
 

 

Abstract— The use of microrobots to achieve 

micromanipulation in vivo has attracted considerable attention 

in recent years to meet the request of non-invasiveness, precision 

and high efficiency in medical treatment. This paper reports the 

use of a home-designed electromagnetic manipulation system to 

control the movements of microrobots in a simulated vascular 

structure. After dynamic modeling, the moving trajectory of the 

microrobot is designed on the basis of an artificial potential 

field. Estimator for position is then designed with stability 

analysis by a Lyapunov approach. A super-twisting algorithm is 

further applied to control the microrobot to move along with the 

desired trajectory. Simulations and experiments are finally 

performed to demonstrate the effectiveness of the proposed 

control approach. 

I. INTRODUCTION 

In vivo micromanipulation has received increasing 
attention for its broad applications such as biological process 
regulation, microsurgery and drug delivery, to name a few. 
Micromanipulation tools are designed on the basis of, for 
example, optical tweezers [1]–[3], chemical reactions [4]–[6], 
and magnetic fields [7]–[9]. Optical tweezers are highly 
sensitive and flexible tools that can be used to trap cells or 
microparticles. However, the light penetration of optical 
tweezers through the body is low, and thus the force of 
tweezers is small unless the object is transparent. Chemical 
reaction methods can actuate the microrobot to move forward, 
but chemical alteration may be induced in the body, which is 
difficult to control. The magnetic field method can wirelessly 
power and control microrobots. Under the safe magnetic field 
strength and appropriate exposure time, its invasiveness is 
much smaller than other methods. Magnetic field method is 
very suitable for in vivo operation. With magnetic field 
method, several mainstream strategies have been proposed for 
microrobot propulsion. Some studies designed sperm-shaped 
microrobots with magnetic heads and elastic tails, and used 
oscillating magnetic field to drive the microrobots [10]–[12]. 
Other studies designed the microrobot as a helical propeller 
that can be manipulated by a rotating magnetic field [13]–[15]. 
These two designs have similar properties and exhibit good 

performance when the microrobots are small and the sources 
of magnetic field generation are far from the microrobots [16], 
[17]. Another commonly used manipulation method is to use 
magnetic field gradient to drive microrobots [18], [19]. This 
design has no special requirement for the shape of the 
microrobots for propulsion, because the driving force is 
directly generated by the magnetic field without the need of 
fluid assistant. Magnetic field gradients can be generated by 
permanent magnets or electromagnets. The former can be 
fixed together with the end-effector of the robot arm, and the 
control task can be achieved by changing the configuration of 
the robot arm [20], while the magnetic force of the latter is 
mainly controlled by adjusting the current through the 
electromagnet coils. 

Several types of electromagnetic actuation systems have 
been developed for driving the microrobot. In [21], a five 
degree-of-freedom (DOF) electromagnetic system named 
OctoMag was designed, which was composed of eight 
stationary electromagnets. This system can manipulate an 
intraocular microrobot that can be used for delicate retinal 
procedures. The work [22] reported the use of scaffold-type 
microrobots to carry stem cells and manipulate them inside a 
nude mouse’s intraperitoneal cavity. In these studies, motion 
control of the microrobots is a critical issue. Currently, many 
manipulation tasks are based on an open-loop control or a 
simple control with human-eye feedback [23]. Developing a 
real-time position feedback controller to precisely control 
microrobots under a complex environment is highly 
demanded. In order to detect the real-time position of 
ferromagnetic beads in the human body, clinical MRI systems 
were used in [24], [25], in which PID control and generalized 
predictive control were applied to ensure tracking of a 
predetermined trajectory. A 3-D Brownian motion control 
was proposed for driving a microscopic magnetic bead, with 
position feedback obtained by a 3-D visual tracking scheme 
[26], where the workspace was formed by six sharp-tipped 
magnetic poles connected by a magnetic yoke. In [27], a 
combined ISS-based control approach and nonlinear high-
gain observer were developed to guarantee the stability of an 
electromagnetic coils system in tracking microrobots along a 
helix-like curve, with consideration of ubiquitous system 
uncertainties and disturbances.  

