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Abstract— The widespread use of robotics in new application
domains outside the industrial workplace settings necessitates
robotic systems that demonstrate functionalities far beyond
those of the classical industrial robotic machines. These emerg-
ing applications involve complex tasks that also vary and have
to be carried out within a partially unknown environment re-
quiring autonomy and adaptability, which further increase the
intricacy of the system software architecture. To cope with the
demands and the consequent complexity of the robotic systems
and their control, software infrastructures that can be quickly
and seemly adapted to these requirements, while providing
transparent and standardized interfaces to the robotics devel-
opers and users, are needed. In this work we introduce the XBot
software framework. The development of the XBot was driven
by the need to provide a software framework that abstracts the
diverse variability of the robotic hardware (effectively becoming
a cross robot platform framework), provides deterministic hard
Real-Time (RT) performance, incorporates interfaces which
permit the possibility to integrate state of art robot control
frameworks, and delivers enhanced flexibility through a plug-in
architecture. The paper presents the insights of the XBot frame-
work from the developer to the user perspective, discussing the
details of the implementation mechanisms adopted as well as
providing tangible examples on the use of the framework.

I. INTRODUCTION AND DESIGN GOALS

The continuous advancement of robotics with the incor-
poration of new skills and capabilities required to address
effectively applications within unstructured workplaces, has
inevitably increased the complexity of robotic hardware,
software and control components. As a result the inevitable
complexity of today’s robots targeting to new domains in
partially unstructured environments has reached a noticeable
extent, e.g. such robots typically consist of a large number
of sensors, actuators, and processors executing numerous
control modules that communicate through several and di-
verse interfaces. To tackle this, several software frameworks
have been developed in the past twenty years [1] targeting
to provide flexible infrastructures, which not only permit
to seemly integrate new functionality and interfaces in the
robotic system, but also ensure standardization and easy
tracking and maintenance of the software development, de-
spite the increased complexity.

The selection among these available software middlewares
is not a trivial task for the research community as well
as for companies interested to explore them. Apart from
having to deal with the software intricacy, these frameworks
have to provide hard RT performance ensuring deterministic

response times [2] as required in critical tasks when robots
need to perform in autonomous mode, responding to distur-
bances and interacting with the physical environment. Thus,
an essential feature of a software framework for robotics
is the RT safeness and the RT scheduling, both needed for
effective control, especially when executing high frequency
and low jittering (e.g. 1 kHz) control cycles.

Furthermore, a software middleware needs to abstract the
complex hardware (e.g. actuators and sensors) of the robot
providing a simple, standardized Application Programming
Interface (API). In fact a robot can be considered a dis-
tributed system composed by a set of hardware devices
communicating through a fieldbus. Efficiently developing
control and application software that can be shared, ported
and reused in different robots with minimum effort, is
another fundamental requirement for the software architec-
ture. An important component needed to achieve this goal
is the Hardware Abstraction Layer (HAL), which can be
incorporated to mask the physical hardware details (e.g.
kinematics model, sensor, update frequency, etc) varying
from one robot to another. The HAL can provide a relatively
uniform abstraction layer that assures portability and code
reuse: it permits to develop control modules and easily port
them from one robot to another.

The existing robotics software frameworks address differ-
ent needs and requirements [1], therefore one of the key
aspects for a brand-new middleware is the interoperability
with well-known and established robotic software platforms.
Interoperability should ideally allow users to execute existing
software without the necessity of (i) changing the current
code and (ii) writing hand-coded “bridges” for each use
case [3].

Among state-of-the-art robotics middlewares, we recall
OROCOS [4] (Open Robot Control Software), an RT frame-
work, which permits to develop robotics control applications
consisting of multiple interacting components. For strict RT
applications, OROCOS allows to schedule components in
a single process while it relies in the background (hidden
for normal users) on the Common Object Request Broker !
(CORBA) architecture for Inter Process Communication
(IPC), implemented in C++ using ACE/TAO?. Components

"http://www.omg.org/spec/CORBA/
2http://www.theaceorb.com/

IEEE Robotics and Automation Magazine (RAM) paper, presented at IROS 2020. It should be cited as a RAM paper.



may run in a single or separated threads depending on their
activities. Despite OROCOS is used in a fair number of
robotics projects, the framework maintenance as well as the
community looks not being very active anymore>.

