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Abstract— We present a Lloyd-based navigation solution for
robots that are required to move in a dynamic environment,
where static obstacles (e.g, furnitures, parked cars) and un-
predicted moving obstacles (e.g., humans, other robots) have
to be detected and avoided on the fly. The algorithm can be
computed in real-time and falls in the category of the reactive
methods. Moreover, we propose an extension to the multi-
agent case that deals with cohesion and cooperation between
agents. The goodness of the method is proved through extensive
simulations and, for the single agent navigation in human-
shared environment, also with experiments on a unicycle-like
robot.

I. INTRODUCTION

Securing a safe and efficient navigation for mobile robots in
complex environments is one of the most urgent problems
in modern robotics. Two are the main approaches that
traditionally compete for prominence in this area. The first,
called deliberative, requires a complete a priori knowledge
of the environment and relies on optimisation solutions that
produce a motion plan maximising the elected cost function.
The second, which is frequently called reactive, emphasises
the importance of reacting quickly to unexpected conditions
detected by the on-board sensing system. The reactive ap-
proaches are quick and efficient and they integrate the sensor
data in real-time. Clearly, reactive algorithms cannot rely on
global information on the environment and on the mission
and therefore they do not usually seek optimality. In the
class of applications considered in this paper, we have three
requirements: 1. each robot has a global mission, we could
live with sub-optimal solutions but we need some guarantee
that the robot will eventually fulfil the mission goals, 2. the
environment is dynamic, we have got a “nominal” map but
the presence of temporary obstacles and of humans changes
the landscape on a per-minute basis, 3. some of the missions
are assigned to groups of robots, which travel together but
are not stiffly constrained to a formation. Two meaningful
paradigms in the many that could describe our class of
applications are the delivery of food and medicines inside
an hospital or of small packets within the pedestrian area of
an historical town.
Related Work. Some of the first proposal revolved around
the idea of potential fields [1], which reduce to the minimum
the computation time but which under certain condition
generate local minima preventing the progress of the robot
to the goal. Other authors propose a Deformable Virtual
Zone [2], i.e., the definition of a safe area around the robot
in which the presence of unforeseen obstacles triggers the
robot’s reactions. Borenstein et al. [3] propose the vector
field histogram for densely cluttered environment navigation
in order to manage the uncertain presence of obstacles from
the sensor readings. In the class of deliberative approaches

that operate knowing up-front the position of the obsta-
cles, we find sampling based approaches such as RRT [4],
RRT* [5] and combinatorial approaches based on cell-
decomposition [6]. A potential limitation of these approaches
is that they cannot be directly applied to manage unexpected
or moving obstacles.
Dynamic obstacles are the core concern of a lot of research
works. Fiorini et al. [7] proposed the so called velocity
obstacle approach, in which the set of velocities producing
a collision with an object moving at a known speed is
computed at each sampling time. In [8] motion models of the
surrounding humans and social constraints [9] are considered
to reactively re-plan the robot route.
Extending single agent navigation algorithms to the multi-
agent case is in general far from trivial. Reynolds [10] is
one of the first authors who introduced a (flock) model
of polarised, non-colliding aggregate motion e.g. flocks,
herds and schools. Using potential function for distributed
flocking is at the heart of the work of Olfati [11]. Extensions
of the velocity obstacle algorithm to the multi-agent case
are studied in [12], [13], [14]. Zhou et al. [15] present
a distributed Voronoi-based algorithm only for collision
avoidance between agents, relying on quadratic programming
(QP) for robots with linear dynamics. Our approach is based
on the Llyod algorithm [16] which can be applied to deploy
a team of robot in order to achieve a coverage of an area of
interest both in convex [17] and in non-convex maps [18].
The use of Voronoi tessellation for navigation has been
proposed by Lindhé et al. [19], who consider a particle model
for a formation of robots. This approach was an important
inspiration for this work, but it suffers from two important
limitations that prevent its direct applicability to our context.
At the level of the single agent, we explicitly consider the
presence of human in the environment, showing experimental
evidences on an unicycle-like robot. At the level of the
group of agents, we consider a group motion in which robots
compose a loose group, just as much as human pedestrians
do [20], [21]. In contrast, Lindhé et al. consider the group of
agents as a stiff formation, whose motion can be difficult in
adverse environments and might seem strange and possibly
intimidating to humans.
Paper Contribution. Our contribution is twofold: 1. we
propose a Lloyd-based algorithm able to move a robot
safely and to make it reach a goal position in a complex
environment with static obstacles, and humans. In this latter
case we analyse the conditions under which the collision
avoidance is guaranteed. 2. We show how the proposed
algorithm is naturally extended to the multi-agent case in-
troducing a simple method to make the agents flock together
in a safe manner (i.e. avoiding collisions) by adapting the
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overall shape to the surrounding environment and to the
surrounding agents. Contrary to the previous literature, our
solution produces a loose formation in which the robots
remain confined within a compact set but are allowed to
change their relative positions, in a way that resembles
a group of human pedestrians [20], [21]. Moreover, we
introduce what we called the Convex Weighted Voronoi
Diagram (CWVD) to permit better mobility to the agents in
the group. We provide, in addition to the theoretical analysis,
simulative, experimental evidences, and a comparision with
other approaches proposed in the literature.
The paper is organised as follows. Section II introduces the
background material and formalises the problem at hand.
The technical developments of the Lloyd-based navigation
approach is presented in Section III, while the multi-agent
extension is offered in Section IV. The effectiveness and
major improvements with respect to the state-of-the-art so-
lutions and the experiments on a wheeled robot are reported
in Section V, while in Section VI we report the simulation
results for the multi-agent case. Finally, Section VII presents
the concluding remarks of the paper.

