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Abstract— A variational autoencoder (VAE) derived from
Tsallis statistics called q-VAE is proposed. In the proposed
method, a standard VAE is employed to statistically extract
latent space hidden in sampled data, and this latent space helps
make robots controllable in feasible computational time and
cost. To improve the usefulness of the latent space, this paper
focuses on disentangled representation learning, e.g., β-VAE,
which is the baseline for it. Starting from a Tsallis statistics
perspective, a new lower bound for the proposed q-VAE is
derived to maximize the likelihood of the sampled data, which
can be considered an adaptive β-VAE with deformed Kullback-
Leibler divergence. To verify the benefits of the proposed
q-VAE, a benchmark task to extract the latent space from
the MNIST dataset was performed. The results demonstrate
that the proposed q-VAE improved disentangled representation
while maintaining the reconstruction accuracy of the data. In
addition, it relaxes the independency condition between data,
which is demonstrated by learning the latent dynamics of
nonlinear dynamical systems. By combining disentangled rep-
resentation, the proposed q-VAE achieves stable and accurate
long-term state prediction from the initial state and the action
sequence.

I. INTRODUCTION

Recently, deep learning [1] has become the most powerful
tool to resolve analytically unsolvable problems. In robotics
and robot control, several studies have applied deep learning
to perform complicated tasks that rely on raw images from
cameras [2], [3]. Typically, deep learning requires a large
number of samples for end-to-end learning, i.e., from ex-
tracting features hidden in the inputs (e.g., images) to optimal
control based on the extracted features.

Modularizing various functions, e.g., feature extrac-
tion [4], [5] and optimal control [6]–[9], is effective at
reducing the number of samples. In particular, control theory
has long been studied relative to stability, convergence speed,
etc. Therefore, exploiting conventional but powerful control
technology is a solution to reducing the number of samples;
however, features extracted without ingenuity would be un-
suitable.

Thus, this paper focuses on methods to extract features
hidden in inputs. To this end, the variational autoencoder
(VAE) [4] is a promising method. The VAE encodes inputs
to a latent space with stochastic latent variables (and decodes
them to inputs) in an unsupervised manner. In fact, control
methods for the latent space gained by VAE have been
proposed previously [10]–[12].

To improve the usefulness of such a latent space, recent
VAE research has investigated disentangled representation
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learning [13], [14], which assigns independent attributes
hidden in the inputs to the axes of the latent space without su-
pervisory signals. However, a representative of this method-
ology, i.e., β-VAE [15], would lose the value of the VAE as a
data generation model because the reconstruction accuracy of
the inputs is reduced. Although variants of β-VAE have been
proposed to resolve this problem, they have some drawbacks
from a practicality perspective, e.g., heuristic designs are
difficult to optimize [16], the assumption of batch data [17],
and optimization of an additional discriminator network [18].

To realize simple and low-cost disentangled representation
learning that is practically sufficient, this paper proposes a
derivation of VAE combined with Tsallis statistics [19]–[22],
which refer to the extended version of general statistics based
on real parameter q. This derivation, which we refer to as
q-VAE, mathematically provides adaptive β according to
the amount of information in latent variables. Due to the
adaptive β, the proposed q-VAE achieves proper extraction
of the essential information of inputs while maintaining the
reconstruction accuracy of the inputs. In addition, deformed
Kullback-Leibler (KL) divergence [22], [23] weakens the
magnitude of regularization in the vicinity of the center
location of prior, which may construct the meaningful latent
space.

In addition, the proposed q-VAE relaxes the condition that
inputs be independent and identically distributed (i.i.d.) [21],
which, generally, cannot be satisfied in a functional manner
when controlling robots. Therefore, q-VAE is also extended
to a model to learn the latent dynamics of inputs when
manipulated variables are given. As a result, the encoded
latent variables are transited to the next ones that are decoded
to the next inputs. With a disentangled representation, even
if the latent dynamics model is constrained as a diagonal
system (i.e., a model in which latent variables are indepen-
dent), which could be easily exploited to control robots with
low computational cost, the proposed q-VAE alleviates the
deterioration of prediction performance.