A very similar framework to OROCOS is OpenRTM-
aist [5], developed in Japan from 2002 under NEDO’s
(New Energy and Industrial Technology Development Or-
ganization) “Robot challenge program”. It is based on
CORBA, which increase the software complexity for the
end-users/developers. Moreover, a part of OpenRTM-aist
documentation is available only in Japanese that further
impedes its utilization.

PODO [6] is the framework used by KAIST (Korea
Advanced Institute of Science and Technology) in the DRC-
HUBO robot during the Darpa Robotics Challenge Finals [7].
Its control system has RT control capabilities and its inter-
process communication facilities are based on POSIX IPC;
moreover it uses a shared memory system called MPC to
exchange data between processes on the same machine. This
heterogeneous system has the potential to cause confusion,
as clearly stated in [8] inside Section 2.1, as it is unclear
which architectural style must be used to communicate with
a specific component.

YARP (Yet Another Robot Platform) [9] and ROS (Robot
Operating System) [10] are popular component-based frame-
works for IPC that do not guarantee RT execution among
modules/nodes. However it is essential to have a component
responsible for the RT control of the robot, making these
frameworks only suitable as external (high-level) software
frameworks. We should mention here that ROS 2 is moving
towards the RT support* using the DDS (Data Distribution
Service) middleware: anyhow it is still in an early stage de-
velopment phase, so it can’t be used in real-world scenario®.

In [11] an RT architecture based on OpenJDK is intro-
duced (used by IHMC during the DRC Finals). Nevertheless,
to their own admission [12], none of the commercially avail-
able implementations of the Java Real Time Specification
had the performance required to run their controller. In other
words, the existing Real-time Java Support is insufficient.

The above considerations and limitations of the existing
frameworks motivated us to develop the XBot framework
having in mind that the design of a software platform, which
lies at the foundations of such complex and diverse robotic
systems, is the most crucial phase in the software devel-
opment process. XBot was designed to be a user friendly,
flexible and reusable middleware for both RT and non-
RT robotics control. XBot was developed starting from the
following design goals and features:

o Hard RT control performance: it must perform com-
putation inside specific timing constraints with mini-
mum timing jitter. There are several operating systems
or platforms which support RT operation, like Windows

3In particular we refer to the discontinuity in maintaining the framework
under last versions (> 3.x) of Ubuntu Xenomai, where the OROCOS porting
is still experimental

“http://design.ros2.org/

Shttps://index.ros.org/doc/ros2/Features/

CE, INtime, RTLinux, RTAI, Xenomai, QNX, VX-
Works. We selected a Linux based Real-Time Operating
System (RTOS) to avoid a licensed product that does
not give us the possibility to modify and adapt the
source code to fit it to the specifications of our system.
In particular, Xenomai satisfies the requirements for
extensibility, portability and maintainability as well as
ensures low latency as stated in [13].

o High control frequency: robotics applications may
often require high frequency control loops, e.g. RT Pat-
tern Generator for Biped Walking, impedance regulation
controllers or force feedback modules

« Cross-Robot compatibility: it should be possible to use
it with any robot, without code modification. It is crucial
to be able to reuse the software platform with different
robots, or subsystems of the same robotic platform

o External Framework integration: it should be possi-
ble to use XBot as a middleware for any kind of external
software framework (RT or non RT) without tailored
software or specific bridge for every different case.

o Plug-in Architecture: users and third parties should be
able to develop and integrate their own modules. In a
robotic system platform we need a highly expandable
software structure

o Light-weight: small number of dependencies on other
libraries, it should be easy to install and set up. It is
expected to run XBot on embedded PCs which can pose
low performance requirements in terms of memory and
CPU for the control framework in use.

o Simplicity: it must be simple. Complex systems
may have unneeded and over-engineered features. For
robotic applications we need the full control over the
software platform. KISS (“Keep It Simple, Stupid”)
principle is essential and unnecessary complexity should
be avoided

« Flexibility: XBot has to be easy to modify or extended
to be used in systems and applications other than those
for which it was specifically designed

Finally, the XBot software framework was not developed
to address the requirements of a specific robotic platform, in-
stead its implementation is flexible, generic and cross-robot.
Furthermore it does not depend on any existing software or
control platform, but it provides to the user the functionality
to easily integrate any RT or non-RT frameworks.

