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Abstract— Recent developments in low-VHF antenna design
and parasitic antenna array research show it is possible
to form multi-robot antenna arrays. These arrays have the
potential to extend communication range in urban and indoor
environments. However, existing control formulations are not
general enough to support this new capability. We first propose
a generalized version of a disk model that describes a parasitic
array. This model is then integrated into a Fiedler maximization
approach for maintaining communication. Through simulation,
we test our approach and demonstrate its ability to increase
communication range by increasing array size.

Index Terms–Networked Robots, Cooperative Robots, Com-
munication Maintenance, Antenna Arrays, Fielder value

I. INTRODUCTION

Multi-robot systems need to actively control agents to
maintain connectivity when communications infrastructure is
not present or reliable. Connectivity maintenance approaches
often require motion control of individual robots to maintain
communication within the robotic team. In this paper, we
consider a different paradigm where the robotic systems are
coordinated to create a wireless communications capability
beyond that which can be achieved by individual robots.
The research on low-VHF antennas has shown that robots,
if correctly positioned, create a passively coupled antenna
array which communicates farther than any of the agents
could individually[1]. This directional robotic antenna array,
as shown in Fig. 1b, is fundamentally different from a single
antenna which creates an omni-directional beam pattern, as
shown in Fig. 1a.

To exploit the parasitic coupling for an enhanced beam
pattern, we seek to create a controller that guides a multi-
robot system over long ranges. Specifically we utilize low-
VHF antennas to form parasitic arrays to communicate over
long distances (in the case we study, > 150 m). The
objective of our controller is to maintain and improve the
connectivity graph of these robotic agents. As shown in Fig.
1a, we denote the agents communicating at low-VHF as
active antenna agents. Active antenna agents have low-VHF
antennas that are electrically excited (i.e., connected to the
radio onboard). There are also passive antenna agents which
are robots that have low-VHF passive antennas and therefore
require no low-VHF radio. As shown in Fig. 1b, one or
more of these passive antenna agents reflect and spatially
focus radiation around the active antenna agents. When
properly configured, these agents form a parasitic antenna
array. While the agents forming each parasitic array need to
control frequency, antenna spacing, and antenna length, this
is outside of the scope of this paper. The electromagnetics
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(a) Electromagnetic radiation of a single, low-
VHF electrically small antenna mounted on a
ground robot

(b) Parasitic antenna array created by a second
robot with a passive antenna that mutually couples
with the antenna of the robot in Fig. 1a

Fig. 1: Simulation of low-VHF parasitic array forming robots
[2] c©2019 IEEE

of the parasitic array, including optimization of the antenna
placement, is considered in [2]. Here, we focus on the motion
control problem of a multi-agent system to enable parasitic
array formation so as to establish desired connectivity. Our
contributions to solving this problem are the following:
• Introducing a variable state, called parasitic effect, for

describing number of passive antenna agents in a para-
sitic Yagi-Uda array, a specific type of parasitic array.

• Creating a model of induced beam pattern as a function
of number of agents.

• Formulating a Fiedler value maximization approach for
groups of parasitic antenna arrays.

• Comparing connectivity maintenance with agents that
can form parasitic arrays and those which cannot.

This work is a first step towards controlling a multi-robot
system which can reliably communicate in non-line-of-sight
(NLOS) environments using low-VHF, such as safety and
rescue contexts (e.g., city building, cluttered outdoor, and
urban settings). This is especially important in complex
environments, enabling the multi-robot collective to establish
and maintain a network topology.

In Section II we place our research in the context of
existing work. Section III describes our model for parasitic
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arrays in terms of gain, and the basics of maximizing Fiedler
to improve connectivity in a multi-robot network. With this
foundation, we discuss how to create a multi-agent controller
for robotic parasitic arrays. Next, we present simulations
using this controller in Section IV. Finally, we discuss our
conclusions and future work in Section V.