II. BACKGROUND MATERIAL AND PROBLEM
DESCRIPTION

In this paper we consider a unicycle-like robot model,

[ẋ, ẏ, θ̇]T = [v cos θ, v sin θ, ω]T (1)

where pr = [x, y]T is the position of the mid point on
the rear axle and θ is the yaw angle. The control input
vector u = [v, ω]T comprises the forward velocity v and the
angular velocity ω. To ensure a correct (i.e. collision-free)
execution of the robot navigation in a known environment
from a starting position s to an end position e, the mobile
robot firstly plans a safe path that links s to the goal e. The
planner adopted to this purpose considers only the obstacles
that belong to the map. It is worthwhile to note that this
is a necessary step to avoid local minima that otherwise
cannot be ruled out when a reactive method is considered.
The chosen global planner is arbitrary (e.g. RRT* [5]) and it
is in general not required to satisfy any optimal criterium, i.e.
the synthesised path can be coarse and needs only to satisfy
the path safety constraint. The desired path is then discretised
in way-pointsWP = {wp1, wp2, . . . , wpm}, where wp1 ≡ s
and wpm ≡ e.
A. Lloyd algorithm. Let the mission space Q ∈ R2 be
a convex polytope and let us define the Euclidean distance
‖q − pr‖, where q is a generic point in the Q space and
pr is the robot position. Given the (generic robots) positions
P = {p1, . . . , pn}, the i–th Voronoi cell is

Vi = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖,∀j 6= i}. (2)

Hence, let us consider the following cost function

H(P ) =
1

2

n∑
i=1

∫
Vi

‖q − pi‖2φ(q)dq, (3)

where n is the number of agents in the scene, and the
probability density function φ : Q → R+ is an indicator

of the probability to have an interesting location or a desired
goal location in the Q space. By assuming a single integrator
dynamics, and following a gradient descent logic, we have
ṗi = −∂H(P )

∂pi
= ui. By taking into account the mass of

the i–th Voronoi cell MVi =
∫
Vi
φ(q)dq, and the centroid

position for the i–th Voronoi cell

CVi
=

1

MVi

∫
Vi

qφ(q)dq, (4)

we compute the derivative of (3), obtaining ṗi =
−MVi

(pi − CVi
) . We can assert that by applying the control

law ui = −kprop(pi − CVi), each agent will converge
asymptotically to its Voronoi centroid position, which is an
optimal deployment for the coverage problem [17].
B. Problem formulation. The problem we are facing is
the navigation of a mobile platform (or a group thereof)
from an initial position to a desired final position belonging
to an environment comprising static obstacles (e.g. indoor
corridors, alleys, doors, furnitures). We explicitly consider
the presence of dynamic obstacles as well, such as other
mobile robots or humans. The controller takes inspiration
from the Lloyd algorithm summarised in Section II–A, but
it has to explicitly consider the nonholonomic constraints of
the adopted unicycle-like robot. Moreover, we assume that
the robot has to preferably (i.e. most of the time) move at a
desired forward velocity vD.