We verified the proposed q-VAE using an MNIST bench-
mark. The results indicate that q-VAE with an appropriate
parameter outperforms β-VAE (i.e., fixed β) in terms of dis-
entangled representation and the reconstruction accuracy of
inputs. In addition, learning the latent dynamics in nonlinear
systems was performed. Although conventional methods fail
to predict future states in a stable manner, q-VAE realizes
stable and accurate long-term state prediction from the initial
state and the action sequence.
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II. PRELIMINARIES

A. Variational autoencoder

In this section, we briefly introduce the VAE [4] (see
the upper structure of Fig. 2). Here, a generative model of
inputs x from latent variables z is considered. This decoder
is approximated by (deep) neural networks with parameters
θ: p(x | z;θ). The VAE attempts to maximize the log
likelihood of N inputs, log p(X), where X = {xn}N1 . By
assuming that the inputs are i.i.d., log p(X) can be simplified
to the sum of the respective log likelihoods

∑N
n=1 logxn.

To maximize log p(X) indirectly, an evidence lower bound
(ELBO) L(X), which is derived using Jensen’s inequality
and an encoder with parameters φ, ρ(z | x;φ), is maxi-
mized. Then, L(X) is derived as follows.

log p(X) =

N∑
n=1

log

∫
p(xn | z;θ)p(z)dz

=

N∑
n=1

log

∫
ρ(z | xn;φ)

ρ(z | xn;φ)
p(xn | z;θ)p(z)dz

≥
N∑

n=1

Eρ(z|xn;φ)

[
log

p(xn | z;θ)p(z)
ρ(z | xn;φ)

]
=: L(X) (1)

where p(z) is a prior of the latent variables. L(X) can be
expressed as follows.

L(X) =

N∑
n=1

Eρ(z|xn;φ)[log p(xn | z;θ)]

−KL(ρ(z | xn;φ) || p(z))

'
N∑

n=1

log p(xn | zn;θ)−KL(ρ(z | xn;φ) || p(z))

(2)

where the first term denotes the negative reconstruction
error in the standard autoencoder, and the second term, i.e.,
the KL divergence between the posterior and prior, is the
regularization term, which is used to attempt to z ∼ p(z).
Generally, p(z) is given as standard normal distribution
N (0, I).

In the case of β-VAE [15], the second term is multiplied
by β ∈ (0,∞), although its derivation is given by solving
a constrained optimization problem. By giving β > 1,
regularization to p(z) is strengthened, and the role of each
axis of the latent space, which has limited expressive ability,
is clarified to reconstruct the inputs.

B. Tsallis statistics

Tsallis statistics refers to the organization of mathematical
functions and associated probability distributions proposed
by Tsallis [19]. This concept is organized based on q-
deformed exponential and logarithmic functions, which are
extensions of general exponential and logarithmic functions
by real number q ∈ R. We introduce the following definitions
From Tsallis statistics.
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Fig. 1. Examples of q-logarithm with different q values. When q > 0,
this function is considered as a concave function. As can be seen in the
intuitive, lnq+ε(x) with ε a positive small number is larger than lnq(x).

First, the q-logarithm, lnq(x) with x > 0, is given as
follows.

lnq(x) =

{
ln(x) q = 1
x1�q−1
1−q q 6= 1

(3)

where q gives its shape, as shown in Fig. 1. As shown in
Fig. 1, the q-logarithm with q > 0 is a concave function.
Note that when q → 1, the lower equation converges to the
natural logarithm.