Despite the aforementioned development in the motion 
control of microrobots, some challenging problems still 
remain unsolved, and one of which is how to obtain accurate 
position feedback during real-time control of microrobots. It 
is worth mentioning that the magnetic force applied on a 
microrobot is greatly dependent on the microrobot’s position 
in the magnetic field. Even a small error in position estimation 
can cause large force discrepancy(𝑭 ∝ 𝒑−7). Therefore, in 
real time is crucial. In many applications such as drug or cell 
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delivery, the microrobot needs to move in a certain long 
distance that is beyond the field of view of microscope. 
Accordingly, a practical solution is proposed with a movable 
camera to track the position of microrobots [1]. However, 
without the use of a sophisticated tracking equipment, the 
position of camera is hard to track precisely, and thus the 
position of the microrobot in the magnetic field cannot be 
measured accurately.  

To this end, we propose a motion control strategy to 
actuate the microrobots in a simulated vascular structure with 
a position estimator for compensating the error caused by 
inaccurate information of the camera position. Applications of 
microrobots to achieve targeted delivery and sensing in 
complex vascular network have exhibited a great potential in 
clinical medicine, where automatic navigation of microrobots 
in blood vessels represents a fundamental challenge [28]. In 
this paper, a path planner is designed first based on the 
Dijkstra algorithm. Then, a position estimator is proposed, in 
which the disturbances caused by the bloodstream or other 
unknown system dynamics are compensated. Finally, a super-
twisting algorithm (STA) [29], [30] is applied as the motion 
control method, which is a second-order sliding mode control 
algorithm that can eliminate the chattering problem. Both 
simulations and experiments have conducted to verify that the 
microrobot can be automatically navigated to the desired 
position in a vascular structure. 

II. DYNAMIC MODEL 

A microparticle containing soft magnetic materials 
experiences a magnetic force when it is placed into the 
magnetic field with a magnetic field gradient 𝛻𝑩 ∈ ℝ2. The 

magnetic force 𝑭𝑚𝑎𝑔 = [𝐹𝑚𝑎𝑔,𝑥 , 𝐹𝑚𝑎𝑔,𝑦]
𝑇

, expressed as 

𝑭𝑚𝑎𝑔 = (𝒎 · 𝛻)𝑩, serves as the driving force to actuate the 

microrobot. The magnetic moment 𝒎 ∈ ℝ2 of the microrobot 

can be denoted as 𝒎 = 𝑉𝑇
𝜒

𝜇0(1+𝜒)
𝜝, where V denotes the 

volume of the microrobot,  𝜒 is the susceptibility of the 
material, T is the ratio of magnetic material volume to the 
microrobot volume V. The external magnetic field has the flux 

density 𝑩 = [𝐵𝑥 ,𝐵𝑦]
𝑇

, which is determined by the current 

flow through the electromagnet with soft magnetic cores. For 
n electromagnets, the flux density and its gradient can be 
expressed as 

𝑩(𝒓) = ∑ 𝑩′𝑖(𝒓𝒊)
𝑛
𝑖=1 𝐼𝑖 , (1)       

𝜕𝑩(𝒓)

𝜕𝒑
=∑

𝜕𝑩′(𝒓)

𝜕𝒑

𝑛

𝑖=1

𝐼𝑖 , (2) 

where 𝐼𝑖 is the ith current input, 𝒑 = [𝑝𝑥 , 𝑝𝑦]
𝑇

 is the position 

of the microrobot, and 𝑩′𝑖(𝒓𝑖)  is the unit flux density 
generated by the ith electromagnet, which can be calculated 
by the finite element model and point dipole model [21] as  

𝑩′(𝒎0, 𝒓) =
𝜇0
4𝜋
(
3(𝒎0 ∙ 𝒓)𝒓

|𝒓|5
−
𝒎0
|𝒓|3
) , (3) 

where 𝜇0=4𝜋 × 10−7𝑇𝑚 𝐴 ⁄ denotes the permeability of free 
space, 𝒎0{𝐴 ⋅ 𝑚

2} ∈ 𝑅2 denotes the point dipole moment, 
and  𝒓{𝑚} ∈ ℝ2  is a vector connecting the position of the 
microrobot and the point dipole. 

When a microrobot moves in a fluidic environment at low 
Reynolds number, it suffers from a hydrodynamic drag 

force𝑭𝑑𝑟𝑎𝑔 = [𝐹𝑑𝑟𝑎𝑔,𝑥 , 𝐹𝑑𝑟𝑎𝑔,𝑦]
𝑇

 approximated as 𝑭𝑑𝑟𝑎𝑔 =
6𝜋𝜂𝑅𝒗,  where R is the radius of the microrobot, 𝜂 is the 