III. SINGLE AGENT CONTROL

As stated in Section II, the path is assumed discretised in
way-points WP = {wp1, wp2, . . . , wpm} from starting s to
ending e positions. By considering the robot position pr and
assuming that wpk is the closest way-point to pr, we select as
next way-point to reach wpk+l, which is the point ahead of a
preview length l with respect to wpk. Notice that the preview
length is a function of the visibility set of the robot, i.e. if
the straight line between pr and wpk+l intersects an obstacle
of the map (i.e. static obstacle) we reduce the preview l until
the line of sight in between is obstacle free (condition that is
guaranteed to hold since the planned path is safe). An hybrid
between the reactive and the deliberative approaches guides
the robot toward the goal position. Notice that after the path
is planned, the proposed solution is purely reactive.
A. Reactive control for static obstacles. To avoid collisions
with static obstacles, we start by considering the single
Voronoi partition V associated with the robot position pr,
i.e. using (2) we get V ≡ Q. Then we constrained V on
the visibility set of the robot itself. In particular, we start by
defining the sensing area

S = {q ∈ Q | pr + a(q − pr) 6∈ O}, ∀a ∈ [0, 1],

where O is the set of points in Q belonging to the static
obstacles in the map and a ∈ R. This leads to the Voronoi-
constrained partition W = S ∩ V . By adding the constraints
on the limited sensing range rs, the Voronoi-Visible partition
turns to

Wrs = {q ∈W | ‖q − pr‖ ≤ rs}. (5)
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Fig. 1. The small faded circles with the boundary represents the robot.
(a) Modified Voronoi tessellation Wrs , used to avoid static obstacles, with
the set O of the obstacle points and the set Q representing the environment
points. (b) Modified Voronoi tessellation Ṽ , used to avoid collisions with
dynamic obstacles. The circles without the thick boundary represent the
humans

With this construction, the centroid position CWrs
of the

Voronoi-Visible partition, computed as in (4) with φ(q)
uniform, is in general in a safe location, i.e. CWrs

∈Wrs and
hence the segment connecting CWrs

and pr do not intersect
O (see Figure 1-a). However, since Wrs may be non-convex,
pathological cases in which CWrs

∈ O could occur. When
it happens, we modify the centroid position as the closest
safe point to the actual centroid such that CWrs

∈ Wrs , as
in [22]. Finally the static obstacles are properly inflated in
order to consider the robot’s footprint rr, see Figure 1-a.
B. Reactive control for dynamic obstacles. To deal with
dynamic obstacles (e.g. robot-to-human interactions), we act
again on the Voronoi cell. To this end, let us consider the
Voronoi tessellation as generated by both the robot and
the humans in the scene. More precisely, assuming P =
{pr, ph1

, . . . , phw
}, i.e. w humans in the scene, we have the

new partition V defined by (2) where i, j ∈ {r, h1, . . . , hw}.
We further assume a circular occupancy region with radius
rr for the mobile robot, and with radius rh for each human.
Let us consider the sum of the occupancy regions Rrh =
rr + rh; the Voronoi cell associated to the robot is modified
as follows:

Ṽ =

{
{q ∈ Q | ‖q − pr‖ ≤ ‖q − ph‖}, if Rrh ≤ ‖pr − ph‖/2
{q ∈ Q | ‖q − pr‖ ≤ ‖q − p̃h‖}, otherwise,

(6)
where p̃h = ph + 2

(
Rrh − ‖pr−ph‖2

)
pr−ph
‖pr−ph‖ . The safety

margin is thus computed when the circle centred in pr and
with radius Rrh exceeds the limit of the robot cell. An
example of this construction is depicted in Figure 1-b. The
approach to build up the cells is similar (less conservative)
to the Buffered Voronoi cells introduced in [15], however
the control inputs are synthesised with two very different
approaches and also deal with different scenarios.
C. Control synthesis. For the robot navigation, we control
the yaw angle derivative and the forward velocity indepen-
dently. To synthesise both control laws, we first compute the
desired heading hD using a Lloyd-inspired approach (see
Section II–A): we define a Laplacian distribution density
function φ(q, pr) with active way-point wpk+l (the way-point
to be reached) as mean value,

φ(q, pr) = ηe(−‖q−wpk+l‖/ρ), (7)

where ρ is a tuning parameter that controls the spread of
the pdf (i.e. related to the density variance) and η is the
normalisation constant. To implement the collision avoid-
ance, we consider a new Voronoi cell that retains both the
characteristics of the static (5) and dynamic obstacles (6),
that is F = Wrs ∩ Ṽ . The centroid CF of this new cell,
given by (4) and weighted by φ(q, pr), defines the desired
heading

hD = (CF − pr)/‖CF − pr‖, (8)

where hD = [hDx , h
D
y ]T . The angular velocity control law is

given by

ω = −κω(1−
〈
hD, h

〉
)γsign(hDx hy − hDy hx), (9)