II. FRAMEWORK

As presented in Figure 3, the XBor software architecture
is composed of different components, described in details
within the following sub-sections. Each of them has a dedi-
cated role and functionality and contributes to the realization
of one or more of the design goals described in the previous
section. Figure 1 presents a detailed view of the threads
spawn in the main components of the framework. To avoid
scheduling issues and keep the complexity of the software
infrastructure as low as possible we currently employ only
two RT threads and one non-RT thread in the framework.
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Figure 1. XBot threads structure and communication mech-
anisms.

A. R-HAL

The Cross-Robot compatibility feature is achieved
through the development of a suitable hardware abstraction
layer [14], which enables the user to efficiently port and
run the same control software modules on different robots,
both in simulation and on the real hardware platforms. The
main idea is to provide an independent layer with respect
to the robot hardware and high-level software enabling the
integration of new actuators, sensors or other hardware
components.

Concerning the threads configuration, XBot employs a
separate thread to execute the low-level robot control loop
and permits to realize controllers with different frequencies.
Synchronization between the Plugin Handler thread and the
R-HAL thread is implemented using condition variables and
it is needed to safely access the shared data structures.

XBot currently supports EtherCAT (for robots like WALK-
MAN, CENTAURO and COMAN+), Ethernet (for CO-
MAN), and KUKA LWR 4 / KUKA LBR arm based robots
[15], [16], [17]. The possibility to simulate the robot and its
controllers behaviours prior to testing on the real hardware is
essential, especially when dealing with complex robotic sys-
tems. To achieve this we provide an R-HAL implementation
for the well known Gazebo® simulator environment Figure
2. In particular we rely on the Gazebo Mode1Plugin class
to be part of the Gazebo internal loop.

B. Plugin Handler

The main component of the XBot architecture is called
Plugin Handler and it is represented in Figure 3 with dark
pink colour. The software design of this component relies
on two core requirements of a robotic system (described
in section II): the RT control and the highly expandable
software structure. To achieve this the Plugin Handler is
implemented using a single RT thread running at high
frequency (e.g. 1 kHz) and is responsible for the following
actions with the order they appear below.

1) load the set of plugins as shared objects in the filesys-

tem requested by the user from a configuration file,

2) initialize all the loaded plugins, and start them upon

user request,

3) execute the started plugins sequentially,

4) reload and reinitialize a plugin upon user request,

5) close and unload all the loaded plugins.

Ohttp:/gazebosim.org/

Figure 2. COMAN+ robot controlled inside the Gazebo
simulator (left) and CENTAURO robot in RViZ (right): both
using two different implementations of the R-HAL provided
in the XBot software architecture.

In Figure 4, the UML state diagram representing the life-
cycle of a plugin is presented.

The Plugin implementation is compiled as a shared object
library (.so). In details a Plugin is a simple class inheriting
from the abstract class XBotControlPlugin; this means
that writing a Plugin is straightforward for the user, as he/she
just needs to implement three basic functions:

e an init_control_plugin () function, which is
called by the Plugin Handler after the plugin is load-
ed/reloaded and is useful to initialize the variables of
the Plugin

e a control_loop () function, which is called in the
run loop of the Plugin Handler after the plugin is started

e a close () function, which is called in the Plugin
Handler closing phase

A ready to use code generator script is provided inside the
XBot framework, to enable the user to create a skeleton of a
new plugin in no time, as described in section IV.

