
Rolling soft membrane-driven tensegrity robots

Robert L. Baines, Joran W. Booth, and Rebecca Kramer-Bottiglio

Abstract— We present a methodology for designing, fab-
ricating, and controlling rolling membrane-driven tensegrity
robots. This methodology is enabled by pneumatic membrane
actuators and a generalized path planning algorithm for rolling
polyhedra. Membrane actuators are planar, assembled in a
scalable fashion, and amenable to arbitrary geometries. Their
deformation trajectories can be tuned by varying the stacking
sequence and orientation of layers of unidirectional lamina
placed on their surfaces. We demonstrate the application of the
same set of membrane actuators consisting of polygonal faces of
Platonic Solids to create polyhedral tensegrity variants. Three
specific tensegrities in the forms of cube, dodecahedron, and
rhombicuboctahedron are chosen to demonstrate the path plan-
ning algorithm, though the algorithm is generalizable to any
uniform or non-uniform n-sided polyhedra. The membrane-
driven tensegrities are able to roll in unique trajectories and
circumvent obstacles contingent on the distribution and types
of polygons which constitute their faces.

I. INTRODUCTION

The word tensegrity was coined by Buckminster Fuller,
as a blend word to describe a type of structure composed
of rigid parts under compression and compliant elements in
tension [1]. The tensegrity paradigm is widespread, arising in
biological structures, interpretations in art and architecture,
as well as mechanisms with high strength-to-weight ratios
[1]-[4]. More recently, tensegrities have gained traction in
robotics as a means to navigate in unstructured or dy-
namically changing environments, places where traditional
rigid robots often under-perform because external distur-
bances may damage or entirely destroy them. Tensegrities
distribute external forces or disturbances internally through
their network of tensile and compression elements, mitigating
stress concentrations that might otherwise lead to mechanical
failure in a traditional robot [5].

To impart motion onto a tensegrity, actuation schemes
usually incorporate rigid motors that spool and contract
the tensile elements [5]-[9]. Contracting tensile elements
shifts the center of mass of a tensegrity, making it statically
unstable, and as a consequence, it rolls to an adjacent
face. One group inverted convention, making a tensegrity
with linear actuators as struts to displace the cables [10].
A marked departure from controlling tensions in cables to
destabilize the center of mass used vibration as a means for
small tensegrities to move [11].

Considering previous work, it may be advantageous to rely
on soft material actuators for tensegrity locomotion, rather
than rigid motors. For example, replacing motors with soft
actuators could enable new locomotion modes. A tensegrity

Department of Mechanical Engineering & Materials Science, Yale Uni-
versity, 10 Hillhouse Avenue, New Haven, CT 06520, USA. (email:
Rebecca.kramer@yale.edu

Fig. 1. With square, triangle, and pentagon -shaped membrane actuators as
building blocks, we can construct a variety of polyhedra tensegrities. Based
on their face arrangement and shapes, tensegrities may be created to more
accurately roll on specified paths.

driven by soft contracting McKibben actuators introduced
the first platform that rolled without motors [12]. More
recently, our group showed a tensegrity driven by contraction
of robotic skins consisting of McKibben actuators and soft
sensors embedded into a single substrate [13]. In addition,
groups have demonstrated tensegrities that actuated using
shape memory alloy [14], [15] and shape memory polymer
struts with elastomer tensile elements [16]. The aforemen-
tioned demonstrations relied on several actuators per face
to impart deformation, making control highly complex. In
addition, the designs relied on contractile motion between
the nodes, overlooking the wealth of possible locomotion
strategies that could be achieved by other motion primitives,
such as extension or out-of-plane expansion.

This paper’s first contribution is a design space for a new
class of tensegrity, which we coin the membrane tensegrity.
In contrast to a typical tensegrity where every member
experiences exclusively axial forces concentrated at nodes,
a membrane tensegrity’s struts are held in compression
by entirely soft membranes that sustain forces in a plane,
rather than an axis, and simultaneously serve as actuators.
Membrane actuators can impart motion onto tensegrities in
new and unexplored ways, including out-of-plane expansion

IEEE Robotics and Automation Letters (RAL) paper presented at the
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

Copyright ©2020 IEEE



Fig. 2. Fabrication of membrane actuators is simple and scalable. Membrane actuators operate via volumetric expansion, which can be either constrained
or unconstrained. After steps 1-4, step 5 shows unconstrained membrane actuators that expand out-of-plane. With the addition of unidirectional laminae
patches (step 5a), the actuator expansion can be constrained and directed into areal extension or contraction of the membrane. In step 6a, the depicted
triangular membrane is divided into three cavities, each with its own inlet. All three tubes are connected to the same air supply; the cavities inflate together.

