimuli with respect to the technical design
and transduction principles of both the deployed tactile
sensor and the tactile actuator constitutes a major technical
challenge. The implementation of a vastly applicable end-
to-end mapping from tactile sensor data to tactile actuator
driving signal to establish a powerful tactile feedback loop
is addressed in the present study.

III. END-TO-END TACTILE FEEDBACK LOOP

A. Overview of the system architecture

The components of the complete system architecture to
achieve end-to-end tactile feedback, i.e., the uSkin sensor
module for the deployment on robot hands, our custom-
made SMA-based tactile display module for the generation
of micro-vibrations, the Deep GRU-AE for implicit texture
understanding and tactile display control, as well as the
experimental studies are elaborated on in the following
sections.

B. uSkin sensor module

The uSkin sensor is a three-axis Hall effect-based skin
sensor with a silicone structure that holds a magnet. The
sensor module delivers 3-axis raw sensor readouts across
the module’s surface (x- and y-direction, shear forces) and
along the surface normal (z-direction, normal forces). The
skin sensor module [25] used in this study was similar
to the previously presented compact, soft, and distributed
3-axis sensor module uSkin for the deployment to robots
[10] and was originally designed to cover the fingers of the
Allegro robot hand [11] (Wonik Robotics1) for tactile sensing
during object manipulation, Fig. 1. A microcontroller unit
(MTB3 [26], originally developed by the Italian Institute of
Technology) served as the master and managed the tactile
sensor readings via I2C (Inter-Integrated Circuit) commu-
nication. In the experiments, a flat 4x4 uSkin module was
used and the MTB3 was connected via a CAN (Controlled
Area Network) bus and a CAN/USB (Universal Serial Bus)
converter2 to the host computer. Aiming for an end-to-
end design, exclusively uncalibrated sensor readings at a
sampling rate of approximately 100Hz were used. Note, since
the uSkin sensor module is designed for the implementation
onto robot hands, it comes covered with a gripping tape
to protect the silicone structure and to increase the friction
coefficient to facilitate in-hand manipulation. However, the
high friction made the natural exploration of some textures
difficult.

1http://www.simlab.co.kr/
2https://esd.eu/en

C. SMA-based tactile display

The tactile display module utilized a small shape-memory
alloy (SMA) wire to generate micro-vibrations and project
tactile stimuli onto the skin [19] [27]. The actuator was
electrically controlled by periodic current pulses for the
presentation of tactile sensations. Fig. 2-B and Fig. 3-B
show the tactile display module with three actuators im-
plementing three 5mm-long SMA wires with a diameter of
0.1mm. The SMA wire shrinks around 5% lengthwise when
transitioning between the martensite and austenite phases due
to an electrically induced temperature change. By driving
the SMA wire with a pulse signal current, a periodic micro-
vibration of up to 300Hz was generated. One pulse had an
amplitude of H[V ] and a width of W [ms], hence the duty
ratio of the pulse determined the heating/ cooling times of the
SMA and the electrical energy H[V ]×W [ms] controlled the
strength of the vibrations. The SMA actuator had a frequency
bandwidth of around 10Hz to 300Hz. Thus, it can stimulate
the fast-adapting mechanoreceptors Meissner and Pacini, yet
does not cover the full range of the Pacinian frequency
bandwidth of up to 1kHz. Moreover, the SMA actuator
design used in this study was not capable of projecting the
full variety of mechanical tactile stimuli on the skin: For
example, the projection of shear forces due to lateral skin
stretch or the conveyance of softness-hardness would require
a complementation with other actuators [17].

The implementation of three of these actuators into a small
3D-printed package enabled the generation of stimuli that
resemble the occurrence of various moving textures under the
resting finger with different speeds. The percept of phantom
actuators and seemingly moving stimuli are psychological
effects of the human higher-level perception, i.e the phantom
sensation (PS) [28] and the apparent movement (AM) [29],
respectively. Hence, the actuators were driven independently
by current pulse signals Ai(t), which were parameterized
depending on the target texture. The actuator activation prob-
ability Ai(t) was given by a Gaussian distribution, thereby,
completely defined the timely occurrence and density of the
micro vibrations for the emulation of different textures:

An(t) = α +βe−(t−µ)2
/

2σ2
for n ∈ 1, ...,NA, (1)

where t is the time in ms, µ is the mean, σ2 is the variance,
α is the offset, β is the gain, and NA is the total number of
available actuators. Note that α +β < 1.

