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Abstract— In this paper, we consider the problem of inner-
shape estimation of objects covered with soft materials, e.g.,
pastries wrapped in paper or vinyl, water bottles covered with
shock-absorbing fabrics, or human bodies dressed in clothes.
Due to the softness of the covered materials, tactile information
obtained through physical touches can be useful to estimate
such inner shape; however, using only tactile information is
inefficient since it can collect local information at around
the touchpoint. Another approach would be taking visual
information obtained by cameras into account; however, it is
not straightforward since the visual information only captures
the outer shape of the covered materials, and it is unknown
how much such visual-outer shape is similar/dissimilar to the
tactile-inner shape. We propose an active tactile exploration
framework that can utilize the visual-outer shape to efficiently
estimate the inner shape of objects covered with soft mate-
rials. To this end, we propose the Gaussian Process Inner-
Outer Implicit Surface model (GPIOIS) that jointly models
the implicit surfaces of inner-outer shapes with their similarity
by Gaussian processes. Simulation and real-robot experimental
results demonstrated the effectiveness of our method.

I. INTRODUCTION

In our living environment, there are many objects covered
with soft materials. Examples include pastries wrapped in
paper or vinyl, water bottles covered with shock-absorbing
fabrics, and human bodies dressed in clothes. When a robot
grasps and manipulates such an object, it needs the shape
information of the inner object, not the outer shape covered
with a soft material.

Tactile information can be useful to estimate such inner
shape assuming the outer material is soft enough, and the
robot can contact the inner object. In particular, tactile ex-
ploration for object shape estimation of unknown objects (not
covered with soft materials) has been studied intensively [1]–
[12]. However, this approach is essentially inefficient since
only the local information of the touched part is obtained
from tactile sensors.

To improve the efficiency of tactile exploration, exploit-
ing visual information obtained through cameras has been
explored since visual information can be in a wide range
without physical touch. For example, both visual and tactile
information is simply used in a mixed way [13], [14],
or utilizing uncertainty of shapes constructed from visual
information for active tactile shape estimation [15], [16].
However, it is not straightforward for objects covered with
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Fig. 1: Mannequin wearing clothing as an example of objects
covered with soft materials. (a) The mannequin fits a cloth
tightly, the visual-outer shape is similar to tactile-inner shape.
(b) The mannequin fits a cloth loosely, the visual-outer shape
is dissimilar to the tactile-inner shape.

soft materials, since the visual information captures the outer
shape of the covered materials, and it is unknown how much
such visual-outer shape is similar/dissimilar to the tactile-
inner shape.

Fig. 1 shows a mannequin wearing clothing as an ex-
ample. If the mannequin fits a cloth tightly, we can use
visual information directly in combination with the tactile
information for inner shape estimation, since the visual-outer
shape is similar to tactile-inner shape. If the mannequin fits
a cloth loosely, it may not be beneficial for inner shape
estimation since the visual-outer shape is dissimilar to the
tactile-inner shape. In other words, for effectively utilizing
the visual information in tactile-inner shape estimation of
objects covered with soft materials, it is of primal importance
to evaluate the similarity between the visual-outer shape and
the tactile-inner shape.

With the above in mind, in this paper, we propose an
active tactile exploration framework by extending an active
tactile exploration strategy proposed in [7]. Our framework
can utilize the outer shape estimated from visual information
to efficiently estimate the inner shape of objects covered
with soft materials. To this end, we propose the Gaussian
Process Inner-Outer Implicit Surface model (GPIOIS) that
jointly models the implicit surfaces of inner-outer shapes
with their similarity by Gaussian processes. The GPIOIS can
be interpreted as a novel combination of Gaussian process
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implicit surface (GPIS) [17] with Gaussian process-based
multi-task learning [18], [19]. One of the objectives of
multi-task learning [20], [21] is, in general, to estimate the
similarities among multiple tasks from observations. Our
method considers the estimation problems of visual-outer
and tactile-inner shapes as different tasks. Then the similarity
estimation problem between these tasks is tackled by a multi-
task learning scheme, and the estimated similarity is utilized
for exploiting visual-outer shape for the active tactile-inner
shape estimation of the covered objects.