II. RELATED WORK

The typical approach for multiple agents to maintain
communications is to mobilize robots for the purpose of
relaying signals [3][4] or planning for periodic communi-
cation [5]. Researchers have also explored controlling other
degrees of freedom for maintaining communication by adapt-
ing transmission power [6], changing coding [7], actuating
directional antennas [8][9], and changing frequency [10]. The
majority of research in communication maintenance is at
industry standard WiFi frequencies (e.g., 2.4 GHz, 5 GHz).
Unfortunately, in complex/dense environments (i.e., indoors,
urban areas) the received signal strength (RSS) at this fre-
quency varies rapidly with position and time due to multipath
fading. Mobility planning approaches for maintaining LOS
among agents help to avoid issues with NLOS [11], [12],
but these approaches are very conservative in order to be
reliable. The rapid change in RSS with WiFi diminishes the
value in modeling an antenna’s directionality which is why
communications maintenance literature often assumes a disk
model for communication between agents [4], [13], [14].

By decreasing the carrier frequency to the 30-60 MHz
range, a communication signal can propagate farther and
has reduced multipath levels [15] in physically complex
environments between ground agents. Miniaturized antennas
for lower VHF also have been developed and demonstrated
for low power, moderate rate communications [16]. Recently,
we demonstrated the feasibility of creating a robotic Yagi-
Uda antenna array, a type of parasitic array, to increase
signal gain at this frequency [1]. To form an array, antennas
are spaced closely so that they mutually couple; passive
antennas (i.e., unpowered), absorb or “parasitize” the energy
of the active antenna and re-radiate this energy creating areas
of constructive and destructive interference (i.e., gain). The
arrangement of these antennas is shown in Fig. 2.

Fig. 2: Our robotic Yagi-Uda arrays are composed of an
active antenna agent (solid circle) and passive antenna agents
(numbered in the order in which they are added to increase
gain). The arrow points in the direction of maximum gain of
the array pattern (dashed line). An array with more passive
antenna agents has higher gain when these antennas are
optimally spaced.

In these low-VHF robotic arrays the robots are spaced 2-
3 m; creating an array with one passive antenna increases
range by 50 m in free-space [2]. The simple task of linearly

aligning agents to create an array with significant directional
gain is the motivation for the study of their application in
robotic networks.

One could consider either sector visibility [17], [18] or
range as an initial sensing model for communication between
robotic arrays. While a sector is directional, it does not
capture the continuous spatial variation in signal strength
that occurs with changing orientation of an antenna array. In
addition, in a graph of agents, a link formed by an agent in
a sector visibility model is directed, where as links between
parasitic arrays are undirected. Range based models (e.g., the
disk model) on the other hand, are not directional but are
often used for modeling radio propagation between robots.
Researchers have used this model to develop formation
stabilization, and consensus in groups of mobile autonomous
agents [19], [20]. Multi-robot systems can also optimize their
connectivity with respect to graph-theoretic metrics using a
mix of graph-theoretic constraints and objectives [14], [21].
Variations allow the network to be more distributed [13], and
more robust [4]. In this paper, we consider utilizing the multi-
agent parasitic arrays as a means of enhancing directional
gain to provide desired overall network properties.

III. APPROACH

We assume we have n ∈ Z computationally powerful
UGVs which act as active antenna agents. In the sequel, we
refer to the state of the robotic parasitic arrays and the state
of the active antenna agents interchangeably. The states of
these robotic agents are described in Table I. If these robotic
parasitic arrays can communicate we assume they can jointly
estimate each other’s states in the same coordinate system
using distributed SLAM [22] or another approach and model
their radio propagation. The level of position uncertainty due
to noise and gradual variation in signal strength due to large,
signal-attenuating objects and buildings implies that some
level of control is required to maintain communication.

Agents can create and control a directional signal if they
form a parasitic antenna array. The range and directionality
created by forming the array is gain with respect to a single
omni-directional antenna on an active antenna agent. For
simplicity, we assume each i ∈ [0, n] agent has states
xi, yi ∈ Rn defining agents’ locations. Additionally, θi ∈ Rn
defines the direction of maximum array gain for each active
antenna array. There is no assumption that the front of the
agent or some set of sensors is aligned with the antenna
array direction. This assumption partially decouples other
tasks the active antenna agent may be engaged with from
the connectivity maintenance task. As the positioning of the
passive antenna agents controls the array orientation, the gain
is controlled by these agents.