Based on the known parameters ci, j in the intervals ci ∈
[µ,µ] and c j ∈ [σ ,σ ] in control space C that produced a
desired textural stimulation [19], a linear relation to the
corresponding latent space dimension zl,p was assumed.
Thus the driving signal Ai(t) was constructed by calculating
the driver parameters from the latent space coordinates as
encoded by the GRU-AE:

ci, j =
ci, j− ci, j

zl,p− zl,p
(zl,p− zl,p)+ ci, j. (2)



Fig. 2. Active tactile texture recognition with tactile feedback loop. The uSkin sensor module, originally designed to be implemented on robot hands,
was used to stroke across various objects of daily living. A deep GRU-based autoencoder was deployed to obtain an implicit representation of the textures
in latent space (A). The latent space variables Z were used to construct an actuator driving signal C to control a SMA-based tactile display module (B).

D. Deep GRU-AEs for active tactile texture recognition

For safety reasons and to facilitate the manipulation of
arbitrary objects, skin sensors for the deployment to robot
hands are often designed to be soft and compliant [1], [2],
[30]. Since soft material layers act as a lowpass filter, the
direct extraction of texture-specific vibrations for texture
recognition may become difficult. However, it has been
shown [31] that the time-series data may contain frequency-
related features that are unique to a type of texture: A
deep gated recurrent unit (GRU)-recurrent neural network
[32] was deployed to capture abstract temporal features that
allowed for accurate texture recognition in a preliminary
study on active tactile texture multi-class classification [31].
Likewise, the GRU-AE’s encoder comprised three stacked
GRU layers with 96 units to capture highly abstract tem-
poral features. However, instead of one dense-layer with
soft-max activation for multi-class classification between a
limited number of textures, another GRU layer compressed
the temporal feature sequence into a point in the latent
space Z. No regularization was implemented as the small
number of latent space variables acts as a reconstruction
loss. Table I summarizes the GRU-AE architecture as used
in our studies. The GRU units were implemented in their
originally introduced version as reported by Cho et al.
[32]. The flat uSkin sensor module contains 16 taxels that
measure force quantities in the x,y,z-axes. Due to failure,
the measurements of one taxel needed to be discarded for all
experimental trials resulting in a maximum feature number
of NF = 45. During back-propagation, the network’s weights
were optimized using Adam [33]. The learning rate was set
to α=10−5, the exponential decay rate for the first moment
estimates to β1=0.900, the exponential decay rate for the
second moment estimates to β2=0.999, and the decay to δ=

TABLE I
GATED-RECURRENT-UNIT AUTOENCODER ARCHITECTURE

Layer Type Output Shape Units Remarks
0 Input ( , , 45) /
1 GRU ( , , 96) 96 returns seq.
2 GRU ( , , 96) 96 returns seq.
3 GRU ( , , 96) 96 returns seq
Encoding GRU ( , 3) 3 latent vector z
4 Repeat ( , 100, 3)
5 GRU ( , 100, 3) 3 returns seq.
6 GRU ( , 100, 96) 96 returns seq.
7 GRU ( , 100, 96) 96 returns seq.
8 GRU ( , 100, 96) 96 returns seq.
9 Dense ( , 100, 45) 45 Linear Activation
Regularization implicitly included as reconstruction loss. .
Total trainable parameters: 299,106.

0.0. The loss function was defined as mean squared error
between measured raw sensor data and their reconstructed
counterpart.

E. Psychophysical space of textures

The psychophysical space is the lower layer of material
perception [34], [24], in which a material is described by
means of its coordinates in the dimensions hard - soft, rough
- fine, high-friction - low-friction, and cold - warm. This
definition implies that these quantities are, firstly, physical
quantities, and, secondly, they can be directly perceived by
humans with their mechanoreceptors. This layer is the most
primal layer of material perception and is regarded as an
interface between human responses and physical stimuli.
Hence, the evaluation with respect to these dimensions
were regarded as a common ground truth against which the
performance of the tactile feedback loop were quantitatively
measured during the user studies.