In the q-logarithm, multiplication of two variables, x, y >
0, is no longer simply divided. In other words, the following
pseudo-additivity is derived.

lnq(xy) = lnq(x) + lnq(y) + (1− q) lnq(x) lnq(y) (4)

Rather than general multiplication, a new multiplication
operation ⊗q is introduced as follows [20].

x⊗q y =

{
(x1−q + y1−q − 1)

1
1�q x1−q + y1−q > 1

0 otherwise
(5)

This definition means that the following additivity is satisfied
when using ⊗q .

lnq(x⊗q y) = lnq(x) + lnq(y) (6)

By using ⊗q , the q-likelihood of data X = {xn}N1 , which
is maximized when the probability is given as q-Gaussian,
can be defined with q-i.i.d. (a relaxed version of the i.i.d.
condition [20], [21]).

p(X) = p(x1)⊗q p(x2)⊗q · · · ⊗q p(xN ) (7)

Finally, the deformed version of KL divergence (referred
to as Tsallis divergence [22]), KLq , is expressed as follows.

KLq(p1 || p2) = −
∫

p1(x) lnq
p2(x)

p1(x)
dx (8)

where p1 and p2 are arbitrary probability density functions.
The q-logarithm for all x decreases as q increases; thus, KLq

increases as q increases. Tsallis divergence can be derived
by transforming Renyi divergence, which has closed-form
solutions for commonly-used distributions [23]. Therefore,
the proposed q-VAE can be integrated with different priors,
e.g., the Laplace distribution and mixture models.



III. Q-VARIATIONAL AUTOENCODER

A. Derivation of ELBO

By combining Eqs. (6) and (7), a new q-log likelihood
to be maximized is derived. In addition, if q > 0, the q-
logarithm is a concave function (Fig. 1); therefore, Jensen’s
inequality can be used in a manner similar to Eq. (1).

lnq p(X) =

N∑
n=1

lnq

∫
p(xn | z;θ)p(z)dz

≥
N∑

n=1

Eρ(z|xn;φ)

[
lnq

p(xn | z;θ)p(z)
ρ(z | xn;φ)

]
=: Lq(X) (9)

Note again that X can be relaxed to be q-i.i.d. data, unlike
the log likelihood used in Eq. (1).

According to Eq. (4), Lq(X) can be divided into three
terms and summarized to two terms similar to Eq. (2).

Lq(X) =

N∑
n=1

Eρ(z|xn;φ)

[
lnq p(xn | z;θ)

+ lnq
p(z)

ρ(z | xn;φ)

+ (1− q) lnq p(xn | z;θ) lnq
p(z)

ρ(z | xn;φ)

]
'

N∑
n=1

lnq p(xn |zn;θ)

{
1+(1−q) lnq

p(zn)

ρ(zn |xn;φ)

}
−KLq(ρ(z | xn;φ) || p(z))

=

N∑
n=1

lnq p(xn | zn;θ)

βq(xn, zn)
−KLq(ρ(z | xn;φ) || p(z))

(10)

where the first term is denotes the negative reconstruction
error with a new adaptive variable 1/βq(xn, zn), and the
second term, i.e., Tsallis divergence between the posterior
and prior, is the regularization term used to attempt to z ∼
p(z).

B. Practical implementation

Here, we present four practical statements. First, the prob-
ability output from decoder p(x | z;θ) should be assumed as
q-Gaussian distribution (or a Bernoulli distribution for binary
inputs) to match the reconstruction error term with that of
the standard VAE. Although a Gaussian distribution can be
assumed, it would be numerically unstable because its expo-
nential function is not canceled by logarithm and the power
function is added by the q-logarithm. In addition, q-Gaussian
distribution includes the student-t distribution, which yields
robust estimation [24]; therefore, further investigation of the
decoder model may further unlock the potential of q-VAE.

Second, the computational graph of βq(x, z) is cut to
simplify backpropagation and regard it as simply the input-
dependent coefficient. Even with the computational graph,
the learning direction of parameters (see the next section)

would be the same as the case without it. However, in the
case with the computational graph, the gradient scale varies,
thereby making learning unstable if the same hyperparam-
eters as the standard VAE are employed. In fact, that case
happened learning failure in debugging.