II. RELATED WORK

Accurate shape representation of 3D objects is crucial in
many situations. The implicit surface [22] has been widely
used for expressing shape information because it is easy
to obtain such geometric information as normal vectors
and curvature from it. A practical extension of the implicit
surface is the Gaussian process implicit surface (GPIS) [17],
which can express the uncertainty of the shape estimation
with the implicit surface using a Gaussian process [23]. With
the uncertainty of shape estimation, active tactile exploration
can be formulated to actively collect useful information on
unknown object shapes by intelligent touching behaviors
[1]–[6]. Martens et al. proposed geometric object priors
and introduced them into GPIS by modifying the mean
function to encode shape primitives in the prior distribution
for performance improvement [24]. Sommer et al. proposed
a strategy of bimanual compliant tactile exploration to guide
two arms and an object for identification [25]. By extending
work by Matsubara et al. that minimizes shape uncertainty
and travel cost to the next touchpoint [6], Ottenhaus et al.
presented a strategy for object shape estimation and the
evaluation of many 3D object models in simulations [26].
Yang presented an alternative strategy in which the next
touchpoint is selected by the uncertainty reduction and the
local curvature for fidelity enhancement [27]. Driess et al.
explored another interesting attempt that incorporated sliding
motions rather than discrete touch behaviors in the tactile
shape estimation of objects [7], [12].

Integrating visual and tactile information for object shape
estimation [13]–[16] as well as object recognition [28] has
been studied. However, these studies commonly assumed that
the visual and tactile shapes are very similar to the actual
object shape. Therefore, both visual and tactile information
can be processed together in the same methodologies. Such
methods cannot be directly applied to objects covered with
soft materials like those we tackled in this paper since visual
and tactile shapes can be different.

In addition to shape estimation, some studies proposed
data-driven exploration using Gaussian processes. For ex-
ample, Saal et al. proposed the GP-tactile-based active esti-
mation of object dynamics parameters with tactile sensors.
Tanaka et al. extended it a GP-based tactile exploration
strategy, which focuses more on object identification [29].
Poon et al. extended a framework [30] for object search in
clutter. Kaboli et al. proposed a tactile-based GP approach
to execute the robot to discriminate objects in an unknown

workspace, object characteristic identification and object
recognition [31].

III. TACTILE EXPLORATION WITH SLIDING MOTIONS

This section briefly summarizes the framework for sliding-
based exploration from [7] as preparation for our framework
in the next section.

A. Gaussian Process Implicit Surface

The implicit surface is a method that represents shape S of
an object in d dimensions space from point cloud-based data
using implicit function F : S = {x ∈ Rd | F (x) = 0}. GPIS
estimates an object’s shape by regressing implicit function
F by GP using explored data D = {(xi, hi)}Ni=1 where N
is data size. xi is indicating a position. hi is a surface label
indicating the position of xi with respect to the object. hi

takes 0 or 1, respectively indicating the outer and surface of
an object.

GP infers a predictive distribution of implicit function F
using exploration data D as a Gaussian distribution:

p(F (x) | x,D) = N (F (x) | µ(x), V (x)), (1)

µ(x) = m+ kT
∗ (K+ σ2I)−1(y −m1), (2)

V (x) = k∗∗ − kT
∗ (K+ σ2I)−1k∗, (3)

where k∗ is a kernel vector as [k∗]i = kx(x,xi), K is
a kernel gram matrix as [K]ij = kx(xi,xj), kernel value
k∗∗ = kx(x,x), y = [h1, . . . , hN ]T , kx(·, ·) is a kernel
function, and I is an identity matrix. m and σ2 are the
mean and variance of a prior distribution. We set m = 1 by
assuming that almost all the space is outside of the object [2],
[7], [12]. Variance function V indicates the uncertainty of the
inference. The value of variance function V (x) increases in
areas where data is scarce. GPIS estimates shape Ŝ using
mean function µ:

Ŝ = {x ∈ Rd | µ(x) = 0}. (4)

In this paper, we employ an inverse-multiquadric kernel that
was previously suggested [7] as a suitable choice for implicit
surfaces:

kx(xi,xj) = (∥xi − xj∥22 + θ2x)
−1/2, (5)

where θx is a parameter of the kernel function.
Although the original GPIS [17] contains three potentials,

0, -1, 1, by assuming that the objects are closed, the robot
can acquire only two pieces of information, outside and on
the surface. Thus, -1 is omitted.

B. Sliding-Motion Planning for Exploration with GPIS

A sliding motion is defined as moving a robot in the
direction that maximizes the uncertainty of estimated shape
Ŝ on the tangent plane. The direction is found by solving
the following maximization:

d∗ = arg max
d

∇L(x)Td, (6)

s.t. nµ(x)
Td = 0, ∥d∥2 = α, (7)
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Fig. 2: Overview of our proposed framework for active tactile exploration of an object’s inner shape covered with soft
material. It is composed of a Gaussian process inner-outer implicit surface model (GPIOIS) and sliding-motion planning
for exploration with GPIOIS. Inner shape estimation and tactile motion planning (and execution) are alternatively executed
until inner shape estimation converges.

where x is the current robot position, nµ(x) indicates the
normal vector of the estimated shape, α is the moving
distance in one step, L(x) = V (x) + C(x) is the objective
function that is a sum of variance function V and penalty
function C. C(x) < 0 indicates the areas that a robot
cannot reach. Optimal direction d∗ is found by solving the
maximization with a Lagrange multiplier:

d∗ = α
Pµ(x)∇L(x)

∥Pµ(x)∇L(x)∥2
, (8)

where Pµ(x) is the tangent plane projector of estimated
shape on current robot position x. The robot moves to next
position x′ = x+ d∗.

IV. PROPOSED METHOD

Figure 2 overviews our proposed framework, which is
composed of a) a Gaussian process inner-outer implicit
surface model (GPIOIS) and b) sliding-motion planning for
exploration with GPIOIS.

A. Gaussian Process Inner-Outer Implicit Surface

Here we introduce our Gaussian process inner-outer im-
plicit surface (GPIOIS) model, which jointly models the ob-
ject’s inner and outer shapes by GPIS and can be interpreted
as a special case of a multi-task Gaussian process [18], [19]
combined with GPIS.

Our GPIOIS learns two implicit functions Fin for the inner
shape of an object covered by soft materials and Fout for its
outer shape jointly using tactile and visual-based data DIO =
{(xi, hi, ti)}Ni=1. hi is a surface label indicating the position
xi with respect to the object. hi takes 0 or 1, respectively
indicating the outer and surface of an object. ti ∈ {tin, tout}
is an inner-outer (IO) label. We assign inner label tin to
tactile-based data and outer label tout to visual-based data
without specifying their values; they are treated as a latent
variable.

GPIOIS employs kernel function kIO(·, ·) to treat data
label ti as input:

kIO((xi, ti), (xj , tj)) = kx(xi,xj) kt(ti, tj), (9)

where kt(·, ·) is a kernel function that calculates the simi-
larity between labels. It is vital to note that the similarity
is defined in between the estimated shapes associated with

the labels. Since the data label has only two patterns, kernel
kt(·, ·) is defined using matrix Kt:

Kt =

[
kt(tin, tin) kt(tin, tout)
kt(tout, tin) kt(tout, tout)

]
. (10)

Kt must be a positive semi-definite matrix since kt(·, ·) is a
kernel function. To meet this requirement, by decomposing
Kt into Kt = LLT by lower triangular matrix L using
Cholesky decomposition, kernel kt(·, ·) that indicates the
similarity can be parametrized by θt = L.