A. System Model and Problem Formulation

Passive antenna agents do not require a radio to alter
the properties of the array so these robots can be flyers or
some other agile, high-speed robot that has the appropriate
electrical properties for forming a parasitic array. In an
experiment the passive antenna agents would use WiFi radios



TABLE I: System States and Variables

n number of active antenna robots (agents) which form
robotic parasitic arrays (indexed by i,j)

θi orientation of the array of active antenna robot i
ρi parasitic effect of the array of active antenna robot i
qi [xi, yi, θi, ρi], the state of active antenna robot i
ui control for active antenna robot i
P (qi, qj) Power received at active antenna robot i after trans-

mission from active antenna robot j
φ(qi, qj) Bearing angle of active antenna robot j from active

antenna robot i
Gi Gain of the array of active antenna robot i which is

receiving a signal, later defined as G(φ(qi, qj), qi,4)
Gj Gain of the array of active antenna robot j

which is transmitting a signal, later defined as
G(φ(qj , qi), qj,4)

to communicate with the active antenna agents to coordinate
array formation. The control and allocation of these passive
antenna agents, as well as their ability to rendezvous to form
arrays, is outside of the scope of this paper. We assume
that the passive antenna robots will move and position as
necessary, and describe their motion as a state of the robotic
parasitic array. We call this state parasitic effect which is
characterized by ρi, such that ρi ∈ R is related to the number
of passive antenna agents in the array. To be clear, we are
abstracting away the dynamics of the passive antenna agents
by saying that the orientation and parasitic effect are states
of the robotic array. The array state q = [x, y, θ, ρ] rows are
indexed by i and the columns are indexed by k ∈ {1, 2, 3, 4}
so that q ∈ Rn×4. The degrees of freedom, (x,y,θ,ρ), are
independently actuated, and we assume a single-integrator
dynamics model for the agents given by

q̇ = u. (1)

In this equation, the control is u ∈ Rn×4. This simple model
is sufficient for solving the overall system control and passive
antenna robot grouping with active antenna robots.

The Friis Transmission Equation (Eqn. 2) describes re-
ceived power at active antenna agent i, P (qi, qj), from
another j active antenna agent where

P (qi, qj) =
PjGjGic

2

(4πR(qi, qj)f)2
. (2)

We assume that the transmit power Pj of agent j, speed
of light c, and the antennas’ center frequency f are con-
stant. In our simulations we choose Pj = 0.025 W, c =
3e8 m/s, and f = 40e6 Hz for all agents. The distance
between the two active antenna agents is R(qi, qj) =√

((qi,1 − qj,1)2 + (qi,2 − qj,2)2). Gains Gj and Gi are unit-
less multipliers of the transmitting antenna and the receiving
antenna respectively.

The gain for robotic parasitic arrays is a function of qi
and qj , thus Gi and Gj are not constant. Gain at agent i is
a function of angle φ(qi, qj) from the direction of maximum
gain of active antenna agent i (θi ≡ qi,3) to the relative
bearing of agent j (tan−1( qj,2−qi,2qj,1−qi,1 )).

φ(qi, qj) = tan−1
(
qj,2 − qi,2
qj,1 − qi,1

)
− qi,3 (3)

Next, let us approximate the beam pattern of an antenna
array for 2 dimensions. The variable Gi = G(φ(qi, qj), qi,4)
in parasitic antenna arrays cannot be described by a simple
analytical model. Experimental studies [23] show that as
more passive antennas are added, the gain increases, and the
beam-width decreases. These results are shown in Table II.

For the purposes of control, we want to approximate the
gain Gi as a function of φ(qi, qj) and ρi which is contin-
uously differentiable. Normal distributions have been used
to approximate gain patterns [24], but a normal distribution
model is not differentiable from π to −π. A Tikhonov
distribution, also known as a Von-Misses distribution, or the
circular normal distribution, is continuously differentiable so
we adopt this as a beam pattern model.

Another simplifying assumption is that passive antenna
agents can configure to form sub-optimal configurations to
achieve intermediate gain values. This is how we justify our
assumption that ρi ∈ R. The first order dynamics of ρi also
help capture the time that it takes for an array to configure
and achieve maximum gain. This relation between ρi and
number of passive antenna agents implies that a parasitic
effect of ρi requires dρie passive antenna agents to form the
array. When ρi = 0, this is a vacuous state of the robotic
array i where there are no passive antenna agents; the “array”
is an active antenna agent i. In this situation, the orientation
is meaningless as the array has no orientation without passive
antenna agents; the array orientation is also irrelevant as the
active antenna agent radiates omni-directionally. We choose
6 as the maximum number of passive antenna agents that can
participate in an array since there is a point of diminishing
returns from adding additional passive antennas to a Yagi-
Uda array. Therefore, ρi ∈ [0, 6]. The gain of the receiving
antenna array in terms of state q is

Gi = G(φ(qi, qj), qi,4) =
exp((qi,4/α) cos(φ(qi, qj)))

I0(qi,4/α)
.