dynamic viscosity of the fluid, and 𝒗 = [𝑣𝑥 , 𝑣𝑦]
𝑇

 is the 

relative velocity to the fluid flow velocity 𝒗𝒇   [27]. This 

expression was originally used to describe the drag force of 
spherical objects in fluid. Our simulations conducted by using 
the finite element method (FEM) reveal when the microrobot 
is not a perfect sphere, the formula of 𝑭𝑑𝑟𝑎𝑔 also holds. In 

most cases, the gravity should be compensated; otherwise, the 
microrobot will sink to the bottom of the container and then 
the friction force will be the dominant resistance of the 
movement. To solve this problem, we can use magnetic force 
to compensate for the gravity force in the z-direction, but this 
method increases the control complexity. The other solution 
is to set the similar density of microrobot to that of fluidic 
environment such that the gravity can be compensated by 
buoyancy. Some studies also used surfactants to reduce 
friction between the microrobot and channel surface in case 
that the gravity cannot be compensated.   

 According to the Newton’s Second Law, the system 
dynamic model can be expressed as follows: 

𝑚
𝑑2𝒑

𝑑𝑡2
= 𝑭𝑚𝑎𝑔 −𝑭𝑑𝑟𝑎𝑔 +𝚫, (4) 

where m is the mass of the microrobot and 𝚫 = [∆𝑥 , ∆𝑦]
𝑇
 

denotes the disturbances, which may be caused by the 
bloodstream or other unknown system dynamics. 

Consider that the microrobot has a minuscule mass. A 
large acceleration can be generated to make the system reach 
an equilibrium state quickly, such that eq. (4) can be 
simplified as 

𝑭𝑑𝑟𝑎𝑔 = 𝑭𝑚𝑎𝑔 +𝚫. (5) 

Substituting the drag force into (5) yields a system 
dynamic model that can be expressed as a first-order system: 

6𝜋𝜂𝑅𝒗 = 𝑭𝑚𝑎𝑔 + 𝚫. (6) 

III. CONTROL DESIGN 

To automatically guide the microrobot toward the desired 
position in vascular environment, the moving trajectory is 
designed firstly by establishing a map with an artificial 
potential field. Then, a controller based on estimation of the 
position is designed to drive the microrobot to move along 
such a desired trajectory precisely. Fig.1 shows the control 
block diagram used in this study. 

A. Path Planner 

According to [31], a global map used to distinguish the 
movable areas can be divided into small pieces; each piece, 
named a map unit window (MUW), is a set of pixel 
coordinates denoted by 𝑀𝑖𝑗 = {(𝑥𝑚, 𝑦𝑚)|𝑥𝑚, 𝑦𝑚 ∈ 𝑍, (𝑖 −

 
Fig.1. Control block diagram 



 

1)𝑤 ≤ 𝑥𝑚 < 𝑖𝑤, (𝑗 − 1)ℎ ≤ 𝑦𝑚 < 𝑖ℎ} . {𝑥𝑚, 𝑦𝑚}  denotes global 
coordinate of the global map, where 𝑖 and 𝑗 are the row and 
column numbers, respectively. The MUW has the width of w 
and height of h. The microrobot can move along blood vessel 
toward the desired point but cannot move across the vascular 
wall. To find the specific areas of the intravascular and 
extravascular parts, the vascular wall should be detected first, 
which can be done by a Roberts Cross Edge Detector[32]. 
Depth-first-search (DFS) method can then be used to 
distinguish the intravascular and extravascular parts. With the 
DFS method, the map can be divided into moveable and 
unreachable areas (i.e. intravascular and extravascular parts, 
respectively), established as follows: 

𝑚𝑖𝑗 = {
0,           𝑚𝑜𝑣𝑒𝑎𝑏𝑙𝑒
1,     𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒

. (7) 

A distance potential field {𝐷𝑖𝑗} is established by using the 

Dijkstra algorithm [33]. 𝐷𝑖𝑗 represents the shortest path from 

the current MUW to that containing the target point. The 
Dijkstra algorithm is used reversely. That is, the algorithm 
searches four directions (left, right, up, down) based on the 
target point, and then finds the shortest path through 
comparison. If 𝑚𝑖𝑗 = 0, then 1 is added to the distance. If 

𝑚𝑖𝑗 = 1, then a big number exceeding the maximum distance 

of the whole path is added to the distance to indicate that the 
MUW is unreachable. Finally, the gradient of the distance 
potential field can be established as [31]:  

  {
∇𝐷𝑥(𝑥, 𝑦) =

(𝐷𝑖+1𝑗−𝐷𝑖𝑗)(𝑥−(𝑖−1)𝑤)+(𝐷𝑖𝑗−𝐷𝑖−1𝑗)(𝑖𝑤−𝑥)