where 〈hD, h〉 is the scalar product between the desired
heading hD and the current robot heading h = [hx, hy]T =
[cos θ, sin θ]T , γ ∈ (0, 12 ) is a tuning parameter, and κω > 0
is related to the vehicle steering capabilities (the proof of
stability is here omitted for space limits but reported in [23]).
For what concerns the forward velocity, we consider two
cases: if the vehicle is well oriented, that is if 〈hD, h〉 ≥
cosψ, with ψ ∈ (−π/2, π/2), the vehicle follows the desired
velocity vD; if the orientation error is too high, the vehicle
will brake to reduce the turning radius. Hence:

v̇ =

{
ka(vD − v), if

〈
hD, h

〉
≥ cosψ

−kbv, otherwise,
(10)

where ka and kb are two parameters that are representative
of the accelerating and braking capabilities of the vehicle.
The effect of ρ: In (7), we have introduced the tuning
parameter ρ, which regulates the spread of the pdf φ(q, pr).
If ρ → +∞, all the points assume the same weight and,
hence, the robot is not attracted by the next way-point but
tries to maximise the Voronoi partition coverage. On the
other hand, if ρ → 0, the mass is concentrated on the
way-point, hence the agent exhibits a greedy behaviour, i.e.
the robot will execute trajectories closer to the obstacles.
Therefore, ρ can be regarded as a tuning parameter for the
agent’s behaviour. Since different ρ choices could radically
change the behaviour of the system (sometimes even leading
to deadlock for large values), we propose an adaptive control
that follows a switching logic ruled by the distance δ =
||CF − pr||, i.e.

ρ̇ =

{
−ρ, if δ < δmin

(ρ− ρD), otherwise,
(11)

where ρD is the desired spread factor, and δmin is a threshold
value for the distance between the centroid and the robot. In
practice, since smaller values of ρ move the centroid CF
towards the way-point wpk+l, the point here is to reduce the
weight of the cell geometry in favour of the target position,
hence avoiding deadlocking configurations.
Stability and convergence: We will first show that the control
laws (9) and (10) ensures pr → e for static obstacles, i.e.
F = Wrs , and wpk+l = e when ρ = 0 in (7).
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(a) (b)
Fig. 2. Modified Voronoi cells: (a) the robot with its Voronoi-Visibile set
F , the function φ(q, pr) in (7) computed over F , the centroid position CF
(small blue circle) and the goal position e (big red circle); (b) the presence
of a human modifies the cell and, moreover, the effect of the spread factor
ρ on the centroid position (CF and C′

F when ρ decreases). active

Theorem 1. If F = Wrs , wpk+l = e and ρ = 0, the control
laws (9) and (10) ensures pr → e.

Proof. If wpk+l = e and ρ = 0 the centroid CF does not
change with the robot motion. Moreover, if 〈hD, h〉 < cosψ,
the robot is not pointing towards CF but, by means of (9),
the robot rotates towards the desired direction hD (see [23]).
Notice that (10) ensures a smaller turning radius in this
condition (eventually the robot would stop and turn on the
spot). Once 〈hD, h〉 ≥ cosψ, with ψ ∈ (−π/2, π/2), the
robot moves along directions that ensure δ̇ < 0, or, in other
words, pr → CF . Using the fact that ρ = 0, the pdf in (7)
turns to be a Dirac delta function centred in wpk+l = e and
therefore we have immediately e = CF , which concludes
the proof.

Corollary 1. If F = Wrs , wpk+l = e and ρ follows (11),
the control laws (9) and (10) ensures pr → e.

Proof. Irrespective of the value of ρ, the control laws (9)
and (10) ensures pr → CF , i.e. δ → 0. Therefore, there
exists a time instant such that δ < δmin, hence, by (11), ρ
decreases and CF → wpk+l. Hence, the proof.

Figure 2-a depicts the situation where the robot moves
towards the centroid CF that is located between the current
position and the desired ending position. Instead, Figure 2-
b shows the modified cell in the presence of a person and
the effect of the ρ spread factor. Next, we will prove what
happens along the sequence of way-points, that again is
reported in Figure 2-a.
Theorem 2. If F = Wrs and ρ follows (11) , the control
laws (9) and (10) ensures pr → e.

Proof. By Corollary 1, the distance ‖pr−wpk+l‖ → 0, then,
by construction, the new closest way-point wpk becomes
equal to the previous active way-point wpk+l and, by as-
suming constant preview lenght to simplify the notation, the
new active way-point becomes wpk+l = wpk+2l. Since the
existence of a new reachable way-point is ensured because
the path planned is assumed to be safe, it means that there
exists l > 0 such that wpk+l ∈ Wrs , this leads wpk → e,
hence the proof.

We are now in a poisition to prove another theoretical result.
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Fig. 3. (a) Construction of the allowed human velocity vh space ensuring
a sufficient condition for human-agent collision avoidance. (b) dmin as a
function of the human velocity vh and occupancy radius r′h for the case of
human constant dynamics.