(4)
In Eqn 4 we have already multiplied the Tikhonov distribu-
tion by 2π, which cancels out 2π in the denominator. Here,
I0 is a Modified Bessel function of order zero. We find an
appropriate value for α to roughly match Table II is α = 2.3.
When the parasitic effect is 0, the gain is 1 for all values
of φ; this is the normalized radiation pattern for an omni-
directional antenna. Note that other connectivity maintenance
approaches using Fiedler value implement a communications
model similar to Friis Transmission (Eqn. 2) with gain values
in reception and transmission equal to 1.

The model in Eqn. 4 captures main lobe behavior, but does
not capture the beam pattern’s nulls or sidelobes. We did not
add the additional complexity required to model side-lobes
because they create areas of local maxima. Incorporating
a multi-lobe beam pattern model is an interesting open
problem.

Gain for a parasitic array is symmetric in reception and
transmission. Denoting transmission gain as Gj , this is



TABLE II: Gain of a Yagi-Uda Parasitic Antenna Array

Passive Gain (dB) Gain Beam Width (◦)
Antennas

0 0 1 –
1 5 1.8 66
2 7.5 2.4 57
3 8.5 2.6
4 9.5 3.0 48
5 10.5 3.3 40
6 11.5 3.8

simply Gi with i and j reversed, so Gj = G(φ(qj , qi), qj,4).
With gain as a function of active antenna agent states for
transmission from node j to receive node i, we can update
the Friis transmission equation to obtain

P (qi, qj) =
PjG(φ(qi, qj), qi,4)G(φ(qj , qi), qj,4)c

2

(4πR(qi, qj)f)2
. (5)

This final version of Eqn. 2 is now in terms of our active
antenna agent states q. Now that we can approximate the
power of a communication connection, we can model the
connection quality between agents.

B. Graph of Agent Connectivity

We relate the received power to communications between
the agents and then observe the group connectivity within a
graph structure. The values in the adjacency matrix A(q) ∈
Rn×n are the weights of the edges of the graph correspond-
ing to the agent i’s ability to receive data from agent j. An
agent’s radio must be able to disambiguate the signal from
the noise in the environment. This noise sets a threshold for
power, Plow, below which there is no connection. There is
also a power level, Phigh, above which there is no increase
in data received. These values are relative to the specific
radio technology. From prior work we find Phigh = −45
dB and Plow = −70 dB are reasonable values and we
adopt these for our simulation [25]. In addition, the large
variation in signal strength leads us to favor measuring signal
strength in decibels instead of watts defined as PdB(qi, qj) =
10 log10(P (qi, qj)). Using Eqn. 5 we can create a model of
connectivity from agent i to agent j given by

A(q)i,j =


0 i = j

0
PdB(qi,qj)−Plow

Phigh−Plow
< 0, i 6= j

1
PdB(qi,qj)−Plow

Phigh−Plow
≥ 1, i 6= j

PdB(qi,qj))−Plow

Phigh−Plow
o.w.

(6)
If the power received at agent i is at or above Phigh, the
connectivity is 1. If the power received at agent i is less
than Plow we say the connectivity along that edge is 0. An
agent cannot form an edge with itself, therefore A(q)i,j = 0
when i = j. As per this definition, A(q)i,j , is piece-wise
continuous.

In Fig. 3 we show how the connectivity varies as one
agent moves around another fixed at (0, 0) using this model.
The agents maintain a fixed orientation of θi = 0 and a

constant parasitic effect. Agent j has ρj = 0 (i.e., an omni-
directional antenna) and agent i has ρi = 6 (i.e., it is highly
directional with 6 passive antenna agents forming an array).
With these values, when the antenna array agents are spaced
by 20 m with each other there is perfect communication. As
the agents move farther apart the communication decreases
until communication is lost.