to change center of mass without displacing the nodes,
and areal extension and contraction that change center of
mass by displacing the nodes. The same set of membranes
and struts can be used to create myriad tensegrities in
the space of uniform and non-uniform polyhedra (Figure
1). An outcome of using membrane actuators is that the
arrangement of polygons which constitute a tensegrity’s faces
can be modulated to tailor performance in a given set of
path planning problems. Incidentally, the problem of path
planning for tensegrities is a relatively unexplored field.
Thus, the second contribution of this paper is a generalized
path planning algorithm for rolling polyhedra that goes hand-
in-hand with the modular nature of membrane actuators.

II. MEMBRANE ACTUATORS

A. Fabrication of Membrane Actuators

Membrane actuators form the basis of the tensegrities con-
structed herein. Membrane actuators are simple to fabricate,
easily formed to unique geometries, lightweight, and, due to
their thinness, can be compacted into a small volume. Figure
2 illustrates the fabrication process for membrane actuators.
Membrane actuators operate via volumetric expansion, which
can be either constrained or unconstrained. Unconstrained
membranes result in out-of-plane expansion (top), while
constrained membranes (via the addition of unidirectional
laminae) result in motions such as in-plane areal extension
and contraction (top plus bottom). Both fabrication proce-
dures follow the same first four steps.

First, a 2 mm layer of elastomer resin (Dragon Skin
10 Fast, SmoothOn Inc.) was rod-coated onto polyethelene
terephthalate (PET) film with a precision threaded rod. Then,
we flipped the rod-coated sheet over, PET-side up, and laser-
cut away the PET to selectively mask the area of a desired
internal bladder, or multiple segmented bladders (VSL 2.30,
Universal Laser Systems). Next, another 2 mm thick layer
of elastomer was applied via rod coating. To make out-of-
plane expanding membranes, we laser cut out the desired
shape contour, removed the internal PET sheet, and inserted
silicone tubing to enable inflation. For directionally con-
strained membranes (Figure 2, bottom), we additionally cut

out elastomer laminae with embedded unidirectional fibers
[17], and adhered those to the both sides of the membrane
to govern its inflation trajectory.

B. Motion Primitives by Varying Fiber Orientation

We are able to elicit a number of motion primitives from
membrane actuators by adhering directionally-constraining
laminae onto membrane surfaces (Figure 3). In addition to
expansion, extension, contraction, twist, and bending motion
primitives, it is possible to elicit highly complex deforma-
tions by superposition and localization of lamina stacking
sequences.

We created oblong rectangular membrane actuator spec-
imens (125 mm x 25 mm) to better visualize the motion
primitives. The far left of Figure 3 presents a side view
of a deflated membrane actuator for reference. To the right
are side views of actuators inflated with 150 mL of air,
numbered as specimens 1–5. Fiber orientation of the laminae
influenced axial strain εa, transverse strain (i.e. bulge) εt, and
if applicable, twisting γr and bending γb. Specimen 1, with
no laminae, exhibits εt/εa = 69. For the extension actuator,
specimen 2, εt/εa = 11.32. The ratio is small relative to
that of specimen 1 and testifies to the fact that much of
the deformation has been forced in the desired direction.
Essentially a 2D McKibben muscle, specimen 3 maintains
a relatively small εt/εa = −22 as well, yet undergoes
contraction comparable to traditional McKibben muscles
[18]. Of course, as with traditional McKibben muscles, the
exact strains achievable are a function of the fiber braid
angle. Owing to the simplicity of the fabrication process,
the braid angle can easily be tuned. Moving on to the next
motion primitives, specimen 4 twists one complete revolution
while maintaining a smaller εa = −0.11. However, the lack
of axial deformation manifested itself transversely; εt was
comparable to that of specimen 1, making εt/εa = 102.
Lastly, specimen 5 bends at γb = 350◦, nearly completing a
full curl, with εt/εa = −25.

The exact strain-to-pressure or -volume relationship for
a membrane actuator depends on geometry, pre-strains, and
forces induced when they are initially placed between tenseg-



Fig. 3. Oblong 2D rectangular membrane actuators to better visualize
motion primitives. The schametic above each specimen shows the angle,
relative to vertical, at which fibers are embedded in any attached laminae.
Left to right: at rest, inflated without any lamina, with fibers at 90◦ to force
extension, ±30◦ on both sides to create a McKibben-style contraction, 45◦
mirrored on each side for twist, and 90/0◦ on one side for bending. All
were inflated with 150 mL of air. Scale bar: 30 mm.