The user might have the need to run a set of Plugins in the
non-RT layer without modifying their implementation: the
NRTDeployer component, represented in Figure 3 with green
colour, is provided to emulate the Plugin Handler behaviour
in the non-RT layer. This can be useful for not-expert users,
since they can use the same RT XBot plugin structure, but
they do not have to deal with the constraints that the RT
kernel is posing, i.e. mainly to not have any context switches
inside the control loop by avoiding non-RT system calls.

C. Communication Handler

The above mentioned software components do not give
the possibility to communicate with external modules/hosts
outside the robot: for this purpose the software frame-
work of a robotic system should incorporate a set of non-
RT threads that permit the communication of the system
with remote pilot stations or cloud services. To this aim,
XBot provides the Communication Handler component as
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Figure 3. XBot software architecture: components overview and interaction.

a non-RT thread with the primary goal of servicing all
operations which would break determinism. Data exchange
between such a thread and the Plugin Handler is done
either via shared memory (relying on lock-free synchro-
nization patterns on the RT side), or by exploiting a
Xenomai-specific datagram protocol named XDDP (Cross
Domain Datagram Protocol) which achieve asynchronous
communication between RT and non-RT threads, without
any mode switches’. Similar to the Plugin Handler, a dy-
namic loading mechanism is employed in order to achieve
easy expandability of the systems in terms of the non-
RT components that can be loaded. Such components be-
long to two categories: (i) CommunicationInterfaces,
which implement the framework-specific robot API (e.g.
broadcasting robot TFs and joint states to ROS topics),
and (ii) IOPlugins, which provide access to the shared
memory and XDDP pipes. As for the standard Plugin, XBot
provides a ready-to-use skeleton (simple script to run) for
the user who wants to implement a new IOPlugin. The

7In a Xenomai system, threads can operate either in “primary” mode
(managed by the real-time scheduler), on in “secondary” mode (managed
by the standard Linux kernel). The term mode switch then refers to a RT
thread involuntarily switching to secondary mode due to a non-RT system
call.

execution loop of the Communication Handler thread
is responsible for updating the internal robot state using the
XDDP pipe with the non-RT robot API, sending the robot
state to all the communication frameworks implemented as
CommunicationInterfaces, receiving the new refer-
ence from the “master” CommunicationInterface (to
avoid having multiple external frameworks commanding the
robot) and finally for sending the received reference to the
robot using the XDDP non-RT robot API.

D. XBotlInterface

After the design and the implementation of the latency-
free, hard real-time layer the next significant feature is
accompanied by the implementation of flexible interfaces,
which permit our framework to integrate with state-of-art,
widely spread robot control frameworks like ROS, YARP,
and OROCOS. During the initial phase of our design, we
immediately recognized the importance of providing the
user with a standard way of communicating with the robot,
regardless of its specific structure (humanoid, quadruped,
manipulator, etc), and also independently of the particular
software layer that the user wanted to operate within. To
satisfy this we aimed at developing an API that could be
used to send commands to a robot, and receive its current
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state, from a ROS node, an OROCOS component or a XBot
RT plugin, in a uniform way. With this in mind, we started
the design of the XBotInterface library.

An object of the XBotlnterface class is essentially a big,
organized, container for the robot state, including its on-
board controllers. As such, it includes quantities that describe
the measurements coming from the robot sensors (e.g. joint
position and torque, motor current, IMU states, force/torque
sensing etc), and control references (joint position, torque
and impedance, etc) as well. As a complex robot, e.g. a
humanoid can have as many as forty joints, it is important
to organize such a state rationally. To this aim, we define
the XBot::Joint to be the most atomic component of
the library. We then define the XBot : : KinematicChain
as a collection of joints belonging to the same chain. This
enables the user to specify a joint by the name of the chain it
belongs to, and its position inside the chain itself, rather than
remembering its literal name or its position inside a possibly
huge vector of joints. However, this semantic approach to the
robot description comes with disadvantages as well, mainly
because of the fact that it is inconvenient to use it for the
development of control algorithms, that often rely on the
manipulation of the joint states according to the rules of
linear algebra. Hence, we also decided to provide a full-robot
interface that relies on Eigen3, a state-of-art linear algebra
library. Furthermore, interfaces to two families of sensors
that are crucially important for real-time control, i.e. force-

RobotInterface Modellnterface

+ sense() =0 +update() = 0

+move() =0 + kin/dyn functions... =0
+ setReferenceFrom() + syncFrom()

RobotInterfaceROS | ModellnterfaceRBDL |

S Fmm e
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Figure 5. UML class hierarchy diagram for the the XBotln-
terface library.

torque (FT) sensors and inertial measurement units (IMU)
were implemented and incorporated in the XBotlnterface
library.