Fig. 3: Communication between agent i, located at (0,0), and
agent j in different (x, y) positions, both with fixed values
of θ and ρ.

C. Fiedler Optimization

The Fiedler value, a graph-theoretic metric of connectivity
of a multi-agent system, is a function of the adjacency matrix
A(q). When the Fiedler value is greater than zero, there
exists a path along edges of the graph connecting any pair
of agents. The existence of a communication path means
that there is connectivity between all agents in the group.
The gain in reception is the same in transmission, so the
adjacency matrix is symmetric. The values of PdB(qi, qj)
are all positive, therefore A(q)i,j ≥ 0. The degree of each
node as D(q)ii =

∑n
j=1A(q)i,j where D(q) ∈ Rn×n. The

Laplacian L(q) ∈ Rn×n is defined as L(q) = A(q)−D(q).
It is positive semidefinite as it is symmetric and all of its
eigenvalues are non-negative. The Fiedler value λ2 is the
second smallest eigenvalue of the Laplacian; the smallest
eigenvalue is always zero.

The overall control objective is to configure the agents
and parasitic elements to maximize the connectivity of the
network. This goal, when expressed through the Fiedler
value, is given as

max
q

λ2(L(q)) (7)

Note that given the 4 degrees of freedom for each robotic
array, we have created a non-convex optimization problem.
There are multiple maxima when optimizing connectivity
between active antenna agents. Agents can maneuver to
decrease their relative distance or increase their gain. This
creates an interesting set of trade-offs based on the speed
of active antenna agents, the availability of passive antenna
agents, and the time required to form and optimize an
antenna array.



In [13], [21], [14] the authors formulate a subgradient
method for increasing Fiedler value. We follow the definition
of Fiedler value as described in [13] as

λ2(L(q)) = inf
p⊥1,p6=0

pTL(q)p

pT p

= inf
p⊥1,p6=0

∑n
i

∑n
j A(q)i,j ||pi − pj ||22

pT p
,

(8)

where 1 ∈ 1n is a vector of size n and p is any unit vector. In
this equation we replace p with v2, the normalized (||v2|| =
1) left eigenvector corresponding to the Fiedler value.

The differential of λ2, is

∂λ2(L(q))

∂qi,k
=
∂vT2 L(q)v2
∂qi,k

=
∂vT2
∂qi,k

L(q)v2 + vT2
∂L(q)

∂qi,k
v2 + vT2 L(q)

∂v2
∂qi,k

.

(9)
Since L(q)T = L(q), it follows that

vT2 L(q)
∂v2
∂qi,k

=
∂vT2
∂qi,k

L(q)v2 = λ2
∂vT2
∂qi,k

v2

=
1

2

∂vT2 v2
∂qi,k

=
1

2

∂||v2||2

∂qi,k
= 0.

(10)

Following Eqn.10 certain terms in Eqn. 9 are zero; we can
determine a simpler relationship [13].

ui,k = q̇i,k =
∂λ2
∂qi,k

= vT2
∂L(q)

∂qi,k
v2 (11)

From Eqn 11 it follows that the control for each agent is

ui,k = vT2
∂L(q)

∂qi,k
v2 =

 n∑
j

∂A(q)i,j
∂qi,k

(v2,i − v2,j)2
 .

(12)
Here, i and j are indexing the eigenvector v2. Using this
controller, agents are able to improve communication of the
system. As in, [13], [14] we are implementing a subgradient
approach to control agents to maximize the Fiedler value.
Agents implementing this controller will always improve
global communication capability of the group; however, since
this is a subgradient approach the controller does not guide
the robots on the most efficient trajectory towards better
communication.

The partial derivative of the adjacency matrix is

∂A(q)i,j
∂qi,k

=
10

ln(10)P (qi, qj)(Phigh − Plow)
× ∂P (qi, qj)

∂qi,k
(13)

where ln is the natural logarithm. The derivative ∂A(q)i,j
∂qi,k

exists everywhere that a link is sub-optimal. It follows that
∂A(q)i,j
∂qi,k

= 0 when A(q)i,j = 1 as the link between i and j

cannot be improved. The derivation of ∂P (qi,qj)
∂qi,k

is given in
the Appendix.