As these psychophysical coordinates allow humans to rec-



Fig. 3. Experimental setup for the evaluation of the psychophysical dimensions of the texture probes (A) and the proposed tactile feedback loop (B).

ognize different textures, we hypothesized that the previously
presented deep GRU-classifier [31] would be able to project
the tactile sensor data into a meaningful latent space Z that
coincided with the psychophysical space. Thus the derived
AE-architecture of the deep GRU-AE as shown in Table I
would encode the tactile sensor readings along a timely tra-
jectory into coordinates related to the psychophysical space.
Accordingly, relatively few textures would be necessary to
span the latent space across the psychophysical dimensions.
This fact motivated the choice of a small training set of only
four objects of daily living with mutually different texture
properties: a polishing sponge1, a cotton towel, a board of
wood, and a piece of cardboard. To test this hypothesis,
the latent encodings of four completely unknown textures,
namely: a softer sponge2, a handkerchief, a catalogue back
cover, and a shoe sole were evaluated. Finally, the perceived
psychophysical coordinates were compared to the coordi-
nates in the GRU-AE’s latent space of both the trained as
well as the unknown textures by conducting a user study
on the very same textures. An overview of the materials is
given in Fig. 3-A. Note, the dimension cold - warm was not
investigated, since the uSkin tactile sensor does not allow for
determining the heat flow.

IV. EXPERIMENTS AND USER STUDIES

The experiments comprised the data collection of the
tactile data using the soft uSkin sensor module as well as
two user studies on the perception of the above-defined
textures and their evaluation in terms of the psychophysical
dimensions Fig. 3. Within the first user study, the partici-
pants were asked to explore the real textures, while in the
second user study, the participants were asked to evaluate
the perceived stimulation provided by the proposed end-to-
end tactile feedback loop from soft tactile sensor input to
the tactile display output. Finally, both the perceptions were
compared to draw conclusion on the performance of the end-
to-end tactile feedback loop.

The user evaluations are depicted as box plots, since user
ratings are ordinal data that are not necessarily normally
distributed or symmetric in general. Additionally, Mann-
Whitney-U tests were conducted on the psychophysical per-

cept evaluations between real textures and the artificial tactile
feedback. In this manner, statistically significant discrepan-
cies between a real and an emulated tactile feedback were
identified.

A. Experimental setup and GRU-AE implementation

For the experimental evaluation, the flat uSkin sensor
module similar to the ones implemented onto the Allegro
robot hand was used to manually explore the surface of the
different objects as depicted in Fig. 3-A. The time horizon
for stroking across the texture was set to 2s comprising the
impact on the object surfaces of the objects as well as the
exploratory motion across the object. The manual exploration
resembled a rather natural motion, in which one freely
strokes across a surface in a linear pattern. Accordingly,
the sensor module was tightly fixed onto the index finger,
then moved across one texture at a time. The GRU-AE was
trained exclusively on the textures sponge1, towel, wood, and
cardboard. Each of these four textures was explored 20 times
streaming the tactile data of 200-time steps into 80 .csv-files.
In regard to the uSkin sensor module’s sampling frequency
of 100Hz, the sequence length was set to SL=100, which
corresponds to 1s real-time and should enable a relatively re-
sponsive texture recognition. To improve the usability during
the online deployment of the GRU-AE in conjunction with
the tactile display, a sliding window approach was used dur-
ing training resulting in 80 times 100 sequences of sequence
length SL=100 and covering the complete time horizon of the
motion during training. The complete dataset was split into
training (6335 sequences), test (1188 sequences), and cross-
validation set (397 sequences). The proposed GRU-AE was
implemented in the high-level neural networks API KERAS3

with Tensorflow4 backend. The calculations were run on
an off-the-shelf PC: Intel(R) Core(TM) i7-8700K CPU @
3.70GHz and 32.0GB RAM, GeForce GTX 1080 Ti with 11
GB frame buffer. The GRU-AE was trained for 500 epochs
with a batch size of one.

3https://keras.io/
4https://www.tensorflow.org/



B. User studies

In the first user study, four subjects were asked to freely
stroke across the surface of objects defined in section III-
E in a rather linear motion as depicted in Fig. 3-A. The
subjects were blindfolded and wearing soundproof earmuffs
to eliminate the effect of the other sensory channels on the
evaluations. After each trial, the subjects were handed a
questionnaire and asked to evaluate the perceived sensation
in terms of their psychophysical dimensions with integer
numbers from 1 to 6, e.g. 1-very soft or 6-very hard. Only
one object at a time was presented to the subjects. All the
eight objects were shown in a random order for three times
and the evaluations previously made were made unavailable
to reduce the training effect. Note, in an introductory briefing,
it was made sure that the subjects understood the meaning
of the quantities hard, rough, and friction. Moreover, before
the very first trial, one very soft, rough, and high-friction
texture, as well as a very hard, smooth, and low-friction
texture, were presented to the subjects in order to allow the
subjects to evaluate over the full range from the first object
during the user studies. The second user study was similar,
however, the subjects were asked to rest their index finger on
top of the tactile display as shown in Fig. 3-B and evaluate
the perceived stimulus from the tactile sensor via the tactile
display in the same manner as the real textures.