While the XBotlnterface class organizes the robot state,
to enable actual communication with a robot, we defined the
RobotInterface as a subclass of XBotlnterface that in-
troduces a sense () method for collecting sensory feedback
from the robot, and a move () method for sending reference
commands to the robot. Both functions are defined as pure
virtual, since their implementation depends on whether the
RobotInterface is being used from a ROS node, an
OROCOS component, or a XBot RT plugin.

Besides communicating with the robot, it is often the
case that a piece of control code may involve kinematic
and dynamic computations, which are performed by some
external library. Such library must take a model state (e.g.
joint positions, velocities, and acceleration) as input, and
return the joint references (e.g. joint positions or torques) as
output. Both states are usually in the form of arrays, which
are arranged according to an order that is specific to the
library itself. Again, we found this to be an inconvenient
and error-prone format for the human user, especially in the
case of complex multi-chained robots. In an effort to ease the
user’s work, we decided to reuse our robot state description,
which is the XBotlnterface class, with the following three
main goals in mind:

o provide a uniform interface not only to the state of
actual robots, but also of the corresponding model
counterparts;

« standardize the API for retrieving the outcome of the
most common kinematic and dynamic computations;

« case the data exchange between a robot and a corre-
sponding model, and vice-versa.

We achieve these objectives by defining the
ModelInterface as a subclass of XBotlnterface, which
mainly adds an wupdate() method where the underlying
kinematic/dynamic library is updated with the current
model state. Similarly, it is a pure virtual function whose



implementation depends on the specific back-end that is
being used. In addition, we also introduce a minimal set
of pure virtual methods for every fundamental algorithm
from the domains of kinematics (e.g. forward kinematics,
differential kinematics, ...) and dynamics (e.g. inverse
dynamics, bias terms, mass matrix computation, ...) . As
a third step, we also provide functions for synchronizing
robots and models, i.e. for setting a model state from the
sensory feedback from the robot, and for turning a model
state into a reference for the robot controllers. In our
experience, these two syncing methods have turned out to
be useful especially when robot and model do not have
the same structure, as it is often the case when dealing
with complex robots. As a simple example, a manipulation
module may use a model for just the upper-body of a legged
robot, while the robot object always takes into account the
system as a whole. The resulting class hierarchy for the
XBotlnterface library is summarized in Figure 5.

E. RT software middlewares - The OROCOS integration

The XBot framework provides the RT communication
plugin for the integration of any other RT software frame-
work thanks to the use of the IDDP (Intra Domain Datagram
Protocol) pipes, a Xenomai-specific datagram protocol for
RT inter-process communication. The difference between
the XDDP and the IDDP protocols is that the former is
available for mode-switches-free data exchange between
Xenomai threads and regular Linux threads (RT <= non-
RT), while the latter enables real-time threads to asyn-
chronously exchange datagrams within the Xenomai domain,
via socket endpoints with a latency-free communication(RT
<= RT). In the OROCOS use-case, we implemented the
XBotOrocos RTT Task component to have a transparent
communication between the OROCOS Task, implemented
as another OROCOS component, and the target robot. The
above integration was used and validated in [18].