𝑤2

∇𝐷𝑦(𝑥, 𝑦) =
(𝐷𝑖𝑗+1−𝐷𝑖𝑗)(𝑦−(𝑗−1)ℎ)+(𝐷𝑖𝑗−𝐷𝑖𝑗−1)(𝑖ℎ−𝑦)

ℎ2

, (8)  

where 𝛁𝑫(𝑥, 𝑦) = [∇𝐷𝑥(𝑥, 𝑦) , ∇𝐷𝑦(𝑥, 𝑦)]
𝑇

 is the gradient 

of the distance potential field in the 𝑥 and 𝑦 directions, which 
are defined in Fig. 2, where 𝑜𝑚𝑛  is the coordinate origin when 
the m and n electromagnets are on. The microrobot can reach 
the desired position along the negative gradient direction. 

 

B. Position Estimator  

Four pairwise orthogonal electromagnets are used to drive 
the microrobot in a horizontal x–y plane with 2 DOF. A small 
dish containing the microrobot is placed at the middle of the 
four electromagnets. To simplify the problem, point dipole 
moment 𝒎0  and vector 𝒓  are assumed to be in the same 
direction so that 𝒎0 ∙ 𝒓 = |𝒎𝟎||𝒓|. The position of the point 
dipole is set to be the original point, and thus 𝒓 = 𝒑. In our 
study, the dish is placed away from the electromagnets. When 

the x-direction electromagnet is on, 𝑝𝑥 ≫ 𝑝𝑦 ; when the y-

direction electromagnet is on, 𝑝𝑦 ≫ 𝑝𝑥. Therefore, |𝒑| = 𝑝𝜗, 
where 𝑝𝜗, 𝜗 ∈ {𝑥, 𝑦}. Eq. (3) can then be rewritten as 

𝑩′(𝒎𝟎, 𝑝ϑ) =
𝜇0𝒎0
2𝜋𝑝ϑ

3 . (9) 

When the dish has a small size, the moveable range in both 
x- and y- directions is much smaller than the distance between 
the microrobot and the electromagnets. When the x-direction 
electromagnet is on, the field gradient along the y-direction in 
the microrobot moving area is small enough to be ignored. 
Therefore, eq.(2) can be simplified as  

𝜕𝑩(𝑝𝜗)

𝜕𝑝𝜗
=∑−

3𝜇0𝒎0
2𝜋𝑝𝜗

4

𝑛

𝑖=1

𝐼𝑖 . (10) 

Then, the magnetic force is expressed as 

𝐹𝑚𝑎𝑔,𝜗 =∑−
3

4
𝑉𝑇

𝜒

𝜇0(1 + 𝜒)
(
𝜇0𝒎0
𝜋
)
2

(
1

𝑝𝜗
7
) 𝐼𝑖
2

𝑛

𝑖=1

. (11) 

The four orthogonal electromagnets are designed to 
generate forces in the positive and negative directions along 
the x-axis and y-axis, respectively. If the microrobot moves 
along the x or y direction, only one power source is on. Thus, 
the system dynamic (6) can be expressed as  

6𝜋𝜂𝑅𝑣𝜗  = 𝑝𝜗
−7𝐼2𝐾1 + ∆𝜗, (12) 

where 𝐾1 = −
3

4
𝑉𝑇

𝜒

𝜇0(1+𝜒)
(
𝜇0|𝒎0|

𝜋
)
2

stays constant, ∆𝜗, 𝜗 ∈

{𝑥, 𝑦}. In (12), the coefficient 6𝜋𝜂𝑅  can be replaced by a 

constant 𝐾2 so that (12) is rewritten as 𝐾2𝑣𝜗  = 𝐾1𝑝𝜗
−7𝐼2 +

∆𝜗. 

Then, we have 

𝑝̇
𝜗
 = 𝑣𝜗 =

𝐾1𝑝𝜗
−7𝐼2 + ∆𝜗 

𝐾2
. (13) 

Taking the derivative of (13) with respect to time yields  

𝑣̇𝜗 = 𝑎𝜗 =
−7𝐾1𝑝𝜗

−8𝐼2

𝐾2
𝑣𝜗 +

2𝑝𝜗
−7𝐾1𝐼𝐼 ̇

𝐾2
+
∆̇𝜗
𝐾2
. (14) 

Considering that the disturbances likely remain constant 

during the same experiment, we have ∆̇𝜗≈ 0. 