V. RESULTS AND DISCUSSION

A. Textures and their psychophysical representation

The results of the user studies on the perceived tactile
stimuli during active tactile texture exploration are depicted
in Fig. 4. Since the tactile stimuli percepts in all of the
dimensions are ordinal scores, results are shown in terms
of the maximum, minimum and median values.

Generally, the ratings on the texture properties had a
high to very high range. While the intra-subject ratings
for one texture over all the trials were relatively constant,
i.e. deviations were typically within 1 rating, they varied
considerably between subjects and were surely one reason
for the high variance in the results. In comparison to the
roughness and friction, hardness was more consistently rated
between trials and subjects.

As indicated above, the majority of subjects found it
difficult to make a clear decision on a texture’s friction and
roughness. These ratings were considerably more ambiguous
with friction having the highest variance among all dimen-
sions for all the trials. Friction is perceived as a quantity
related to the force counteracting and the dynamic shear
deformations occurring during finger motion. Thus friction is
related to the sticky-slippery or the moist-dry factor levels of
the individual subject’s finger pad. Especially the moist-dry
factor could have had an impact on the perceived friction in
the experiments and may have caused the high variances in
the results. Although roughness and friction are independent
dimensions, these two percepts are often understood related
[24], because roughness physically influences the friction
coefficient and counteracts the finger motion. This effect

Fig. 4. Results of the user evaluation showing the perceived tactile
coordinates for all the texture samples in the psychophysical space. The
median is depicted as bold horizontal bar, outliers are depicted as circles.

might explain the higher variance of the ratings of both the
roughness and the friction.

As it can be seen from Fig. 4, the textural property
profile of the four chosen textures used for GRU-AE training
exhibited a good variety in terms of their psychophysical
coordinates and represented the psychophysical space well
enough. For a good reconstruction of the tactile sensor data
via the GRU-AE’s bottleneck layer, the GRU-AE is forced to
learn a strong and mutually independent representation of the
tactile input data. While it was assumed that the chosen four
textures force the GRU-AE to learn a good representation
of the tactile data, it would be more desirable to sample the
psychophysical space in a systematic manner. However, the
coordinates of a texture, both in the psychophysical and the
correlating latent space, will ultimately depend on the ratings
of the subject cohort and might have considerable variations.
Regarding the GRU-AE training, the textural property profile
of the unknown set of textures was different enough from the
textures that were included in the training set and allowed
for judging the generalization capabilities of the GRU-AE.

B. Relation between latent and psychophysical space

Fig. 5-A shows the coordinates of the encodings of the
tactile sensor readings in latent space and their coinci-
dence with the dimensions of the psychophysical space
(Fig. 4). Comparing the perceived hardness to the GRU-
AE encodings, the encodings were consistently ordered in
accordance with the median hardness percepts alongside the
z2-axis, therefore, coincided with the respective user ratings.
Likewise, textures that were rated as rough and frictious were
encoded alongside the z1-axis with the textures exhibiting
very high friction/ roughness being located at the right end
of the latent space.

As it concerns the encodings of the unseen texture probes,
their coordinates in latent space, thus, their relation to
the psychophysical space were generally meaningful. The
encodings of catalogue and shoe sole were placed between
wood and cardboard along the z2-axis. These encodings
were in great agreement with the user ratings and in relation
to the trained textures. Similarly, alongside the z1-axis that
was assumed to be a measure of friction/ roughness, the
compression of catalogue, shoe sole, and sponge2 were
encoded in accordance with the user ratings and the trained



Fig. 5. The latent space of the trained GRU-AE (A) for the parameterization
of the driving signal of the SMA actuators (B), 1σ -confidence ellipses.

textures. For example, the roughness of shoe sole was rated
as high as the roughness of sponge1 for which reason
their z1-coordinates were close. On the other hand, sponge1
was rated to be much softer which resulted in a lower z2-
coordinate than shoe sole.