D. Maintaining Connectivity While Pursuing Other Objec-
tives

We make a small change to our system model to incor-
porate other control inputs. These inputs may be used to
guide the translational control of active antenna agents to
other control objectives. Thus we update the system model
to include this additional controller given by

q̇ = u+ û (14)

where û ∈ Rn×4. The control û must have additional
constraints so that our control formulation can maintain
communication. First, ûi,3 = ûi,4 = 0 for all i. We must
also maintain that the translational control component of û
(i.e., ûi,1 and ûi,2) must be bounded as described in [4]. As
in [4], we modify our controller defined in Eqn. 12 with the
addition of csch2(λ2 − ε), where

ui,k = csch2(λ2 − ε)vT2
∂L

∂qi,k
v2

= csch2(λ2 − ε)

 n∑
j

−∂A(q)i,j
∂qi,k

(v2,i − v2,j)2
 .

(15)

In this equation, ε ∈ R is a lower bound for the Fiedler value.
Since csch2(λ2 − ε) approaches infinity as λ2 approaches ε,
the magnitude of control for communication becomes large
when λ2− ε→ 0, guaranteeing that the system maintains at
least this value of global connectivity. Note, ε < λ2 at the
beginning of every trial. Since the control for other objectives
(û) is bounded, the control for maintaining communication u
will always be larger than û as the Fiedler value approaches
ε.

IV. SIMULATIONS

We compare our controller from Eqn. 15 with the standard
approach of moving to increase Fiedler value in the absence
of other controllers. Then, we show the capability to form
parasitic arrays to enable operation at extended range when
ûi is pulling two arrays apart. For our simulations to execute
we must make some additional considerations. First we alter
Eqn. 14 to be q̇ = udiag(h)+ û. This scaling factor h ∈ R4,
hk > 0, does not affect our previous discussions about how
the controller maximizes the Fiedler value or the ability of
the controller to overcome the bounded control input û. It
compensates for the discrepancy in magnitude between the
state positions x and y, the orientation θ, and parasitic effect
ρ. Another way to view h is as a parameter capturing the
an arrays’ ability to move, re-orient, or form an array. We
set the parameter h = [200, 200, 1, 1] for a scenario where
active ground antenna robots move slowly relative to flying
passive antenna robots.

Another practical question is how to overcome saddle
points in our optimization. When ρi ≡ qi,4 = 0, saddle points
exist for our sub-gradient method controlling orientation.
From Eqn. 21 we can see that ρi = 0 results in ∂A(q)i,j

∂θi
= 0.

This is a problem when the array is facing away from the



optimal direction where ∂A(q)i,j
∂qi,4

< 0. We assume the passive
antenna robot UAVs can fly directly over the active ground
antenna robot in response to this negative value to change
orientation by π radians when ∂A(q)i,j

∂qi,4
< 0 and ρi = 0.

As a result, there are discontinuities in orientation but these
discontinuities occur only when ρi = 0 for a given i. Other
saddle points may be present, however in simulation, the
controller escaped them.

A. Verifying Communications Maintenance
We compare active antenna agents which can acquire up to

6 passive antenna agents with the case when active antenna
agents do not have passive antenna agents. In the single
active antenna agent case, the beam pattern is uniform omni-
directional; therefore it is implementing a disk connectivity
model approach. In both cases, we initialize the simulation
with n = 4 active agents, q1 = [−100, 0, 0, 0], q2 =
[100, 0, 0, 0], q3 = [−50, 25, 0, 0], q4 = [50,−25, 0, 0]. We
set ûi = [0, 0, 0, 0] to test Fiedler maximization without other
controllers present. Initially, all of the agents share an edge
(i.e., A(q)i,j > 0, i 6= j). We set time step dt = 0.4 s
and ε = 0. For active antenna agents which cannot form
parasitic antenna arrays, we set ρi = 0 regardless of the
control input; mathematically, this is the same as the disk
model approach described in [4]. The parasitic effect of all
agents in both cases is initially zero. In Fig. 4 we show
the trajectories of both approaches (with and without array
forming). Interestingly, in both cases the agents follow the
same paths to maximize Fiedler value but the agents which
cannot form arrays are controlled to move closer together
than the agents which can form arrays. Similarly, in Fig. 5
our approach achieves a higher Fiedler value in the same
amount of time than the agents which cannot form arrays.