The moving velocity 𝒗  can be measured directly by a 
CCD camera, and acceleration a can be obtained on the basis 
of the velocity information going through a low-pass filter. 
Thus, a position estimator can be designed as follows: 

𝑝̇̂𝜗 = 𝑣𝜗 + 𝐿1(𝑎𝜗 − 𝑎̂𝜗) 

                                       =
𝑝̂𝜗
−7𝐾1𝐼

2 + ∆̂𝜗
𝐾2

+ 𝐿1(𝑎𝜗 − 𝑎̂𝜗), (15) 

∆̇̂𝜗 = 𝐿2(𝑎𝜗 − 𝑎̂𝜗), (16) 

where 𝑝̂
𝜗

, 𝑣𝜗, 𝑎̂𝜗  and ∆̂𝜗  (𝜗 ∈ {𝑥, 𝑦}) are estimations of the 

position 𝑝𝜗 , velocity 𝑣𝜗 , acceleration  𝑎𝜗 , and disturbances 
∆𝜗. 

From (13)–(16) and defining 𝑒𝑝𝜗 = 𝑝𝜗 − 𝑝̂𝜗, we have 

 
Fig. 2. Coordinate of the global map. 



 

 𝑒̇𝑝𝜗 =
𝐾1𝐼

2

𝐾2

∑ (𝑝̂𝜗
𝑛
𝑝𝜗
6−𝑛)6

𝑛=0

𝑝𝑝̂⏟            
𝐿𝑘1

(𝑡)

(𝑝̂
𝜗
− 𝑝𝜗)  

    +𝐿1
7𝐾1𝐼

2𝑣

𝐾2

∑ (𝑝̂𝜗
𝑛𝑝𝜗
7−𝑛)7

𝑛=0

𝑝𝜗𝑝̂𝜗
−
2𝐾1𝐼𝐼̇

𝐾2

∑ (𝑝̂𝜗
𝑛𝑝𝜗
6−𝑛)6

𝑛=0

𝑝𝜗𝑝̂𝜗⏟                              
𝐿𝑘2

(𝑡)

    

(𝑝̂
𝜗
− 𝑝𝜗) + 

∆𝜗 − ∆̂𝜗
𝐾2

 
                  

 

= −𝑒𝑝𝜗 (𝐿𝑘1(𝑡) + 𝐿1𝐿𝑘2(𝑡))⏟            
𝐿1
′ (𝑡)

+
𝑒∆𝜗
𝐾2
,                        (17)

 

𝑒̇∆𝜗 = −𝐿2𝐿𝑘2(𝑡)⏟    
𝐿2
′ (𝑡)

(𝑝̂
𝜗
− 𝑝𝜗) = −𝐿2

′ (𝑡)𝑒𝑝𝜗, (18)
 

where we have exploited 𝒗 ≈ 𝒗̂ as 𝒗 is observable. As the 
movement range of the microrobot is known beforehand, there 
exist 𝐼𝑚𝑎𝑥 , 𝑝𝑚𝑖𝑛 , 𝑝𝑚𝑎𝑥 , 𝑝̂𝑚𝑖𝑛 and 𝑝̂𝑚𝑎𝑥  such that 0 < 𝐼 <
𝐼𝑚𝑎𝑥 , 𝑝𝑚𝑖𝑛 < 𝑝𝜗 < 𝑝𝑚𝑎𝑥, and 𝑝̂𝑚𝑖𝑛 < 𝑝̂𝜗 < 𝑝̂𝑚𝑎𝑥  hold. I is 

also set as Lipschitz continuous, and thus 𝐼𝐼̇ < 𝐾3𝐼
2 . By 

tuning 𝐾3, we can achieve 𝐿𝑘1,𝑚𝑖𝑛 > 0, 𝐿𝑘2,𝑚𝑖𝑛 > 0, in 𝐿𝑘1 ∈
(𝐿𝑘1,𝑚𝑖𝑛 , 𝐿𝑘1,𝑚𝑎𝑥), 𝐿𝑘2 ∈ (𝐿𝑘2,𝑚𝑖𝑛 , 𝐿𝑘2,𝑚𝑎𝑥). 