Fig. 4. Rolling mechanisms for tensegrities with out-of-plane expanding
membrane actuators, which minimally shift the struts (top dodecahedron),
and extension membrane actuators, which significantly shift the struts
(bottom icosahedron). Scale bars: 25 mm (top), 40 mm (bottom).

rity nodes. Due to the extent of the membrane actuator design
space, data presented in Figure 3 is intended to indicate
general relationships between fiber placement and motion
primitives, not definitive specifications for implementation.
In this paper, we utilize square, pentagon, and triangle
out-of-plane expanding membrane actuators for hardware
implementation of path planning.

C. Assembly of Membrane-Driven Tensegrity Robots

The mechanism by which a tensegrity outfitted with out-
of-plane expanding membrane actuators rolls is depicted
in the top of Figure 4. Inflating a downward membrane
creates a bubble of curvature k, an unstable equilibrium
which, perturbed by inflation of neighboring faces, biases the
center of mass to favor rolling to a particular face. Note the

bubble is highlighted green. On the other hand, the bottom of
Figure 4 shows how a tensegrity with constrained extension
membrane actuators rolls. Inflation of a face displaces nodes
with a strain ε, shifting center of gravity and toppling the
robot. Both rolling mechanisms are shown in real-time in
Supplementary Video Part 1.

In the present paper, we explore the utility of out-of-
plane expanding membrane actuators on a rolling tensegrity
because: 1) among the motion primitives in Figure 3, we
believe expansion to dislodge tensegrity center of mass is
most conducive to making tensegrities roll, 2) the expansion
membrane lends itself to a simplistic actuation strategy
compared to the constrained actuators, and 3) tensegrities
utilizing out-of-plane expansion to move have not yet been
reported. Though we proceed with this limited scope, we
believe the motion primitives present in Fig. 3, and combi-
nations thereof, should provide engineers an ample tool set
to devise novel locomoting membrane tensegrities.

Polyhedra tensegrities were constructed using the same
set of membrane actuators (out-of-plane expanding square,
pentagon, and triangle with side lengths 50 mm) and 1/16 in
diameter carbon fiber composite struts (McMaster Carr) of
125 mm length. In our specific hardware implementation, the
cube, dodecahedron, and rhombicuboctahedron tensegrities
consisted of four, ten, and twelve struts, respectively. At each
end of each strut, 3D-printed nodes provided an interface
site for the membranes. To preserve modularity and inter-
changeability, we did not bond the membranes to the nodes.
Rather, compression supplied by the membrane network held
the structure intact.

III. PATH PLANNING FOR MEMBRANE TENSEGRITIES

A sizable body of literature employs machine learning
techniques for control of tensegrity robots. These works
focus on how to generate actuator commands required to
travel the furthest by some heuristic within a given time
frame (usually euclidean distance between two points over
60 s) [19]-[21]. Other research developed actuator policies
for rolling icosahedron and rhombicuboctahedron tensegri-
ties, but in consideration of the latter shape, did not allow
for rolling to and from triangular faces that are a source of
great complexity in movement [22].

In contrast to the large amount of literature developing
actuator control policies for tensegrities, scant work pertains
to path planning in the traditional sense of solving for
a route from point A to B in the presence of obstacles.
Prior research most related to the tensegrity path planning
domain presented algorithms for a specific geometric con-
figuration: the popular six-strut icosahedron tensegrity. One
group introduced a steerable locomotion controller for an
icosahedron tensegrity which mapped user joystick inputs to
a rolling sequence [23]. Another group presented a sampling-
based kinodynamic planning approach for an icosahedron
tensegrity approximated as a spherical entity [24].

The use of membrane actuators—modular units adaptable
to arbitrary shapes and easily assembled on-the-fly to create
unique polyhedra tensegrities—demands a path planning



Fig. 5. Each polyhedra has a unique set of footprints that determine
the possible set of paths it can achieve via rolling. Imperfectly tessellating
polyhedra pose the challenge of a large, complex grid for planning motions.

algorithm agnostic to shape and configuration to truly real-
ize their potential. Pioneering work furnished mathematical
context for generalized polyhedra rolling on a plane yet
conceded they were not able to test their algorithm on a
system, simulated or physical [25]. We build on prior work
and create a generalized path planning algorithm for rolling
n-sided polyhedra, uniform or non-uniform. The algorithm
combines the A* graph search with geometric constraints of a
given polyhedra. Instead of relying on hard-coded coordinate
frame assignments and a series of affine transformations,
variables that change based on shape, our algorithm main-
tains generality by evoking an optimization routine to keep
track of the orientation of a polyhedra as it rolls.