Third, we employ the latent distribution as Gaussian,
which has a closed-form solution of Tsallis divergence [22],
[23]. Given p1 and p2 as d-dimensional normal distributions
with parameters µ1, Σ1, µ2, and Σ2, Tsallis divergence is
solved as follows.

KLq(p1 || p2) =


1
2

{
tr(Σ−1

2 Σ1) + ln |Σ2|
|Σ1| − d

+(µ2 − µ1)
>Σ−1

2 (µ2 − µ1)
}

q = 1
exp

(
1
2 Iq(p1||p2)

)
−1

q−1 q 6= 1

(11)

where,

Iq(p1 || p2) = ln
|Σ2|q|Σ1|1−q

|Σ|
+ q(1− q)(µ2 − µ1)

>Σ−1(µ2 − µ1) (12)
Σ = qΣ2 + (1− q)Σ1 (13)

Finally, according to the derivation of β-VAE [15], q-VAE
can be integrated with β-VAE. In other words, the following
constrained optimization problem is solved.

max
θ,φ

N∑
n=1

lnq p(xn | zn;θ)

βq(xn, zn)

s.t. KLq(ρ(z | xn;φ) || p(z)) < ε

where ε denotes a threshold of Tsallis divergence. This
problem can be rewritten as a Lagrangian under the KKT
conditions as follows.

L(β,q)(X) =

N∑
n=1

lnq p(xn | zn;θ)

βq(xn, zn)

− βKLq(ρ(z | xn;φ) || p(z)) (14)

where β denotes the hyperparameter to tune the tradeoff
between reconstruction and regularization.

C. Analysis

In the proposed q-VAE, the above ELBO is maximized by
optimizing parameter θ of the decoder and parameter φ of
the encoder. As shown in Eqs. (2) and (10), q-VAE extends
the standard VAE by adding parameter q because, if q → 1,
lnq , βq , and KLq converge on ln, 1, and KL, respectively.

In addition, the proposed q-VAE can be considered a type
of β-VAE with adaptive βq(xn, zn). According to range of
q, the following three cases are expected.

1) q = 1: As mentioned previously, βq is always equal
to 1 in this case. Therefore, this case is considered the
standard VAE or β-VAE with hyperparameter β.

2) q < 1: Generally, the posterior ρ(zn | xn;φ) contains
more information than the prior p(zn). Thus, βq would
likely be greater than 1. In other words, the posterior
is strongly constrained to discard information about



inputs only when it has a significant amount of infor-
mation. Consequently, only essential information of the
inputs is expected to be left without duplication in the
latent space (and its axes). However, smaller q leads
to smaller KLq; thus, if q is too small, no matter how
large βq is, the constraint to the prior will not work as
described above because it was originally small.

3) q > 1: In contrast to the q < 1 case, βq would likely
be less than 1. In other words, reconstruction would
be prioritized without the constraint to the prior. In
addition, as shown in Eq. (13), the covariance matrix
for the Tsallis divergence calculation is likely to violate
its positive-semidefinite condition.

From the above, we expect that a q value that is less
than 1 is better relative to achieving disentangled repre-
sentation learning with stable computation. To the best of
our knowledge, no methods have been proposed to date to
automatically tune β in β-VAE. Therefore, the proposed
q-VAE method is the first method that can tune β via a
mathematically natural derivation.

To avoid adverse effects caused by excessively small q
values, the simplified version of Eq. (14) is investigated in
the following.

Lsmp
(β,q)(X) =

N∑
n=1

lnq p(xn | zn;θ)

βq(xn, zn)

− βKL(ρ(z | xn;φ) || p(z)) (15)

This means that KL (rather than KLq) is employed for the
strong constraint. When q < 1, Lsmp

(β,q) is less than the original
L(β,q) because KL is stronger than KLq . Even though this
case would avoid an overly weak constraint by KLq with
q � 1, it may make the constraint stronger when q ' 1.