Given that 𝒗 and a are observable, the convergence of 
𝑒𝑝 and 𝑒∆ must be guaranteed. Thus, we have 

[
𝑒̇𝑝𝜗
𝑒̇∆𝜗
]

⏟  
𝑿̇

= [
−𝐿1

′
1

𝐾2
−𝐿2

′ 0

]

⏟      
𝑷

[
𝑒𝑝𝜗
𝑒∆𝜗
] . (19)

 

The Lyapunov function is designed as 𝐿 = 𝑿𝑇𝑯𝑿 > 0，
∀𝑒𝑝𝜗, 𝑒∆𝜗 ≠ (0,0) , where 𝑯 ∈ ℝ2×2  is a positive definite 

matrix.  
Taking the derivative of the Lyapunov function with 

respect to time leads to 

𝐿̇ = 𝑿𝑇(𝑷𝑇𝑯+𝑯𝑷)𝑿. (20) 

To make 𝐿̇ negative definite, we choose 𝑯 = [
1 −

1

2
1

2
1
]，

and then let 𝑬 = 𝑷𝑇𝑯+𝑯𝑷, expressed as 

𝑬 =

[
 
 
 −2𝐿1

′
1

2
𝐿1
′ − 𝐿2

′ +
1

𝐾2

−
1

2
𝐿1
′ − 𝐿2

′ +
1

𝐾2
0

]
 
 
 

. (21) 

The characteristic equation |𝜆𝐈 − 𝑬| of 𝑬 is 

𝜆2 + 2𝐿1
′ 𝜆 − (−

1

2
𝐿1
′ − 𝐿2

′ +
1

𝐾2
) (
1

2
𝐿1
′ − 𝐿2

′ +
1

𝐾2
) = 0(22) 

Note that 𝐿1
′  and 𝐿2

′  are time-varying, and their ranges can 
be determined by changing 𝐿1 and  𝐿2 . To ensure that the 
roots of (22) are negative, the following conditions should be 
satisfied: 

2𝐿1
′ > 0 (23) 

−(
1

2
𝐿1
′ − 𝐿2

′ +
1

𝐾2
) (−

1

2
𝐿1
′ − 𝐿2

′ +
1

𝐾2
) > 0. (24) 

That is, if the condition 𝐿1,𝑚𝑖𝑛
′ > 2𝐿2,𝑚𝑎𝑥

′ ≫
1

𝐾2
> 0  is 

satisfied, 𝑷𝑇𝑯+𝑯𝑷  is negative definite, and thus 𝐿̇ < 0 , 
∀𝑒𝑝𝜗, 𝑒∆𝜗 ≠ (0,0) . Therefore, 𝑒𝑝𝜗  and 𝑒∆𝜗  are 

asymptotically stable at the equivalence point (0,0). That is, 
the position estimator can reliably observe the position of the 
microrobot and disturbances. 

C. Controller 

The control objective is to make the microrobot move 
along the designed trajectory to the desired position in the 
vascular structure. A second-order sliding mode control 
algorithm is hereby used, i.e., the super-twisting algorithm 
(STA) [29], [30], which can reduce the influence of noise and 
decrease the chattering. According to STA, we introduce the 
vector state variables 𝒔1 = 𝒆̃𝑝 and 𝒔2 (𝒔1𝜖ℝ

2, 𝒔2𝜖ℝ
2), which 

satisfy 

𝒔̇1 = −𝑏1|𝒔1|
1
2sign(𝒔1) + 𝒔2,

𝒔̇2 = −𝑏2sign(𝒔1), (25)
 

where 𝑏𝑖 are the gains.  

Inspired by [27], 𝒆̃𝑝 is defined as the equivalent position 

error as follows: 

𝒆̃𝑝 = {
−𝛁𝑫(𝑥, 𝑦)𝑫′𝑖𝑗              𝐷𝑖𝑗 > 𝑇

𝒑𝑑 − 𝒑                            𝐷𝑖𝑗 ≤ 𝑇
, (26) 

where 𝑇 = max (𝑤, ℎ) is the switching thresholds and 𝑫𝑖𝑗
′ =

[𝐷′𝑥 , 𝐷′𝑦]𝑇 with 

{
 
 

 
 
𝐷𝑥
′ =
𝐷𝑖−1𝑗(𝑥 − (𝑖 − 1.5)𝑤) + 𝐷𝑖+1𝑗((𝑖 + 0.5)𝑤 − 𝑥)

2𝑤

𝐷𝑦
′ =

𝐷𝑖𝑗−1(𝑦 − (𝑗 − 1.5)ℎ) + 𝐷𝑖𝑗+1((𝑗 + 0.5)ℎ − 𝑦)

2ℎ

(27) 

Taking the derivative of 𝒔1 = 𝒆̃𝑝  with respect to time 

yields

𝒔̇1 =

{
  
 