Theorem 3. If F = Wrs ∩ Ṽ , ρ follows (11), the dynamic
obstacles in the scene are finite in number, and the inter-
actions with the dynamic obstacles happen within a finite
interval (i.e. a dwell time), the control laws (9) and (10)
ensures pr → e.

Proof. When a (group of) dynamic obstacle(s) modifies the
Voronoi cell, it may happens that the vehicle is locally pushed
away from the way-point. In the worst case, this negative
phenomenon can occur infinitely often in a finite time (e.g.
human adopts a pursuit policy). Since we assume that the
interaction with obstacles happens within a finite interval,
and since the humans are finite in number, by means of the
previous theorems the proof is readily derived.

It has to be noted that at least one way-point should remain
in the visible set of the robot when it is pushed away: if it
is not the case a way-points replanning is needed.
D. Safety guarantees. The safety provision is considered for
static and dynamic (e.g. a pedestrian) obstacles separately.
For static obstacles, safety is guaranteed by design (i.e.,
the robot is constrained to follow a point belonging to
its visibility set and the obstalces are inflated to take into
account the robot encumbrance) providing that the control
parameters (κω , kb, ka and ψ) ensure a responsive behaviour
(i.e., they depend on vD and ρ). For dynamic obstacles
(humans, in our application), since their velocities are not
controllable by the robot, safety guarantees cannot be given
in general. However, if the dynamic obstacle is not in pursuit
of the robot when ‖pr − ph‖ = Rrh, i.e. if its velocity
vh lies on the right half plane of Figure 3-a, then safety is
guaranteed because the agent’s velocity is directed towards
the cell’s centroid that belongs to the cell F (left semicircle in
Figure 3-a). Notice that this is actually a sufficient condition
for safety, thus if the human violates this condition it does
not imply collision.
The safety condition just described can be relaxed if we
assume that the safety margin Rrh in (6) is computed on
r′h > rh, and when ‖pr − ph‖ < Rrh the safety margin
is computed on ‖pr − ph‖. In this case, with reference to
Figure 3-a, we observe that the worst velocity direction (in
terms of safety) for the robot belongs to the straight edge of
the cell F . Given the system dynamics (1), this corresponds
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Fig. 4. Trajectories of human (red circle) and robot (blue diamond) for
safety margin r′h = 0.5 m and increasing human velocities vh: (a) constant
human dynamics, (b) human in pursuit dynamics. According to Figure 3-b,
when ξ → 1, the collision cannot be avoided in the worst case scenario.

to θ = α− π/2, where α = arctan(∆y/∆x), ∆x = x− xh
and ∆y = y − yh. For convenience, the relative position
between the vehicle and the pedestrian can be rewritten
in polar coordinates, with the origin being located on the
human, i.e. d =

√
∆2
x + ∆2

y and α, coming up with the
following:

[ḋ, α̇]T = [−vh cos(α− β),−(v + vh cosα)/d]
T
, (12)

where β is the human orientation angle. We further notice
that the robot has to reach its way-point wpk+l, thus the
worst case velocity selection (i.e., belonging to the straight
edge of the cell F , see Figure 3-a) is maintained for at most
a semicircle. Indeed, at most along one complete semicircle,
the robot will finally depart towards the way-point changing
its direction (hence the velocity no more will belong to
the straight edge of the cell F). The minimum distance
dmin between the robot and the pedestrian can then be
computed integrating (12), which is a function of r′h and
ξ = vh/v and is shown in Figure 3-b. Moreover, we report
the trajectories of the robot (along a semicircle) and of the
pedestrian with two different behaviours: constant velocity
(Figure 4-a) and a pursuing dynamics (Figure 4-b). In both
the cases, as the ratio of velocities ξ increases, the distance
that the robot can maintain from the human (in the worst
case) decreases, until we reach the inevitable collision. Hence
in order to guarantee a given minimum distance between the
robot and the pedestrian we have to select proper values
for ξ and r′h by consulting Figure 3-b before the mission
start, or simply assume non-adversary manoeuvres in the
pedestrian’s motion. For the simulations in Section V–A, we
do not use the information relative to the human velocity,
but we assume that the desired robot velocity is significantly
higher than the humans’ velocity. In the following Section
we will treat the multi-agent case. Notice that, by consid-
ering multiple robots adopting the same control strategy,
the sufficient condition for safety, that we just introduced,
is always satisfied between them, hence collision avoidance
between agents is guaranteed. In particular, if two agents
(both acting with the proposed control strategy) are in the
same condition depicted in Figure 3-a, this implies that the
agents’ velocities are, in the worst case, parallel one each
other, and in general, without a positive velocity component
in the neighbour direction.

p̂ci

Ui ∩Wrs,i

pi
Rcoh

Fig. 5. Modified Voronoi tessellation Ui∩Wrs,i for the cohesion purpose
of a group with four agents. The small faded circles are the agents of the
group in positions pi, ∀i = 1 . . . 4.