F. Non-RT software middlewares - The ROS integration

During an initial phase of the XBot development, the target
for the RT part of our architecture was to execute mostly
low level control algorithms that would not need too much
flexibility for their I/O operation from and towards the higher
level non-RT domain. The reader could think, for instance,
of a closed-loop inverse-dynamics plugin, which provides
feed-forward torques to the actuators, or of a center-of-mass
stabilizer that is used for balancing and locomotion. Modules
of this kind do not need to exchange much information with
external pieces of software. On the contrary, it turned out
later that our users wanted to take advantage of the low
latency guarantees granted by the RT layer to implement
complex controllers that do need flexible I/O in terms of
receiving reference set-points, online parameter tuning, and
sending information on the controller state. Even though
it was possible to build such an infrastructure leveraging
the flexibility of the communication handler loop by means
of IOPlugins (as discussed in Section II-C) in combination
with XDDP communication, we chose to reuse as much

as possible standard tools that are well established in the
robotics community such as ROS subscribers, publishers,
service servers, and dynamic reconfigure. While it is not
immediately possible to use these tools from the RT domain,
we realized that our threading structure allowed us to adapt
them with moderate effort, and with no required modification
to the ROS source code.

More in detail, subscribers, service servers, and dynamic
reconfigure are based on callbacks. Since the data reception
part involves system calls to the Linux kernel, such callbacks
should be processed by a non-RT thread, which in our case
is the Communication Handler. Once received, callbacks are
packaged as std: : function-like objects and sent to the
RT thread for execution using lock-free queues.

Publishers are slightly more complex to adapt; the stan-
dard workflow when using publishers from a normal pro-
cess would be to produce a message, and then to call
a publish () function that serializes it and sends the
corresponding bytes via TCP. The data transmission part
needs to be performed from a non-RT thread, since it
involves a system call to the Linux kernel. On the other hand,
the serialization part should be done where the message is
produced, since it is the only place where its fype is known.
Consequently, it is necessary to “split” the publish ()
function in a way such that the serialization is performed
on the RT plugin, while the actual publishing is done on
the communication handler. Indeed, ROS allows us to take
over control of such details by using its advanced API.
Summarizing, we enable the developer of a RT plugin to:

« subscribe to arbitrary ROS topics of any message type
(including custom messages) without the need for any
adaptation step;

o implement a service server inside a XBot RT plugin;

o publish arbitrary messages to a topic;

o tune online the module parameters with the popular
ROS dynamic reconfigure tool.

III. USER TUTORIAL

The starting point for the wuser tutorial is the
following  GitHub  repository: https://github.
com/ADVRHumanoids/XBotControl.

This contains all the releases of the XBotControl frame-
work which includes not only the XBot software platform,
but also the OpenSoT[19] and the Cartesl/O[20] robot con-
trol libraries.

Once the installation and configuration steps are executed
following the online instructions®, the user will be able to
run a basic example usage of the framework, since a set of
ready-to-use robot model and plugins will be available on
the user’s system.

XBot needs just a YAML configuration file as an input;
for example we can try to control the CENTAURO robot in
simulation doing the following:

o set the CENTAURO YAML configuration file for the

basic example we want to run:

8nttps://github.com/ADVRHumanoids/XBotControl/
wiki/Install, -Configure, -Uninstall



Figure 6. CENTAURO robot executing the Homing plugin
inside the Gazebo simulator with the XBot built-in support.

set_xbot_config /opt/xbot/build/
install/share/xbot/configs/
CentauroConfig/centauro_basic.
yaml

o start the roscore since we rely on the ROS framework
for the non-RT communication in this particular exam-
ple:

roscore

e start the XBotCore process in dummy mode ( -
D option) to start a kinematic simulation of the
robot and load the set of plugins specified in the
centauro_basic.yaml configuration file:

XBotCore -D

o we will now be able to use RViZ’ to visualize the
RobotModel'® showing the links of the CENTAURO
robot as definied in the URDF'! specified in the
centauro_basic.yaml configuration file, in their
correct poses according to the #f'? transform tree.

http://wiki.ros.org/rviz
Ohttp://wiki.ros.org/rviz/DisplayTypes/RobotModel
Uhttp://wiki.ros.org/urdf
2http://wiki.ros.org/tf

Figure 7. COMAN+ robot executing the Homing plugin.