Fig. 4: Trajectories of active antenna agents. Square markers
denote the final positions of the single, non-array-forming
agents which employ a disk model. Circle markers denote
the final positions of the array forming active antenna agents.

This difference in final position and Fiedler value demon-
strates that if the agents can form arrays, they will always
outperform existing Fiedler maximization approaches which
assume a disk model. The array forming capability allows
these array forming agents to have a higher Fiedler value than
the more closely spaced agents which cannot form arrays.
If an active antenna agent can easily form an antenna array,

Fig. 5: Fiedler value over time for both trials of agents shown
in Fig. 4.

communications links between two active antenna agents can
be improved far more quickly than if the agents were to drive
towards each other.

Another interesting feature of our array forming approach
is where active antenna agents form arrays of different sizes.
In Fig. 6 we plot the parasitic effect of the agents which
are able to form antenna arrays from the comparison trial
shown in Fig 4. Agents 1 (blue) and 2 (red) form larger
arrays than agents 3 (yellow) and 4 (purple). As the parasitic
effect increases, the beam pattern is more directional. When
arrays become more directional, overall connectivity might
be reduced by weakening links which are not in the direction
of maximum gain. Our subgradient approach is sensitive
to this through the summation of link gradients in Eqn.
15. As a result, active agents stabilize their arrays at a
certain size. Similarly, antenna arrays should have more
directional beam patterns when the agents it has links to are
confined to a smaller angular range. This angular distribution
is more confined when agents are farther from the centroid
of the array forming agents. Consequently, the active antenna
agents form larger arrays at larger distances and, hence
agents 1 and 2 form larger arrays than agents 3 and 4.

Fig. 6: Parasitic effect (ρ) of the 4 arrays over time. The plot
colors match the agents’ colors from trajectories in Fig.4
ending with the circle marker.

B. Effects of Array Forming on Operational Range

We constructed a simple scenario where there are two
active antenna agents with û1 = [−5, 0, 0, 0] and û2 =



[5, 0, 0, 0] in order to determine the effects of array forming
on operational range. This controller û causes the active
antenna agents to drive away from each other but our commu-
nication maintenance controller u maintains communication
between the active antenna agents. These agents begin on
the x-axis (q1 = [−50, 0, 0, 0], q2 = [50, 0, 0, 0]). From this
initial configuration we run 13 tests. We consider up to 12
agents divided between 2 active antenna agents for forming
parasitic arrays. If there is an even number of passive antenna
agents in the trial, the passive antenna agents are divided
equally between active antenna agents 1 and 2. If there is an
odd number of passive antenna agents, agent 1 is allowed 1
more than agent 2. All parameters are the same as in earlier
simulations. The results of this set of tests can be seen in
Fig. 7.

Fig. 7: Maximum distance between 2 active antenna agents
which form parasitic arrays. Each plot corresponds the num-
ber of passive agents available to form arrays.

These results demonstrate that there is a range benefit with
the addition of each successive passive antenna agent in this
simple scenario with only 2 active antenna agents. At the
end of the test, all of the arrays have reached an equilibrium
between u and û controllers. This equilibrium is between u
pushing the active antenna agents closer together to maintain
good communication and û pulling the active antenna agents
apart.

V. CONCLUSION AND FUTURE WORK

We described a new model for extending the range of
reliable, long-range, low-VHF communication signals. This
was accomplished by developing a controller for a robotic
array which optimized and appropriately defined a graph-
theoretic metric. Our simulations demonstrated that array
forming is more useful for improving communication when
passive agent motion is less costly than active agent motion,
and when traversing the environment is difficult. As a result,
this capability should be especially useful in indoor and ur-
ban environments where walls induce movement constraints.
An additional advantage of using this approach in these
complex environments is that the low-VHF signal created
by forming the array is more reliable at longer range than

when compared with microwave radio frequency operation
such as WiFi. Parasitic array formation also becomes more
valuable as the cost of radios powering the active antennas
become more expensive.

There are a number of things we could explore further.
First, we could make parasitic array formation more realistic
by accounting for the motion constraints imposed by indoor
and urban environments. This would mean passive antenna
agents take time to transfer into and out of parasitic arrays,
and constrain robotic array orientation. Adding these com-
plexities would allow us to investigate trade-offs in mission
time and motion capabilities. Adding constraints based on
the availability of passive antenna agents is another con-
sideration. The ability of passive antenna agents to become
active and therefore nodes in the graph is another interesting
research avenue.