IV. MULTI-AGENT EXTENSION

In this Section, we propose the multi-agent extension of
the single agent navigation strategy just presented. As the
solution built upon (8), (9) and (10) deals with dynamic
obstacles, a quite straightforward extension is just to apply
those rules to all the n agents in the team. However, the
idea is pushed even further to derive a completely distributed
approach addressing the group cohesion. A first important
step, is to introduce a limited communication range, which
is set to rc,i = crs,i, where c > 2 and i = 1, . . . , n.
Requiring the communication range to be twice as much
as the sensing range is, in our evaluation, a realistic as-
sumption. An important point is that our notion of group
cohesion bears a close resemblance with the cohesion of a
group of humans rather than with that of a classic “lattice”
formation of robots. Therefore, moving cohesively means
to establish and maintain a social-like link among the team
agents, which we believe is another important contribution
of this work. Considering n robots, we assume that all the
starting S = {s1, s2, ..., sn} and ending E = {e1, e2, ..., en}
positions allow a connected communication graph between
the agents. The first step to confer cohesion to the group is to
compute its average position (i.e., the centroid of the group).
This can be made by using distributed techniques such as
the average consensus algorithm based on the Metropolis-
Hastings approach [24]. In this scheme, all the agents have
an estimate of pc =

∑n
i=1 pi/n, denoted as p̂c,i. Along the

trajectory, the robots are constrained in a region defined by
a circular area (but any convex shape can be considered)
with radius Rcoh, computed for the i–th agent as Ui = {q ∈
Q| ||q − p̂c,i|| < Rcoh}. Notice that Rcoh can be regarded
as a parameter governing the group compactness. In order to
secure the cohesion of the group, it is sufficient to use the set
Fi = Ui∩Wrs,i∩ Ṽi, where Ṽi is the Voronoi partition of the
i–th agent computed as in (6). Figure 5 depicts such partition
for the i–th agent. Notice that when the shape does not fit the
environment (e.g. a fatty shape in a tiny corridor) the agents
may escape from the desired shape to avoid obstacles or the
other agents. Hence, when ‖pi − p̂c,i‖ exceeds Rcoh,i − ε,
the cohesion radius is adapted to Rcoh,i = ‖p̂c,i − pi‖ + ε,
where ε is an arbitrarily small value; it allows the most
obstructed agents to continue to live inside their cells, and
then to reconnect the group.
The socially-aware flocking not only drives the agents in a
non-constrained but cohesive configuration (as pedestrians
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Fig. 6. Trajectory (black solid) traveled by a single agent (grey circle) in a
human shared environment. Red arrows represent the noisy human sensed
velocities. Dashed blue lines are the past humans trajectories (humans follow
a pursuing behaviour). (a) APF, (b) VO and (c) proposed approach.

do) while avoiding obstacles and humans, but also adapts
agents behaviour according to neighbours and the environ-
ment. To this end, we introduce the convex weigthed Voronoi
diagram (CWVD) by taking inspiration from the power
weighted Voronoi diagram (PWVD) and the multiplicatively
weighted Voronoi diagram (MWVD) (see [25], [26]). The
main novelties here are: 1. the cells preserve their convexity,
which is not true for PWVD and 2. the agent moves inside
the cell, which is not valid for MWVD. We define the CWVD
as

Hi =

{
q ∈ Q|wx cosαij + wy sinαij <

rs,i
rs,i + rs,j

‖pi − pj‖
}

(13)
where w = q − pi = [wx, wy]T , and αij = atan

(
yj−yi
xj−xi

)
.

With the following adaptive law

ṙs,i =

−
(
rs,i − rs,i

)
if card (Yi) ≥ card

(
1/nVi

∑
j∈Vi
Yj

)
− (rs,i − rs,i) if card (Yi) < card

(
1/nVi

∑
j∈Vi
Yj

)
,

(14)
where rs,i > 0 and rs,i < Rs,i are the lower and upper
bounds for rs,i, the set Vi indicates the neighbours of the
i–th agent and nVi its number, and the set Yi = Ui ∩ Hi ∩
Wrs,i , we can easily change the CWVD Hi for the i–th
robot. In particular, the role of (14) is to balance the cell
dimensions inside the cohesive flocking region, thus giving
an equal share to each agent. This way we enforce a “social”
behaviour that tends to ensure an equal mobility to all the
agents. This is of major relevance, since more natural and
comfortable trajectories can be generated.
In Section VI we show the effectiveness of the proposed
approach through extensive simulations.