XBotCore runs the robot_state_publisher'> component
internally, so that ROS nodes are able to read the robot
transforms from the /tf topic. Moreover, the robot URDF
is published to the ROS parameter server under the
name /xbotcore/robot_description.

moreover thanks to the XBot we are also able
to read the state of the joint of the robot using
the custom ROS message available here https:
//github.com/ADVRHumanoids/xbot_msgs/

blob/master/msg/JointState.msg, which is
published by the Communication Handler in the topic
/xbotcore/Jjoint_state.

once XBotCore is started and the robot is correctly
visualized on RViZ we are able to start one of the RT
plugins listed in the centauro_basic.yaml config-
uration file. For example we can move the robot to an
“Homing” configuration, calling the available “switch”
ROS service ready-to-use thanks to the framework:

rosservice call /xbotcore/
HomingExample_switch 1

the robot should now be visualized in the "Homing”
configuration on RViZ. The user can decide to stop the
RT plugins and start the control of the robot using a
non-RT framework, by doing the following:

Bhttp://wiki.ros.org/robot_state_publisher



rosservice call /xbotcore/
HomingExample_switch 0

rosservice call /xbotcore/
XBotCommunicationPlugin_switch 1

e the XBotCommunicationPlugin is a special
XBot plugin which enables the control of the robot
through a non-RT master framework specified
in the configuration file we set. In this basic
example we rely on ROS and we defined the
following custom ROS message to send reference
commands to the robot, available here: https:
//github.com/ADVRHumanoids/xbot_msgs/
blob/master/msg/JointCommand.msg

o An easy to run example for this feature employs either
the usage of a simple ROS node (implemented in C++
or Python) to move the CENTAURO robot in the joint
space using the custom joint command message de-
scribed above or even a simpler command-line publish
of data to the /xbotcore/command topic as showed
below:

rostopic pub /xbotcore/command
xbot_msgs/JointCommand "header:
seq: O
stamp:
frame_id:
["torso_yaw’]
position: [0.5]
velocity: [0]
effort: [0]
stiffness: [0]
damping: [0]
ctrl_mode: [1]
aux_name: "’
aux: [0]"

{secs: 0, 0}

rs

nsecs:

name:

During the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS) 2018, a full day tutorial
about the XBot framework was held with the title: ”A Hands-
on Tutorial on XBotCore: A Real-Time Cross-robot and
Cross-framework Software Architecture”!*; the reader can
find all the related material online at https://github.
com/ADVRHumanoids/tutorial iros2018.

One of the core functionality of the XBot framework is
the cross-robot compatibility thanks to the XBotInterface
component which dynamically generates the robot API and
the kinematic/dynamic model of it, taking as an input just
the URDF, SRDF" and joint-ID map specified in the XBot
configuration file. Moreover thanks to the R-HAL component
we are able to go from the kinematic simulation mode
(dummy mode above described), to the dynamic simulation

Ynttps://www.iros2018.org/tutorials
https://xbotcoretutorial.weebly.com/
Bhttp://wiki.ros.org/srdf

mode, for example using the Gazebo simulation environment
just adding the following plugin in the input URDF:

<gazebo>
<plugin name="xbot_plugin_handler"
filename="1ibGazeboXBotPlugin.so"
/>
</gazebo>

The above described Homing plugin can be easily run not
only in dummy mode or on the real robots, but also in the
Gazebo simulator, as shown in Figure 6.

At the same time we are able to go from the simula-
tion mode (either kinematic or dynamic) to the real robot,
just providing in the configuration file the low level R-
HAL implementation to load. As an example the COMAN+
humanoid robot is capable to execute the same “Homing”
plugin of the simulated “dummy” CENTAURO (Figure 7),
just changing the configuration file which will now load
the COMAN+ URDF, SRDF, joint-ID map and R-HAL
EtherCAT implementation:

set_xbot_config /opt/xbot/build/install/
share/xbot/configs/CogimonConfig/
cogimon_basic.yaml

rosservice call /xbotcore/
HomingExample_switch 1

More complex cross-robot plugins (RT or IO)
are described in depth inside the tutorial repository
https://github.com/ADVRHumanoids/
tutorial_iros2018/tree/master/plugins.