A. Geometric Reasoning for Planning Algorithm

As a polyhedra tensegrity rolls, its downward face polygon
P will occupy a unique orientation on the ground. The
orientation-invariant possible set of moves from any down-
ward face contacting the ground to its neighboring faces
which share an edge can be considered as its geometric
footprints F . Figure 5 gives examples of different polyhedra
downward faces and their neighbors flattened into footprints.
Notice that the cube has one such footprint, and it forms a
perfectly tessellating square grid. In contrast, the dodecahe-
dron and rhombicuboctahedron do not have perfectly tessel-
lating grids. Furthermore, F for the rhombicuboctahedron
contains three items.

The subset of F that is a grid of perfectly tessellating
polygons, like the triangle, square and hexagon, is easy to

visualize and a simple space in which to plan movement
from point A to point B. Consider the cube. Evoking the
famous A* algorithm, an evaluation function is used to find
the optimal path across the grid in the presence of obstacles:

f(n) = g(n) + h(n) (1)

Here, g(n) is the cost from the initial node to the present
node n, and h(n) estimates the cost of an optimal path from
node n to the goal node; a value that is defined by the
heuristic (commonly euclidean distance). At each step, the
algorithm picks the next n to move to with the lowest f [26].

We cannot constrain our tensegrity design space to uni-
form grids of perfectly tessellating shapes because membrane
actuators can achieve any shape and tensegrities can be com-
posed of multiple differently shaped polygonal membrane
actuators. Imperfectly tessellating polyhedra footprints and
those which are non-uniform (constituted of disparate polyg-
onal faces) may exhibit non-holonomy. That is, rolling from
point A to point B, each step of the tensegrity depends on the
previous step(s) taken. The sheer magnitude of configurations
of F on the plane prohibits explicitly developing a grid of
possible moves in F a priori for larger search spaces. For
visualization, the bottom row of Figure 5 shows the stacked
contours F for two moves. It is clear that planning optimal
movements in large grids—where rolls may be on the order
of hundreds—becomes computationally expensive. Thus we
take an alternative approach. We sacrifice guarantees of
admissibility for practicality and fast convergence on a viable
path.

Algorithm 1 Rolling n-sided Tensegrity Following A*-
Generated Path
Input: A∗, O,F . A∗ Path, Obstacles, Footprints
Output: storedFaces . Vector of Faces Traversed

1: cpoints = createCheckPoints(A∗)
2: d = ‖[x, y]Face, [x, y]cpoint‖L2 . Initialize Distance to

Checkpoint
3: for length(cpoints) do
4: while d > tol do . Roll Until Within tol Tolerance
5: [l, φ] = findCentroids(F ,A)
6: [ξ, faces] = generalOrient([x, y]prevFace)
7: ctroid = [x, y]Face ∗ l ∗ cos(φ+ ξ)
8: for n ∈ P do . n-sided Polygon on Ground
9: if ctroid(n) ∈ O then

10: ctroid(n) =∞ . Penalize Collisions
11: [[x, y]nextFace, i] = min ‖ctroid, [x, y]cpoint‖L2
12: faceNumselected = faces(i)
13: rollToNextFace([x, y]nextFace)
14: [x, y]prevFace = [x, y]Face
15: [x, y]Face = [x, y]nextFace
16: d = ‖[x, y]Face, [x, y]cpoint‖L2 . Update
17: storedFaces.append(faceNumselected)

B. General Path Planning for Polyhedra Tensegrity

In our path planning pipeline, we first impose a dense
square grid on the environment and perform a traditional



Fig. 6. Solving a simulated maze: rolling polyhedra can traverse a generated A* path broken into checkpoints, irrespective of shape. The geometry of
the shape determines the ability to move in straight lines, take sharp or smooth corners, and also influences the number of rolls needed to reach the goal.