V. SINGLE AGENT RESULTS

In this Section, we first propose a comparative analysis with
respect to some solutions available in the literature and then
an actual application of the method is discussed.
A. Comparison with the state-of-the-art. A comparative
analysis with respect to two well-known reactive solutions,
which may also have a multi-agent extension, is firstly
presented. In Figure 6, the qualitative comparison is reported
when three humans have a pursuing behaviour. The artificial
potential functions (APF) method (Figure 6-a, [27]), the
velocity obstacle (VO) approach (Figure 6-b, [7]), and the
proposed solution (Figure 6-c) are reported in the same

TABLE I
COMPARISON BETWEEN TRAJECTORIES GENERATED BY APF, VO AND

THE PROPOSED ALGORITHM, IN 4 DIFFERENT SCENARIOS. WE REPORT

THE PATH LENGTH l, THE TIME TO REACH THE GOAL POSITION t, THE

CURVATURE OF THE PATH AND ITS DERIVATIVE κ AND κ̇.

- APF VO Lloyd-based
scen. # 1 2 3 4 1 2 3 4 1 2 3 4
l (m) 12.7 12.5 13.8 12.4 11.9 11.6 11.0 15.5 11.8 11.4 11.2 11.6

κ (m)−1 2.83 0.16 >100 0.18 6.58 >100 0.45 >100 0.18 0.06 0.05 0.15
κ̇ (ms)−1 0.67 0.53 >100 0.47 1.11 25.18 0.50 10.64 0.56 0.45 0.39 0.39
t (s) 4.75 4.69 5.11 4.65 4.78 5.64 4.92 6.83 4.45 4.32 4.26 4.39

scenario. For simplicity we consider a single agent having a
holonomic kinematic model. We assume here, to mimic an
actual situation, that the velocities of humans (this informa-
tion is useful only for the VO approach) are estimated with
a white noise distributed N (0, σ2

v), where σ2
v is 10% the

actual human velocity (the red arrows in Figure 6 represent
the velocities affected by the measurement noise). Let all
the pedestrians move with the same velocity vh, the desired
robot velocity vD in (10) is set to 3vh. It can be noticed
how the VO solution does not work properly (i.e. trajectory
is jerky and possibly unsafe) because of the noise in the
vh variable (Figure 6-b). Indeed the VO solution is based
on the assumption that the robot has a perfect knowledge
of the humans velocities, which is de facto an unavailable
information in realistic scenarios. The APF solution appears
instead to be better (Figure 6-a) than VO solution; however
it shows oscillatory behaviours. The proposed solution gen-
erates good trajectories in terms of smoothness, path length
and safety (Figure 6-c). In order to validate quantitatively the
effectiveness of our approach we report in Table I an analysis
using as metrics the path length l, the time to reach the
goal position t, the average path curvature κ and the average
normalised curvature derivative κ̇. We report the results for
four different scenarios with random robot initial and goal
position, humans positions and velocities. The bolded values
in Table I indicates the highest performance. It is evident
how the proposed approach performs better than the others
with respect to the chosen metrics.
B. Experimental results. The experiments with the single
agent navigation algorithm in two different scenarios are
here discussed to prove the effectiveness of the solution in
an actual scenario also with nonholonomic constraints. The
experiments have been carried out in the DISI Department at
the University of Trento. The robot localises itself through
its encoders and through a RPLIDAR-A3, with the latter
being also used to detect static and dynamic obstacles. In
the first scenario, depicted in Figure 7-a, the avoidance
manoeuvre in a corridor where the robot and a human are
moving in opposite directions (frontal case). In this scenario,
the human facilitates the avoidance manoeuvre by swerving
to one side; as a result the robot can easily follow the
desired heading without major braking actions (Figure 7-
b). The second scenario, illustrated in Figure 7-c, considers
the case of a human walking alongside the robot in a
corridor. In this experiment the human has a clearly adverse
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(a) (b) (c) (d)
Fig. 7. In (a) and (c) we show respectively three and four time instants (denoted with ti) of the single agent navigation in a cluttered environment. The
grey thickest solid lines are the static obstacles detected by the LIDAR sensor, the solid orange curves are the robot paths and the dashed blue curves are
the human trajectories. In (b) and (d) we report the control inputs, the heading error with the dashed threshold value cosψ, the spread factor (11) and the
way-point distance ||wpk+l − CF ||.