D. Extension to latent dynamical systems
Another advantage of Tsallis statistics is given by the q-

likelihood defined in Eq. (7). Its q-logarithm can be converted
to the sum of the q-log likelihoods of respective samples
without independency (i.e., with q-independency) between
each sample. In other words, even if the inputs are sampled
from dynamical systems with a transition probability, the
proposed q-VAE can be applied as is.

A simple dynamical system is designed in reference to
the literature [10], [25] (Fig. 2). Here, a trajectory of inputs
X = {xt}T1 , where T is the maximum time step, is generated
from the following dynamics with parameters η.

zt ∼ ρ(zt | xt;φ) (16)
zt+1 ∼ p(zt+1 | zt,ut;η) (17)
xt+1 ∼ p(xt+1 | zt+1;θ) (18)

where u denotes the manipulated variables of the dynamical
system.

In that time, L(β,q)(X) in Eq. (14) is redefined as follows.

Ldyn
(β,q)(X) =

T∑
t=1

lnq p(xt+1 | zη
t+1;θ)

βq(xt, zt)

− βKLq(ρ(z | xt;φ) || p(z)) (19)
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Fig. 2. Dynamics model in latent space: upper and lower components
are the same network structure as the standard VAE; the next inputs x′

is predicted according to the current inputs x and the given manipulated
variables u; in this paper, a dynamical system is given to be time-varying
linear and diagonal.

where zη
t+1 denotes zt+1 as predicted by the latent dy-

namics. When maximizing this function, η must also be
optimized implicitly. However, the information about the
dynamics would penetrate the decoder (and encoder), and
η would fail to represent the latent dynamics. Therefore,
in addition to KLq , a further constraint is applied to the
constrained optimization problem (Section III-B).

−
T∑

t=1

ln ρ(zη
t+1 | xt+1;φ) < ε

Similarly, this constraint can be rewritten as an additional
maximization target with weight γ as follows.

Llatent(X) = γ

T∑
t=1

ln ρ(zη
t+1 | xt+1;φ) (20)

Such a constraint is also introduced in reference to the
literature [10]; however, this can be applied even if only the
sampled latent variables are transited to the next ones using
Eq. (17).

Note that the general form of the latent dynamics is sim-
plified as much as possible to reduce computational cost. The
general (i.e., nonlinear) dynamics are regarded to be time-
varying linear, as is used in general nonlinear control via
first-order Taylor expansion. As mentioned previously, the
proposed q-VAE is suitable for disentangled representation;
therefore, latent variables are ultimately independent of each
other. The latent dynamics are simplified as follows.

zt+1 = diag(a(zt;η))zt +B(zt;η)ut (21)

where a and B are the outputs of the network with inputs
z and parameters η. In fact, this latent dynamics design is
expected to cause modeling an error unless the latent vari-
ables are encoded to match this dynamics using disentangled
representation learning.



IV. MNIST BENCHMARK

Here, we verify the performance of disentangled represen-
tation using the proposed q-VAE. The MNIST dataset, which
contains 28×28 = 784-dimensional images with handwritten
numbers 0 ∼ 9, was used in this evaluation.

A. Criteria of disentangled representation

To evaluate how the latent space obtains a disentangled
representation, we consider the fact that a disentangled rep-
resentation attempts to gain independent axes with essential
information. This concept is closely related to independent
component analysis (ICA) [26]. Therefore, kurtosis in the
latent space is employed according to ICA as a criterion of
disentangled representation.

Specifically, kurtosis from the sampled data Z = {zn}N1
where zn ∼ ρ(z | xn;φ), κ, is defined as Mardia’s
kurtosis [27].

κ =
1

N

N∑
n=1

{
(zn − µz)

>Σ−1
z (zn − µz)

}
− d(d+ 2)

(22)

where µz and Σz denote the mean and covariance of Z,
respectively. A greater κ values indicates better disentangled
representation.