A* search defined by Equation 1 to compute a path obliv-
ious to the geometric rolling constraints of the tenseg-
rity. Next, Algorithm 1 begins. The path generated by A*
is further discretized into a series of checkpoints via a
createCheckPoints method. The number of checkpoints is
arbitrarily set to lie between the A* path length divided by
the shortest edge of the polyhedra and the A* path length
divided by the longest edge. This technique ensures that there
is a sufficient number of checkpoints to prevent straying from
the A* path or, conversely, excessive meandering. Next, for
a given polyhedra comes a set of adjacency relationships A.
We can use A to find centroid-to-centroid distances lj for
each of the footprints, where j = 1, ..., k and k is the number
of unique centroid-to-centroid distances for a polyhedra.
We can also use A to find the angles φ of neighboring
centroids relative to P . Both tasks are accomplished via
the findCentroids method. Note that A depends on a
user-defined numbering scheme for faces. For example, on
the cube, we could have labeled each of the sides 1–6. If
P = 1 then A contains 2, 3, 4, and 5—faces sharing an
edge with 1. l is a centroid-to-centroid distance between
neighboring faces and is constant for uniform polyhedra like
the cube but can change for non-uniform polyhedra like the
rhombicuboctahedron.

After delineating neighboring faces’ centroid coordinates
relative to P , the generalOrient method is invoked. We
keep track of the orientation of the polyhedra as well as
user-numbered faces across which a tensegrity rolls while
retaining generality for any n-sided polyhedra, uniform or
non-uniform. To do so, in generalOrient we employ a
1D optimization that finds the angle ξ which minimizes the
distance between [x, y]prevFace and [x, y]Face:

min
ξ
‖[x, y]prevFace−([x, y]Face+[lcos(ξ+φ), lsin(ξ+φ)])‖

(2)
ξ is propagated throughout the rolling sequence as an

additive term to compensate for generic changes in orienta-
tion to F . The generalOrient method also outputs the face

numbers faces within the footprint that can be used later to
convert a computed path to a sequence of actuator commands
on the physical system. After the optimization routine, the
footprint of possible single moves is searched for the face
which lies closest to the current checkpoint in line 11. If
there are no obstacles O contained within the same face as
a potential roll, the tensegrity rolls across the corresponding
edge. The chosen face number is stored in storedFaces.
Rolling reveals a new footprint of potential rolls. The process
of expanding the footprint and evaluating for the closest face
that does not contain obstacles loops until the tensegrity rolls
within a threshold tol of the checkpoint. When the tensegrity
is within tol, the algorithm increments to the next checkpoint
on the A* path. The geometric constraints imposed during
rolling are that the tensegrity can only roll over edges, not
corners, and it must chose a next move bounded by F .

Using this planning pipeline, we exploit a fast initial search
for an optimal path on a grid that is perfectly tessellating,
followed by subsequent ordered searches constrained to the
number of elements in F that strive to best follow the
optimal path. Convergence on a viable path can occur faster
than it does compared to performing an A* with polyhedra
geometric constraints defined at each step, especially for
polyhedra with F which do not tessellate the plane.

C. Implementing Membrane Tensegrity Path Planning in a
Simulated Maze

To validate the generalized algorithm, we used it in
path planning of simulated cube, dodecahedron, and rhom-
bicuboctahedron -shaped membrane tensegrities. In MAT-
LAB, we simulated the same maze for each type of mem-
brane tensegrity which had equivalent edge lengths, matching
those of actual hardware used later (50 mm). A* was broken
into 70 checkpoints based on the side length of the tensegrity
and the size of the grid. Figure 6 presents simulation results.
Gray sections denote walls and the A* generated path is
the dashed red line. Polyhedra footprints are shown by
alternating colors and the black line connects downward



Fig. 7. Path planning algorithm implemented in simulation and translated to actual tensegrities. The same simple problem is shown for each polyhedral
variant to home in on idiosyncrasies of operation. The dashed line with white dots at the end of the frames indicates the experimental trajectory of the
centroids while the solid line with black dots, the theoretical trajectory. Scale bar in top left of each experiment sequence: 50 mm.

faces step-wise over time. Starting at the bottom left, each
case was able to reach the goal at the top left.

The percentage error between the distance of the A*-
generated path on the imposed fine square grid and the dis-
tance traveled by our simulated tensegrity indicates extent of
deviation from an optimal path. For the cube, dodecahedron,
and rhombacuboctehedron, the percentage error between the
optimal path and the actual route taken via Algorithm 1
was 11.5%, 21.6%, and 28.9%, respectively. The increasing
error with complexity of shape is evidenced visually by the
straighter routes the cube takes relative to the meandering
routes of the other shapes.