However, the z1-coordinate of the encoding of handker-
chief suggests a texture with a rather high surface friction
or roughness which was in contrast to the user ratings. From
the experiments it became clear that the material pairing
of handkerchief and the gripping tape of the uSkin sensor
module resulted in a very high friction coefficient. This
was different to the subject’s finger sliding easily across the
handkerchief that was relatively consistently rated as smooth
with low friction. Consequently, the modulated or lost tactile
information due to the specifics of the deployed sensor limit
the capacity of the tactile feedback loop.

Finally, comparing the distribution of the encoded tactile
sensor readings in the latent space to their respective user
evaluations, it became clear that the driving parameters µ,σ
of the actuator’s driving signal Ai(t) acc. to equation (1)
are strongly linked to the latent space coordinates along
the z1-axis (Fig. 5-B). This allowed to parameterize the
control function (1) in dependence on the encoding in latent
space. However, due to the inherent non-linearity of the
GRU-AE approach, the relations between the encodings were
not linear. As a result, the assumed linear mapping (2)
between the latent space coordinates z1 and the driver signal
parameters might not be optimal in terms of their conveyed
tactile information. Note, the parameter Hardness was not
further considered, since hardness is mainly perceived as pro-
prioceptive feedback instead of cutaneous feedback. Tactile

Fig. 6. Evaluation of the end-to-end tactile feedback loop for the
dimensions roughness (A) and friction (B). Results are depicted as box
plots. Note, a p-value<0.05 indicates a statistically significant difference
(Mann-Whitney-U test).

displays are devices that primarily convey information on
textural surface properties as cutaneous feedback.

C. Evaluation of the end-to-end tactile feedback loop

Fig. 6 shows the results of the perceived tactile stimuli
as generated by the end-to-end tactile feedback loop based
on the uSkin sensor data in comparison to the real tactile
sensations from the exploration with one’s own finger as
box plots. Generally, the tactile feedback loop was able
to generate realistic tactile sensations for all the seen as
well as unseen textures. The median perceived psychophys-
ical coordinate in response to the tactile feedback loop’s
stimulation was roughly similar to the median perceived
psychophysical coordinate in response to the actual tactile
exploration with one’s own finger. Especially the textures
with very distinct psychophysical coordinates, e.g. sponge1
and catalogue, were very well perceived. In the case of the
cardboard, the users even reported feeling the bumps from
the corrugated structure inside typical cardboards.

However, the ranges of the percepts in the Tactile Display-
group were often larger than in the Real-group, see Fig.
6-A. These variances indicate that the users found it more
difficult to evaluate the roughness of an emulated texture
when compared to a real texture. Moreover, a rather huge
discrepancy was found between the perceived roughness and
friction for the texture handkerchief. The stimuli provided
by the tactile display were generally evaluated to be rougher
and exhibiting a higher friction. Referring back to Fig. 5-
A, it became evident that this issue originated from the
GRU-AE, because it placed handkerchief rather close to
sponge2. The analysis in the previous subsection would
suggest that this was due to the higher relative friction
coefficient between the uSkin sensor’s gripper tape and the
fabric of the handkerchief. This mismatch of relative friction
coefficients between human finger and uSkin sensor might
have resulted in biased tactile stimuli and emphasizes that
hardware specifics can have a considerable effect on the
perceived tactile stimuli.



VI. CONCLUSION

The contribution of our work lies in the introduction of
an end-to-end tactile feedback loop for teleoperation appli-
cations in combination with anthropomorphic robot hands.
We used a uSkin sensor module to actively explore textures
and deployed a deep gated recurrent unit-based autoencoder
to encode the retrieved tactile sensor data into perceptual
coordinates of a psychophysically meaningful latent space.
In this manner, we were able to drive a tactile display module
for the generation of convincing tactile stimuli even for new,
unseen textures alone from the skin sensor readouts. We
experimentally verified the capabilities of our approach by
comparing the perceived tactile sensations during the explo-
ration of real textures to the emulated tactile feedback that
was generated by our tactile feedback loop. It is important to
note that the tactile sensor and the tactile actuator eventually
determine the quality of the tactile stimuli. Hardware limita-
tions in measuring and transmitting surface features impact
both the physiological meaningfulness of the encodings into
latent space and the projection of tactile stimuli on the human
skin as it was demonstrated in our experiments. Future
work is necessary to extend this approach to a wearable
tactile feedback system to ultimately arrive at a compact and
wearable solution for teleoperation applications.
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