 
 
 

−

[
 
 
 
 (𝐷𝑥

′ ∙
𝐷𝑖+1𝑗−2𝐷𝑖𝑗+𝐷𝑖−1𝑗

𝑤2
+ 𝛻𝐷𝑥(𝑥, 𝑦) ∙

𝐷𝑖−1𝑗−𝐷𝑖+1𝑗

2𝑤
)⏟                              

𝑎

𝑣𝑥

(𝐷𝑦
′ ∙
𝐷𝑖𝑗+1−2𝐷𝑖𝑗+𝐷𝑖𝑗−1

𝑤2
+ 𝛻𝐷𝑦(𝑥, 𝑦) ∙

𝐷𝑖𝑗−1−𝐷𝑖𝑗+1

2𝑤
)⏟                              

𝑐

𝑣𝑦
]
 
 
 
 

 

𝐷𝑖𝑗 > 𝑇

𝒗𝑑 − 𝒗                            𝐷𝑖𝑗 ≤ 𝑇                                         

  

= {
𝑨𝒗                          𝐷𝑖𝑗 > 𝑇

𝒗𝑑 − 𝒗                  𝐷𝑖𝑗 ≤ 𝑇
 ,                                   (28) 

where 𝑨 = −[
𝑎 0
0 𝑐

] , 𝒗 = [
𝑣𝑥
𝑣𝑦
] and 𝑣𝑑 is the desired velocity 

when the microrobot is close to the desired position. 

From (13), (25) and (28), a controller to regulate the 
magnetic force can be designed as  

𝑭𝑚𝑎𝑔 =

{
 
 

 
 𝑨−1 (−𝑏1|𝒔1|

1
2𝑠𝑖𝑔𝑛(𝒔1) + 𝒔2) ∙ 𝐾2 − 𝚫̂

𝐷𝑖𝑗 > 𝑇

(𝒗𝑑 + 𝑏1|𝒔1|
1
2𝑠𝑖𝑔𝑛(𝒔1) − 𝒔2) ∙ 𝐾2 − 𝚫̂

𝐷𝑖𝑗 ≤ 𝑇

(29) 



 

 

 
With (29), the current can be calculated on the basis of the 

electromagnetic mode. 

Under controller (29), the condition (25) is satisfied. 
According to the STA [29], 𝒔1, 𝒔2  will converge to zero in 
finite time with appropriate gains 𝑏𝑖 , implying that the 
microrobot will move to the desired position in finite time. 

IV. SIMULATIONS AND EXPERIMENTS 

Simulations were performed first to verify the proposed 
control approach. A home-designed electromagnetic coil 
system has a workspace of 16 mm× 16 mm. The distance 
from the head of each electromagnet to the point dipole is 3.9 

mm. The coordinate o13 is selected as shown in Fig. 2. The 
imaging area is 10 mm × 8 mm. The moving area for the 
microrobot is from 6.9 mm to 16.9 mm in the x-direction and 
from 7.9 mm to 15.9 mm in the y-direction. The disturbance 
is set as ∆= 10−15 N, and the initial value of the estimated 
disturbance is zero. The diameter of the microrobot is 
100 μm . The thickness of Ni plating is 200 nm. In the 
simulations, the figure is divided into 41 × 41  pieces. The 

control parameters are 𝐿1 = 0.02, 𝐿2 = 8.87 × 10
−13, 𝑏1 =

10−8, 𝑏2 = 10
−9,  𝐼𝑚𝑎𝑥 = 11 A  and  𝐹𝑚𝑎𝑥 = 1.35 ×

10−10 𝑁. Please note that disturbances caused by unknown 
system dynamics may impose a steady error near the target 
position. Although this interference is small, it should be 
compensated to ensure good control performance. The 
following simulation and experimental results will show that 
the proposed robust control algorithm can overcome the 
disturbances caused by unknown system dynamics. 

Fig. 3(a) shows the image of a vascular structure used in 
the simulation study, where two intravascular points 
(13.6073, 15.2171) mm  and (9.7049, 8.9732) mm  are 
chosen as the starting and target points, respectively. These 
two points are used to calculate the distance potential field as 
shown in Fig. 3(b). Fig. 3(c) shows the moving trajectory, 
where the red line denotes the desired trajectory from the 
starting point to the target point along the negative gradient of 
the distance potential field, while the blue line shows that the 
microrobot can move to the target point with an inaccurate 
starting point (13.5000, 15.0000) mm.  