Another finding from Figure 6 is that the centroid-to-
centroid distance l between each downward face in a foot-
print governs the number of total rolls required to reach the
goal. For instance, the dodecahedron only took 74 rolls to
reach the goal compared to the cube’s 91 rolls. Interestingly,
the rhombicuboctahedron took 116 rolls to reach the goal.
Consisting of both triangles and squares, it has greater mo-
bility than the cube. While greater mobility is advantageous
for more closely following checkpoints, it can encourage
meandering in between those checkpoints, causing polyhedra
to take indirect paths toward the goal.

In a similar vein, we note that as a polyhedra tensegrity

decreases in θ it approximates a sphere more, and is able to
make both sharper turns and smoother diagonal movements.
This fact is underscored when comparing the dodecahedron
and cube’s diagonal movement portions in the maze. The
cube makes two movements to approximate a diagonal, ow-
ing to the θ = 90◦ edge spacing of its footprint. In contrast,
the dodecahedron has much more movement flexibility due
to its smaller θ = 36◦ (Figure 5), though it cannot maintain
a purely straight path like the cube. In practical applications,
there exists a balancing act between size and shape of a
membrane tensegrity to minimize energy of traversal across
a path. Larger or fewer faces allow a tensegrity to reach a
point with fewer rolls, and therefore fewer actuation cycles.
Yet on physical systems larger size implies greater mass;
and fewer faces means more shift must occur to destabilize
center of mass. On the other hand, smaller or more faces
may require more rolls but have less mass to move and may
more accurately approximate a path. Here the advantage of
membrane actuators comes to the fore: ease adapting them to
custom geometries and sizes should help the engineer faced
with the unique challenges of tensegrity navigation.

D. Translating Simulated Path Planning to Reality
To further evaluate the generalized algorithm pipeline,

we simulated a simple path planning problem on the three



Fig. 8. Cumulative absolute error between simulated and experimental values of the three tensegrities as they roll. Plotted points are a mean of three
experimental trials. Confidence bars indicate one standard deviation above and below the mean.

tensegrity variants presented in Figure 5 and translated the
solution to hardware (Supplementary Video Part 2). We
conducted three trials for each tensegrity to understand the
variance associated with implementing a fixed generated path
on actual hardware. To track differences between simulation
and hardware, we recorded the tensegrity executing the path
with an HD camera facing downward. The obstacle was
chosen to be a flat wooden block that would indicate whether
a collision occurred if it were occluded from above.

Having stored the faces that the tensegrity traversed as
the output of our path planning algorithm, we translated the
calculated path to a series of actuator commands. Of course,
the exact nature of the path-to-actuator command mapping is
dependent on the type of actuator. For out-of-plane expand-
ing membrane actuators, we simply inflated the membrane
on the downward face of the tensegrity, leveraging the rolling
mechanism depicted in the top of Figure 4, one similar to
the rolling mechanism proposed for other membrane-driven
robot systems [27]. The system becomes unstable and the
direction it will roll is unpredictable. However, we can direct
the roll by also inflating all the adjacent faces except the one
in the direction of the desired roll. We utilized an Arduino
Uno in communication with miniature pressure regulators
[28] to command rolling sequences.

Figure 7 juxtaposes experimental and simulated path plan-
ning results for one of the three conducted trials. Each
tensegrity experienced propagation of error in rolling, ev-
idenced by the difference between the simulated trajectory
(black line with solid dots pinpointing centroid location) and
experimental trajectory (dotted line with white dots).

Figure 8 plots the cumulative absolute angle error as well
as the cumulative distance error step-wise throughout the
experiment for each tensegrity shape. Plotted points represent
an average of the three trials. Confidence bars give one
standard deviation from the mean. Step-wise error accrual
is due to a number of factors. First, the pneumatic tether
and wires emanating from a tensegrity bias direction. To
achieve longer and unimpeded rolling sequences, tether-
less operation is necessary. Second, our algorithm assumes
perfect rolling. As can be seen from Supplementary Video
Part 2, sliding and bounce stray the tensegrities from their

theoretical perfect rolling trajectories. By switching the
membrane type to extension or contraction, it is likely we
could reduce bouncing and sliding because in those types of
actuation, the tensegrity “relaxes” to its next face rather than
“falling” as with inflation. Additionally, the 3D-printed nodes
on the tensegrities were made from thermoplastic. Choosing
a material for the nodes with a higher friction coefficient
could alleviate sliding issues. Third, face edge lengths of the
tensegrities were not entirely uniform and therefore did not
match those of the perfect polyhedra in simulation. Disparate
tensions caused by the arrangement of internal struts skewed
edge lengths. The results of Figures 7 and 8 and observation
of variance in hardware reinforces that a noise-free estimate
of the path-length heuristic cannot be guaranteed admissible.