Note that we employ an approach for learning the simi-
larity in a free form [18], [19]. We don’t specifically design
either the values of t or the type of kernel kt(·, ·); instead
we directly optimize Kt through θt. See [18], [19] for more
details.

GPIOIS infers the predictive distribution of implicit func-
tion Fin for tactile-inner shape using data DIO as a Gaussian
distribution:

p(Fin(x) |x, tin,DIO)

= N (Fin(x) | µin(x, tin), Vin(x, tin)), (11)

µin(x, tin) = m+ kT
IO(KIO + σ2I)−1(yIO −m1), (12)

Vin(x, tin) = kIO − kT
IO(KIO + σ2I)−1kIO, (13)

where kernel vector kIO as [kIO]i = kIO((xi, ti), (x, tin)),
kernel gram matrix KIO as [KIO]ij = kIO((xi, ti), (xj , tj)),
and kernel value kIO = kIO((x, tin), (x, tin)), yIO =
[h1, . . . , hN ]T .

By using GPIOIS, tactile-inner shape Ŝin is estimated
using mean function µin:

Ŝin = {x ∈ Rd | µin(x, tin) = 0}. (14)

Parameter θt is optimized by a standard marginal likeli-
hood maximization approach [18], [19]:

θ∗t = arg max
θt

log p(yIO | DIO, θt), (15)

log p(yIO | DIO, θt) = −1

2
log |KIO + σ2I|

− 1

2
(yIO −m1)T (KIO + σ2I)−1(yIO −m1) + C. (16)

The other kernel parameters are fixed in the exploration like
the previous method [7].



B. Sliding-Motion Planning for Exploration with GPIOIS

Inspired by the strategy with GPIS explained in Section III
our proposed framework plans a sliding motion by moving
the robot in the direction that maximizes the uncertainty of
tactile-inner shape estimation Ŝin on the tangent plane. The
direction is found by solving the following maximization:

d∗
in = arg max

din

∇Lin(x, tin)
Tdin, (17)

s.t. nµin
(x, tin)

Tdin = 0, ∥din∥2 = α, (18)

where nµin(x, tin) indicates the normal vector of the esti-
mated tactile-inner shape and Lin(x, tin) = Vin(x, tin) +
C(x) is the objective function. Optimal direction d∗

in is found
by solving the maximization with a Lagrange multiplier:

d∗
in = α

Pµin(x, tin)∇Lin(x, tin)

∥Pµin
(x, tin)∇Lin(x, tin)∥2

, (19)

where Pµin(x, tin) is a tangent plane projector of estimated
shape Ŝ on current robot position x. The robot moves to
next position x′ = x+ d∗

in.
Normal vector nµin

(x, tin) and tangent plane projector
Pµin

(x, tin) of estimated tactile-inner shape Ŝin are calcu-
lated using mean function µin(x, tin):

gµin
(x, tin) =

∂µin(x, tin)

∂x

T

, (20)

nµin
(x, tin) =

gµin
(x, tin)

∥gµin(x, tin)∥2
, (21)

Pµin
(x, tin) = I− nµin

(x, tin)nµin
(x, tin)

T . (22)

The computational complexity for the optimal direction in
one step is O(N3), which is the same as the exploration
method proposed in the previous method [7].

V. SIMULATION

To investigate our method’s effectiveness, we conducted
simulations with four objects with different inner and outer
shapes.

A. Experimental Settings

1) Environment: The environment of each object in the
simulation is shown in Fig. 3. We assume that the robot
is a point mass with a tactile sensor and can move in any
direction in 2D space. Therefore, we set C(x) = 0,∀x.