             
Fig. 3. Path planner. (a) Original picture. (b) Distance potential field. (c) Real and estimated trajectories in the original picture. 
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Fig. 4. Simulation results. (a) Real positions 𝑝𝑥(blue solid line), 𝑝𝑦(red dashed line) of the microrobot in the x- and y- directions and estimated 

positions 𝑝̂𝑥(orange dotted line), 𝑝̂𝑦(purple dash-dot line) of the microrobot in the x- and y- directions. (b) Position estimation errors 𝑒𝑝𝑥 (blue solid 

line), 𝑒𝑝𝑦(red dashed line) in the x- and y-directions. (c) Disturbance estimation errors 𝑒∆𝑥(blue solid line), 𝑒∆𝑦(red dashed line) in the x- and y-

directions. (d) Current inputs of 4 electromagnets: 𝐼1(blue solid line), 𝐼2(red dashed line), 𝐼3(orange dotted line), 𝐼4(purple dash-dot line). 
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It is seen that the actual trajectory matches the desired one 
very well. Fig. 4(a) shows the actual and estimated positions 
of the microrobot in the x- and y-directions, respectively. Fig. 
4(b) shows the position estimation error. Fig. 4(c) shows the 
disturbance estimation error, which converges to zero. All the 
above results demonstrate the effectiveness of the position 
estimator. Fig. 4(d) shows the current input of the system, 
indicating that the proposed controller guarantees the current 
input to be within a safe limit.  

In experiments, a microrobot was firstly transported into a 
syringe filled with phosphate buffered saline (PBS) and then 
injected into the microfluidic chip, which was used to mimic 
the vascular structure. Because the bottom of the microfluidic 
chip is slightly uneven, or the fluid distribution is irregular, an 
unbalanced force may appear between the top and bottom of 
the microrobot, which may trigger rotation. The magnetic 
force and the drag force in the horizontal direction do not 
change due to this rotation. By using a surfactant (Tween 20), 
the friction between the microrobot and the channel surface 
can be reduced. Therefore, the effect caused by this rotation 
can be ignored. A CCD camera was used to observe the 
movement of the microrobot. Because of the system 
limitation, the camera was fixed but its position was arbitrary 
and unknown. Therefore, the position of the microrobot in the 
magnetic field needs to be estimated and this experiment can 
also prove the effectiveness of the estimation. Fig. 5(a) shows 
the home-designed electromagnetic coil system used for this 
experiment. The ANSYS electronic desktop suite (ANSYS, 
USA) was used in our design and optimization process [34]. 
In order to evaluate and calibrate the performance of the coil, 
a magnetometer mounted on a micromanipulator is used to 
measure the magnetic field strength in the workspace, and 
then the measurement result is compared with the simulation 
result of FEM. The change of the magnetic field strength in 
each distance increment is expressed as a magnetic field 
gradient, and the magnetic field gradient is also verified by the 
magnetometer, which moves in 1 mm increments in the X and 

Y directions. Fig. 5(b) illustrates a trajectory of the microrobot 
in the experiment, controlled by the proposed position 
estimator based motion controller. Fig. 5(c) shows the real and 
estimated trajectories, and their difference is shown in Fig. 
5(d). It is seen that the microrobot can move along the desired 
trajectory successfully, thus proving the effectiveness of the 
proposed control strategy. It is noted that in both Fig. 5(c) and 
5(d), the estimation was smoother when the microrobot 
approached the destination. This is because the gain of the 
estimator is fixed, thus when the velocity and acceleration are 
large, the estimation is vulnerable to estimation noise. In the 
future, an auto-tuned-gain estimator will be designed to 
improve the performance.  

V. CONCLUSION 

This study investigates a control strategy based on a 
position estimator for driving a microrobot by an 
electromagnetic actuation system in a simulated vascular 
structure. The dynamic model of the system is analyzed first, 
followed by the design of a moving trajectory in vascular 
environment. The position estimator is then developed based 
on the velocity information obtained by CCD camera. The 
estimator can reliably observe the position of the microrobot 
and disturbances, and the stability of the controlled system 
with such an estimator has been proved by a Lyapunov 
approach. Simulations and in vitro experiments are performed 
to demonstrate the effectiveness of the proposed control 
strategy. Due to the lack of the in vivo imaging device, the in 
vivo experiment was not conducted in this study. In the future 
work, we plan to use photoacoustic imaging technique to 
validate the proposed control technique in the in vivo 
environment and use synchronization control technique [35], 
[36] to achieve simultaneous control of multiple microrobots. 
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