In addition, reconstruction error criterion is important
to demonstrate how much the infomative latent space is
achieved. Therefore, binary cross entropy (BCE) is em-
ployed. Here, a smaller BCE value indicates better recon-
struction.

Note that these two criteria are computed only from the
test data.

B. Network structure

With the proposed q-VAE, the difference from the base-
lines is only related to ELBO (i.e., the loss function);
therefore, the same network structure was employed for
all compared methods. In addition, the networks were con-
structed using PyTorch [28].

The images were converted to 784-dimensional vectors.
The encoder included five fully-connected layers: 500 neu-
rons, 275 neurons, 50 neurons, and 20 neurons corresponding
to µ and σ of the posterior (i.e., d = 10). The decoder also
had five fully-connected layers: 255 neurons, 500 neurons,
and 784 neurons corresponding to the reconstructed inputs.

In addition, the outputs from the intermediate layers of
both the encoder and decoder were processed via layer
normalization [29] and Swish functions [30], [31]. We found
that appropriate normalization techniques, e.g., layer nor-
malization, are important relative to reduce the variance of
kurtosis, and the activation function in the intermediate layers
only improved the BCE value.

C. Results

The effects of β in β-VAE [15] and q value were investi-
gated. Here, (a) β = [1, 10] with an increment of 1 and (b)
q = [0.1, 1] an increment of 0.1 were tested over 50 trials
with 100 epochs. The results are plotted in Figs. 3(a) and

(b), respectively. Note that random seeds in the respective
trials are given as the number of trials.

As expected, β-VAE increased the kurtosis (i.e., the dis-
entangled representation ability) as β increased (Fig. 3(a)).
However, the BCE valued deteriorated linearly along with β.
Here, β-VAE suffered a tradeoff problem between disentan-
gled representation and reconstruction abilities, which may
make the design of β difficult.

In contrast, as shown in Fig. 3(b), the kurtosis has a peak
at q = 0.8, and BCE was decreased monotonically as the
value of q increased. In addition, BCEs in the q > 0.7
cases appeared to be sufficiently small, which suggests the
value of q should be approximately 0.8 to achieve disentan-
gled representation and effective reconstruction abilities. In
other words, the above different behaviors from β-VAE are
achieved by the proposed q-VAE with a simple implemen-
tation, a slight increase in computational cost, and minimal
effort to optimize the hyperparameters. Here, one concern is
that a small q value makes Tsallis divergence KLq small and
reduces reconstruction accuracy by increasing βq .

The results obtained with Eq. (15), which was proposed
to avoid such behavior, are shown in Fig. 3(c). Due to the
stronger and stable constraint to the prior, kurtosis increased
extremely as q decreased. However, as expected, the stronger
constraint caused the BCE to increase, even in q ' 1. In
other words, the same tradeoff as in β-VAE occurred; thus,
the original derivation in Eq. (10) is more desirable compared
to the simplified version in Eq. (15).

Next, q-VAE was combined with β-VAE, as introduced
in Eq. (14). The learning curves of several combinations are
shown in Fig. 4, where tuples denote (β, q). By focusing on
pairs of i) the (1.0, 0.8)- and (3.0, 1.0)-VAEs, and ii) the
(3.0, 0.8)- and (5.0, 1.0)-VAEs, we found that the proposed
q-VAE increased the kurtosis as much as β-VAE while
making BCE smaller than that of β-VAE. In particular, the
(1.0, 0.8)-VAE achieved superior disentangled representation
ability than the (3.0, 1.0)-VAE, while also achieving similar
reconstruction performance as the (1.0, 1.0)-VAE.