VI. APPENDIX

Here, we find the partial derivative of the power with
respect to the each of the 4 state variables for agent i
as required by Eqn 13. The gain functions are written as
Gi = G(φ(qi, qj), qi,4) and Gj = G(φ(qj , qi), qj,4) to make
the following equations easy to read.

∂P (qi, qj)

∂qi,k
=

Pjc
2

(4πf)2

(
R(qi, qj)

2 × ∂
∂qi,k

(GiGj))

(R(qi, qj)2)
2

−
(GiGj)× ∂R(qi,qj)

2

∂qi,k

(R(qi, qj)2)
2

 , k = {1, 2, 3, 4}
(16)

This function is defined for all 4 state variables of active
antenna agent i (i.e., k = {1, 2, 3, 4} ).

Let us focus on the x and y states where k = 1 is the x
component and k = 2 is the y component. Here, R(qi, qj)
is a function of states xi and yi.

∂(R(qi, qj)
2)

∂qi,k
= 2(qi,k − qj,k), k = {1, 2} (17)

Eqn. 16 for k = 1, 2 is simplified in Eqn. 18

∂P (qi, qj)

∂qi,k
=

Pjc
2

(4πR(qi, qj)f)2
×(

∂

∂qi,k
(GiGj)−

2(qi,k − qj,k)(GiGj)
R(qi, qj)2

)
, k = {1, 2}

(18)
As Gi and Gj are functions of all the state variables we must
take the partial derivative of the product of these functions.

∂

∂qi,k
(GiGj) =

∂Gi
∂qi,k

Gj +Gi
∂Gj
∂qi,k

, k = {1, 2, 3, 4} (19)

∂Gi
∂qi,k

=
∂G(φ(qi, qj), qi,4)

∂φ(qi, qj)

∂φ(qi, qj)

∂qi,k
, k = {1, 2, 3, 4}

(20)
Where, φ(qi, qj) is a function of the positions of agents i and
j and the orientation of agent j. When the variable k = 3,



this corresponds the orientation and k = 4 corresponds to
the parasitic effect. The parasitic effect of either array has
no affect on φ(qi, qj), so it follows that

∂G(qi, qj)

∂φ(qi, qj)
= −(qi,4/α) sin(φ(qi, qj))

× exp((qi,4/α) cos(φ(qi, qj))

I0(qi,4/α)
, k = {1, 2, 3}

(21)

and

∂φ(qi, qj)

∂qi,k
=
qj,k − qi,k
R(qi, qj)2

, k = {1, 2}. (22)

After substituting Eqn. 21 and Eqn. 22 into Eqn. 20 we
have the partial derivative of Gi. Note that these equations
can be used to find Gj by transposing i and j as shown in
Eqn. 23.

∂Gj
∂qi,k

=
∂G(φ(qj , qi), qj,4)

∂φ(qj , qi)

∂φ(qj , qi)

∂qi,k
(23)

We now have all of the necessary components to determine
the values of Eqn. 18 for k = 1, 2. Now, let us look at the
partial derivatives with respect to orientation and parasitic
affect. In Eqn 18, only Gi = G(φ(qi, qj), qi,4) is a function
of qi,3 or qi,4. As a result, several terms drop out as the
partial derivatives of R(qi, qj) and Gj with respect to qi,3
and qi,4 are both zero.

∂P (qi, qj)

∂qi,k
=

Pjc
2

(4πR(qi, qj)f)2
∂Gi
∂qi,k

Gj , k = {3, 4} (24)

Eqn. 21 and 22 can be substituted into this equation. Know-
ing that ∂φ(qi, qj)/∂qi,3 = −1, we can solve Eqn. 24 for
k = 3. Finally, we need the partial derivative of Gi with
respect to the parasitic effect qi,4 to solve solve Eqn. 24 for
k = 4.

∂Gi
∂qi,4

=
1

α
exp(qi,4/(α cos(φ(qi, qj))

×
(
I0(qi,4/α) cos(φ(qi, qj))− I1(qi,4/α)

I0(qi,4/α)2

) (25)

This completes the derivation of values in Eqn. 13.
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