While conducting the experiment, we found that slow,
quasi-static inflation of the actuators lead to more stable
and repeatable rolls. Fast inflation imparted significant an-
gular momentum to the tensegrities and caused them to roll
multiple times, deviating from steps in the generated path.
Although multiple rolls for a single inflation may not be
desirable when carefully following a generated path, the
behavior could be leveraged in the interest of dynamic or
unusual modes of locomotion.

As a last note on practical implementation, though it
exhibited the least average angle and length error step-to-
step on its trajectory due to its sharp contours, (cumulative
angle and length errors of 32.4◦ and 53.3 mm, respectively)
tipping the cube took significantly more inflation than the
other polyhedra (which approximate spheres to a greater
degree). The initial high-pressure hurdle to tip sometimes
prevented the downward membrane’s inflation from tipping
the cube over the appropriate edge. The opposite problem
occurred with the rhombicuboctahedron: it rolled too easily
and freely. In step 7 of the trial visualized in Figure 7,
the rhombicuboctahedron deviated from the final step of its
path substantially, even though the correct actuators inflated.
Consequently, the angle error for the rhombicuboctahedron
in step 7 of Figure 8 has a large standard deviation. Since a
rhombicuboctahedron is more spherical than a cube, rolling
to a certain point requires less pressure but is associated
with higher variability. Especially with neighboring actuators



inflated, the rhombicuboctahedron assumes a very rounded
surface that tips with little bias.

Due to the confounds mentioned above, particularly
nonequivalent edge lengths induced by disparate tensions,
collisions occurred. In the trial pictured in Figure 7, the
dodecahedron collided with the right portion of the obstacle
in step 2 of its trajectory. The rhombicuboctahedron also col-
lided with the obstacle in step 3. In spite of the collisions and
deviations from simulation, the results of Figure 7 serve as a
testament to the compatibility of membrane actuators and the
generalized polyhedra path planning algorithm. Knowledge
of how membrane tensegrities replicate paths in real life can
help inform the design of robots for specific path planning
problems that require, say, the location certainty of the cube,
the maneuverability of the dodecahedron, or the spontaneity
of the rhombicuboctahedron.

IV. CONCLUSIONS

We presented a new class of tensegrity robot composed of
membrane actuators. Membrane-driven tensegrity robots are
easy to fabricate, able to be tailored to arbitrary geometries,
and deform in numerous ways. The membrane actuators
work in tandem with a generalized path planning algorithm,
providing a tool set for rapidly designing and implementing
tensegrities for rolling. In future work, we intend to utilize
an IMU to account for the disparity between theoretical and
actual orientation of a downward face to correct the path
planner in real-time. We will also explore path planning with
different membrane actuator types introduced herein, such as
extension, contraction, and combinations of these types on
the same system. Lastly, we should remark that the A* to
Algorithm 1 pipeline is by no stretch optimal. The objective
of the pipeline was to circumvent the scaling problem asso-
ciated with large search spaces of potential moves for non-
tessellating polyhedra footprints. For smaller-scale problems,
we found that A* with step-wise geometric constraints can
be used to generate guaranteed admissible paths. Since the
intention of the present work was to introduce the concept
of complementary hardware and generalized path planner
for customized polyhedra membrane-driven tensegrities, we
leave heuristic tuning to future work.

ACKNOWLEDGMENT

We thank A. Garcia and S. Sinmaz for making actua-
tors and D. Shah for compelling math discussions. R.L.B.
was supported by the National Science Foundation Gradu-
ate Research Fellowship (DGE-1333468). J.W.B. was sup-
ported by NASA through the Early Career Faculty Program
(80NSSC17K0553).

REFERENCES

[1] R. E. Skelton and M. C. De Oliveira, Tensegrity Systems, 2009 ed.
Springer, Jun. 2009.

[2] S. Levin, The tensegrity-truss as a model for spine mechanics:
Biotensegrity. J Mech Med Biol, vol. 2, pp. 375-388. 2002.

[3] T. D’Estree Sterk. Shape control in responsive architectural structures
- current reasons and challenges. 4th World Conference on Structural
Control and Monitoring, 2006.

[4] K. Miura and Y. Miyazak. Concept of the tesnsion truss antenna. AIAA
Journal, vol. 28, no. 6, pp. 1098–1104, 1990.