V. SIMULATION TO LEARN LATENT DYNAMICS

A. Dataset

As a proof of concept, a dynamical simulation provided by
Open AI Gym [32], i.e., LunarLanderContinuous-v2 (Fig. 5),
was learned by the proposed q-VAE using Eqs. (19) to
(21). This simulation observes eight-dimensional state space
data and is controlled via a three-dimensional action space.
Here, an expert controls the lander to land it safely in the
permitted area via a keyboard interface. In addition, the
state and action pairs were collected as a non-i.i.d. expert’s
trajectory data. In total, the dataset comprises 150 trajectories
for training (and validation) and 50 trajectories for testing.
All tuples (xt,ut,xt+1) in the 150 trajectories were divided
into 80 % training data and 20 % validation data. Note that,
during validation (after each training epoch), only the state
prediction error was evaluated to investigate underfitting and
overfitting. After training, the compared methods attempted
to predict the state (and latent variables) trajectories.
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Fig. 4. Learning curves of the (β, q)-VAEs. The respective performances
converge at 100 epoch. β-VAE effectively acquires large kurtosis at the
expense of BCE. q-VAE increased kurtosis and suppressed the deterioration
of BCE.

Fig. 5. LunarLanderContinuous-v2 [32]. A lander attempts to land safely
inside two flags by controlling a main engine and two side engines. This
problem has an eight-dimensional state and three-dimensional action spaces.

In this experiment, the prediction errors were the primary
concern to demonstrate that the proposed q-VAE can extract
latent dynamics, which is useful to reduce the computa-
tional cost of nonlinear model predictive control (MPC) [8],
[9]. Therefore, the mean squared error (MSE) between the
predicted and true states (or the predicted and encoded
latent variables) is evaluated. In addition, when applying
the learned model to MPC, long-term prediction is more
important; therefore, all states (and latent variables) were
predicted from the initial state by repeatedly going through
the latent dynamics. Totally, four types of MSEs are given,
i.e., 1-step state, 1-step latent, T -step state, and T -step latent,
and these were computed using only the test data with 50

TABLE I
NETWORK DESIGNS FOR LEARNING LATENT DYNAMICS

Version Encoder Latent dynamics
V1 [500, 400, 300, 200, 100] [100, 100, 100, 100, 100]
V2 [250, 200, 150, 100] [50, 50, 50]
V3 [100, 100, 100] [100, 100, 100]

trajectories. Note that each trajectory has approximately 500
steps; thus, the proposed q-VAE had to predict states from
one to approximately 500 steps future only using the initial
state and actions at the respective times.

B. Network structure

Due to real number inputs, all network layers were fully
connected. In this study, three network structures were
prepared to demonstrate the network-invariant performance.
The numbers of layer neurons are listed in Table I. As
can be seen, V1 is the largest structure, V2 is a moderate
encoder with the smallest latent dynamics, and V3 is the
simplest design. Note that a decoder inverted the hidden
layers in the encoder with different parameters. In addition to
the MNIST benchmark, layer normalization [29] and Swish
functions [30], [31] were employed in this evaluation.

C. Results

Three conditions with different (β, q) were compared:
(0.0, 1.0) to demonstrate that the standard autoencoder does
not have continuity in the latent space, (0.01, 1.0) as a
baseline, and (0.01, 0.8) as the proposed q-VAE. Here, β
was less than the MNIST case because the ratio between the
input and latent dimensions was approximately 100 times
different, and the β = 1 case demonstrated relatively strong
regularization. As common conditions, a three dimensional
latent space was given, and γ in Eq. (20) was set to 0.1. For
each condition, 50 trials with different random seeds were
conducted, and the mean of the prediction error during each
trajectory was computed for the test data.

The results are summarized in Fig. 6. Regardless of
the conditions and network structures, ability to predict
the 1-step state and latent variables was demonstrated. In
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Fig. 6. Prediction errors of respective models. All methods succeeded in 1-step prediction with the same accuracy. With all models, the proposed q-VAE
gained better T -step prediction than the compared methods. In particular, the compared methods made the T -step latent diverge occasionally; however,
this trend did not occur with the proposed q-VAE.