Fig. 8. Example of an experiment in the corridor with multiple humans.8
snapshots in chronological time sequence, from top left to bottom right.

behaviour, thus the robot must brake several times to avoid
collisions, as clearly visible from Figure 7-d. In Figure 8,
8 snapshots of an experiment with multiple humans in the
scene are reported. The video material accompanying this
paper provides additional meaningful experiments. As a final
remark, the algorithm, implemented on a Nvidia Jetson TX2
hardware mounted on the robot, computes the control inputs
with an average computation time of 20 ms. The computation
time increases with the selected agent’s cell dimension rs,
which in this case is set to be equal to 1 m: by increasing
the range up to 1.5 m, the computation time reaches 30 ms.
Higher ranges would increase the computation time as well,
even though the desired reactive behaviour has by definition
a limited area of interest [28].

VI. MULTI-AGENT RESULTS

Due to the lack of an adequate number of mobile agents,
the proposed approach has been extensively tested only in
simulations. We mainly compare the multi-agent flocking
algorithm with constant and adaptive ranges rs,i. In Figure 9
we provide a qualitative comparison for the two approaches;
in the non-adaptive case (Figure 9-a), when the team gets
close to a human, the robot that is closer has very little
mobility, as testified by the small available cell. In this case,
instead, it should have a large cell since it is impaired by the
presence of the pedestrian: by using the adaptive solution, the
same robot has a larger region, while the other team members
reduce their mobility freedom accordingly (Figure 9-b), thus
implementing the social cooperative behaviour. In Figure 9-
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Fig. 9. In (a) and (b) two snapshots, at the same time instant, with the
non-adaptive (a) and adaptive (b) rule (14). The solid lines are the agents
trajectories followed from the starting positions, the dashed lines are the
human past trajectories and the blue crosses are the centroids of the cells. In
(c) and (d) another simulation with 10 nonholonomic agents and 2 humans
with constant velocity. In (c) we report a snapshot of the simulation results.
S and E identify respectively the starting and goal positions. In (d) we
report the quantitative results. From the top to the bottom we have the
distances between agents and humans, the distances between agents and the
goal positions, and the distances between agents and the mean position of
the group.

c,d we report the results of the adaptive approach, we con-
sider 10 nonholonomic agents that navigate in a dynamical
environment, with 2 humans and walls. In Figure 9-c we
depict a snapshot in order to have a qualitative description
of the scenario. In Figure 9-d we report quantitative results:
on the top chart the distances between the humans and the
agents, on the center the distances between the goal positions
and the agents, and finally on the bottom chart the distances
between the mean position of the group and the agents.
By considering these plots it can be notice how the group
converge towards the goal position, without violating the
safety constraints (i.e. the values in the top chart does not
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TABLE II
SIMULATION RESULTS WHERE n IS THE NUMBER OF AGENT, tNA IS THE

TIME TO REACH THE GOAL IN THE NON ADAPTIVE CASE, tA IS THE TIME

NEEDED IN THE ADAPTIVE CASE.

n (-) 10 15 20 25
tna (s) 7.359 9.042 13.068 17.325
ta (s) 7.425 8.382 9.933 13.530

fall below Rrh) nor exceeding from the cohesion hull, with
radius Rcoh.
The last simulation results regard the comparison of the
adaptive and the non-adaptive approach in a scenario where
the agents are positioned in circle and the goal of each
agent is diametrically opposed to its initial position (in this
simulation we are not interested in the group cohesion, i.e.
Rcoh = ∞). In this case the noise in the Voronoi cell
computation (due to the discretisation) breaks symmetries
and the system is able to get over deadlock issues. In Table II
we report the obtained results, in particular the time it takes
for all agents to reach the goal in the adaptive and non-
adaptive case by varying the number of agent in the scene.
The adaptive algorithm performs better than the non-adaptive
approach, mainly because of the increased mobility of the
system, and it is clearer by increasing the number of agents.

VII. CONCLUSIONS

We have proposed the application of Lloyd algorithm as a
means to navigate a ground robot from a starting position to
a goal. For the single agent case, the robot is guaranteed
to safely reach its final destination avoiding both fixed
and moving obstacles, unless the latter behave adversely
and/or impede on purpose the progress of the robot. For
the multi-agent case, not only can our solution guarantee
progress toward the goals and collision avoidance for the
entire group, but it also secures cohesion to the group and
a cooperative behaviour between the agents in the team.
Our notion of group cohesion is quite different form the
standard definition of robot formation, since our robots are
not constrained to a stiff formation lattice but they can move
inside a cohesion area. The cooperation between agents is
the result of local interaction which tends to distribute the
agents’ mobility equally among the group. An extension of
the work, planned for the near future, will be implement the
multi-agent algorithms on real robotic platforms.
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