The rest of the online tutorial covers the whole-body inverse
kinematics and dynamics tools and the related interfaces
available inside the XBotControl framework thanks to the
OpenSoT and the Cartesl/O. A set of examples of the
capabilities of the framework are summarized in Figure 8 .

IV. DISCUSSION AND FUTURE WORK

In this manuscript we presented the XBot RT software
architecture. It provides to the users a software infrastructure
which can be used with any robotic system enabling fast
and seamless porting of the code from one robot to the
other, requiring no code changes, assuring flexibility and
reusability. The implementation of the framework ensures
easy interoperability and built-in integration with other ex-
isting software tools for robotics, such as ROS, YARP or
OROCOS. The component-based development of the XBot
includes a Robotic Hardware Abstraction Layer (R-HAL)
interface and a set of ready-to-use tools to control robots
either within a simulation environment or the real robot
platforms.

The framework has been successfully used an validated
as a main software infrastructure (Figure 8) for humanoid
robots such as WALK-MAN (result of WALK-MAN EU
FP7 project'®, notably XBotCore received the EU innovation

Ynttps://www.walk-man.eu/
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Figure 8. XBot framework usage examples: WALK-MAN robot in Pisa (top left), CENTAURO robot untethered and outdoor
(bottom left), and the COMAN and its scaled-up version COMAN+ humanoid robots shaking hands (right).

radar award in this context!”.) and COMAN+ (result of
COGIMON EU H2020 project'®) or for quadruped centaur-
like robots as CENTAURO (result of the CENTAURO EU
H2020 project'?). Moreover the cross-robot functionality has
been exploited to develop both RT and non-RT control
modules not only for the above mentioned robots, but also
for commercial robotic systems such as KUKA LBR, KUKA
4+ or Franka Emika Panda, or other humanoid robots like
COMAN or iCub.

Regarding the simulation part, XBot enables the direct
porting of the control modules tested in the simulator to
the real hardware using the same interfaces and without
requiring any code modifications. The built-in simulator
supported in the framework is Gazebo, but there is the option
to support other simulation environments (as it happened
inside the CENTAURO H2020 project with the VEROSIM
simulator??).

https://www.innoradar.eu/innovation/30632
Bhttps://cogimon.eu/
https://www.centauro-project.eu/
Mnttps://www.verosim-solutions.com/en/

XBot became a mature and stable software and control
middleware for robotics in the past few years and the Section
IIT of the work presented herein attempted to provide both
industrial and research community with a tutorial on the
basic features of the framework, and how it can be used
to effectively develop and integrate software and control
components for robotic systems showing the flexibility and
capability of the framework to work with diverse range of
robot hardware.

Future works on the XBot will consider the support and
the fusion of multiple communication links (inside the Com-
munication Handler) that will enable the distribution and
transmission of data to remote command and control stations
based on priority classes, security and bandwidth stability.
An example can be the usage and blending of cellular, WiFi
and RF data channels and the distribution of data in these
channels based on the quality of service available in terms
of communication.

XBot currently relies on a dual-kernel approach using



Xenomai, which performs better than PREEMPT_RT?!, both
in terms of system predictability and absolute latencies. Nev-
ertheless Xenomai in the long term can introduce disadvan-
tages by making the software development more complex,
which means harder maintainability and lower portability.

Further development of the framework will target to
provide synchronized distributed execution of multiple RT
threads in multiple computational units. In fact currently
the Plugin Handler is only able to execute a set of plu-
gins in sequence, without any concurrency. This makes
the maintenance of the framework easier, but restricts the
performance in terms of computation power. Moreover the
current architecture is characterized by a unique point of
failure since both the R-HAL thread and the Plugin Handler
(which executes RT plugins) thread run in the same process.
In fact, there is the possibility that a misbehaving RT plugin
might cause memory corruption, or crash altogether, causing
also the R-HAL to crash. Currently only experts users are
allowed to load their RT plugins in the Plugin Handler, but
it is desirable to eventually separate the R-HAL and Plugin
Handler either in two different processes or in two different
machines to improve isolation.
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