Fig. 7. PhantomX hexapod developed by Trossen Robotics. Each leg is
controlled by inverse kinematics toward its reference given as an oscillator’s
phase.

contrast, T -step prediction demonstrated the superiority of
q-VAE. For T -step latent variable prediction, the proposed
q-VAE method yielded stable results, although the compared
methods made it diverge occasionally. This implies that the
latent space extracted by the proposed q-VAE provides a
natural representation of dynamics. As a result, T -step state
prediction was improved by q-VAE. Interestingly, although
the other methods with the largest network structure (i.e.,
V1) gained better results compared to the other structures,
the proposed q-VAE achieved the same excellent prediction
performance regardless of network structure.

VI. REAL ROBOT EXPERIMENT

A. Conditions

In this experiment, the walking motion of a hexapod
robot (Trossen Robotics; Fig. 7) was evaluated to learn its
dynamics. The hexapod robot uses central pattern generators
(CPGs) [33], [34] to generate periodic walking. The dynam-
ics of six oscillators corresponding to the robot’s legs are
given as follows.

ξ̇ = e−keω + a(ξ) (23)

where ξ denotes the phases of the oscillators with natural
frequency ω, which is slowed according to the position errors
of the legs e and gain k. Note that this error term imitates
the tegotae-based [34]. a are computed according to the
oscillator network, which attracts walking gait to tripod.
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Fig. 8. Learning results of (β, q)-VAEs. (a) The proposed q-VAE improved
prediction performance. (b) The trajectory predicted by the proposed q-VAE
was attracted to almost the same periodic attractor as the observed attractor.

Here, the observed and reference joint angles are given as
inputs. In total, this experiment considered 36-dimensional
state and six-dimensional action spaces. Similar to the pre-
vious experiment, the dataset comprised 150 trajectories for
training (and validation) and 50 trajectories for testing, and
each trajectory involved 500 steps. In addition, the criteria
and hyperparameters used in the previous experiment were
considered in this experiment. Among the three network
structures detailed in Table I, V3 was employed in this
experiment. In addition, due to noisy observations, a robust
optimizer [35] was also employed.

B. Results

The results are shown in Fig. 8. As can be seen, the
proposed q-VAE improved prediction performance compared
to the baselines. As an example, prediction from the initial
state and actions are visualized in the attached video. The
latent variables are shown in the right of Fig. 8. As can
be seen, the trajectory of the predicted latent variables
were attracted to nearly the same periodic attractor as the
observed ones. In other words, the proposed q-VAE revealed
the natural latent dynamics corresponding to the oscillator
dynamics from real observation data.

VII. CONCLUSION

In this paper, we have proposed the q-VAE method, which
is derived according to Tsallis statistics . Due to Tsallis
statistics, the proposed q-VAE has three primary beneficial
features, i.e., input-dependent βq according to the amount of



information in the latent space, it demonstrates Tsallis diver-
gence regularization rather than the standard KL divergence,
and it relaxes the assumption of i.i.d. input data. The first two
features are suitable for disentangled representation learning,
and the proposed q-VAE outperformed the baseline β-VAE
approach on the MNIST benchmark. In addition, the second
feature, i.e., Tsallis divergence, was verified by testing a
simplified version of q-VAE. The third feature allows the
proposed q-VAE to be used to learn latent dynamics from
non i.i.d. data. As a proof of concept, the proposed q-VAE
was demonstrated to stably and accurately predicting future
states (approximately 500 steps) from only the initial state
and the action sequence.

Although the proposed q-VAE outperformed the compared
baselines, it has several practical approximations. In future,
we expect that further improvement can be obtained by
removing these approximations. In addition, the proposed
q-VAE was derived as a new base of VAE variants; thus, it
can be integrated with the latest disentangled representation
learning methods [16]–[18] to improve their performance.
Finally, the proposed q-VAE can be applied to real complex
systems with high-dimensional input, e.g., vision systems, to
control them relative to the prediction of future states in real
time using the latest control theory.
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