[5] C. Paul et al., Design and control of tensegrity robots for locomotion,
IEEE Transactions on Robotics, vol. 22, no. 5, pp. 944-957, 2006.

[6] K. Caluwaerts et al., Design and control of compliant tensegrity robots
through simulation and hardware validation, Journal of The Royal
Society Interface, vol. 11, no. 98, 2014

[7] V. SunSpiral et al., Tensegrity based probes for planetary exploration:
Entry, descent and landing and surface mobility analysis. 10th Inter-
national Planetary Probe Workshop, 2013.

[8] A. Agogino et al., Super Ball Bot - structures for planetary landing and
exploration. NASA Innovative Advanced Concepts (NIAC) Program,
Final Report. 2013.

[9] M. Vespignani et al., Design of SUPERball V2, a Compliant Tenseg-
rity Robot for Absorbing Large Impacts, IEEE International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 2865-2871, 2018.

[10] L.-H. Chen et al., Soft Spherical Tensegrity Robot Design Using Rod-
Centered Actuation and Control, Journal of Mechanisms and Robotics,
vol. 9, no. 2, pp. 025001, 2017.

[11] J. Rieffel and J.-B. Mouret, Adaptive and Resilient Soft Tensegrity
Robots, Soft Robotics, vol. 5, no. 3, pp. 318-329, 2018.

[12] Y. Koizumi et al., Rolling tensegrity driven by pneumatic soft actua-
tors, in IEEE International Conference on Robotics and Automation,
pp. 1988-1993, 2012.

[13] J. W. Booth et al., OmniSkins: Robotic skins that turn inanimate
objects into multifunctional robots, Sci. Robot., vol. 3, no. 22, 2018.

[14] F. A. dos Santos et al., Design and experimental testing of an
adaptive shape-morphing tensegrity structure, with frequency self-
tuning capabilities, using shape-memory alloys, Smart Mater. Struct.,
vol. 24, no. 10, p. 105008, 2015.

[15] M. Shibata et al., Crawling by body deformation of tensegrity structure
robots, IEEE International Conference on Robotics and Automation,
pp. 4375-4380, 2009.

[16] K. Liu et al., Programmable Deployment of Tensegrity Structures by
Stimulus-Responsive Polymers, Sci. Rep., vol. 7, no. 1, pp. 3511, 2017.

[17] S. Y. Kim and R. Baines et al. Reconfigureable soft body trajectories
using unidirectionally stretchable laminae Nat Comm. vol. 10, pp.
3464, 2019.

[18] C. S. Kothera et al., Experimental Characterization and Static Model-
ing of McKibben Actuators, Journal of Mechanical Design, vol. 131,
no. 9, pp. 091010, 2009.

[19] A. Iscen et al. Controlling tensegrity robots through evolution, in Pro-
ceeding of the fifteenth annual conference on Genetic and evolutionary
computation conference - GECCO 13, 2013, p. 1293.

[20] M. Zhang et al., Deep reinforcement learning for tensegrity robot loco-
motion, IEEE International Conference on Robotics and Automation,
2017, pp. 634-641.

[21] J. Luo et al. Tensegrity Robot Locomotion Under Limited Sensory In-
puts via Deep Reinforcement Learning, IEEE International Conference
on Robotics and Automation, 2018, pp. 6260-6267.

[22] K. Kim et al., Rolling Locomotion of Cable-Driven Soft Spherical
Tensegrity Robots, Soft Robotics, 2020.

[23] M. Vespignani et al., Steerable Locomotion Controller for Six-strut
Icosahedral Tensegrity Robots, IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2886-2892, 2018.

[24] Z. Littlefield et al., From QuasiStatic To Kinodynamic Planning
For Spherical Tensegrity Locomotion, International Symposium on
Robotics Research (ISRR), pp. 16, 2017.

[25] S. Piccinocchi et al., Planning Motions of Polyhedral Parts by Rolling,
Algorithmica, vol. 26, no. 34, pp. 560-576, 2000.

[26] P. Hart et al., A Formal Basis for the Heuristic Determination of
Minimum Cost Paths, IEEE Trans. Syst. Sci. Cyber., vol. 4, no. 2,
pp. 100107, 1968.

[27] E. Steltz et al., JSEL: Jamming Skin Enabled Locomotion, IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2009, pp.
5672-5677.

[28] J. W. Booth et al., An addressable pneumatic regulator for distributed
control of soft robots, IEEE International Conference on Soft Robotics
pp. 25-30, 2018.