We conducted 2D simulations with four shapes. Regarding
the relationship between the internal and external shapes,
we first considered three cases: high similarity (object A),
low similarity (object D), and local mixing (object C).
We prepared the shapes of these three patterns by simple
rectangles in the 2D simulation. We made object B’s shape
more complicated to investigate the applicability to non-
convex shapes. Based on these considerations, we designed
the four shapes for the simulations. Each shape was validated
only once since there are no effects of noise and randomness
in this environment; no statistical evaluations are required in
this case.

Outer shape Inner shapeRobot position

Object A Object B Object C Object D

Outer shape Inner shapeRobot position

Object A Object B Object C Object D

26
26

3030

1010
15

18
16

10

10
Inner shape

Outer shape
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Fig. 3: Four objects with different inner and outer shapes.
Filled green shapes indicate inner shape and dash-dotted
lines indicate outer shape of objects. Black dots are starting
points of exploration of each object. Unit of measurement is
centimeters.
TABLE I: Hausdorff distance between inner and outer shapes

Object A Object B Object C Object D
Hausdorff (cm) 6.4 12.0 26.9 37.5

2) Exploration Setting: We compared our visual-tactile
exploration method with a previous active tactile exploration
method [7]. Our method obtains visual information once
before exploration. We initially gave each method a direction
to an object. The exploration starts when the robot touches
the object the first time and terminates when it goes around
the inner shape. The exploration parameters were set as
follows: α = 1.0 cm, σ2 = 0.006, and, θx = 0.1.

3) Evaluation Method: We evaluated each exploration
method by the following three criteria.
Uncertainty measure: We used the variance of the predic-
tive distribution on estimated shape Ŝ as the uncertainty of
the estimated shape by following Dragiev et al. [3]:

1

NŜ

∑
x∈Ŝ

V (x), (23)

where NŜ is the number of points on the surface of estimated
shape Ŝ. The uncertainty measure is normalized to make it
comparable among objects of different shapes and sizes.
Hausdorff distance: We employed the Hausdorff distance
[32] as a measure of the distance between shapes Sa and Sb:

dH(Sa,Sb) = max

[
max
x∈Sa

d(x,Sb),max
x∈Sb

d(x,Sa)

]
, (24)

where d(x,S) = mins∈S ||x − s||2 is a minimum distance
between points x and s on the surface.
Similarity: We defined the similarity between our method’s
visual-inner shape and tactile-outer shape as follows:
kt(tin, tout)/kt(tin, tin).

B. Result

Figure 4 shows the result of the our visual-tactile-based
exploration, the previous tactile-based exploration, the transi-
tion of the uncertainty measure, and the Hausdorff distance.
Fig. 5 summarizes the estimated similarities with the four
objects in our method.

In the our method for object A, which has similar inner
and outer shapes, the estimated shape closely resembled the
actual shape even from the beginning of the exploration.
Both the low uncertainty measure and the short Hausdorff
distance were obtained continuously. Therefore, an efficient
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Fig. 4: Exploration results of our visual-tactile-based exploration method and previous tactile-based exploration method for
objects A to D. Black dashed lines indicate robot’s exploration path. Red lines indicate estimated shape. Purple indicates
uncertainty of shape estimation in each position. Right figures are transitions of uncertainty measure and Hausdorff distance
between estimated and true shapes.
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Fig. 5: Transitions of similarity between visual-outer shape
and tactile-inner shape of our visual-tactile exploration
method in exploration for objects A to D.

inner-shape estimation was performed by estimating and
exploiting the similarity between the visual-outer and tactile-
inner shapes. For object B, our method obtained low un-
certainty and short Hausdorff distance with less exploration
than tactile exploration until it reached the hole. Both ex-
ploration methods obtained almost the same transition of
the uncertainty measure and the Hausdorff distance in the
exploration of the hole. Regarding object C, the estimated
shape by our method was affected by the outer shape in the
early stage of the exploration. However, in the later stage,
the estimated similarity decreased quickly and resembled the
tactile exploration behaviors without exploiting the visual-
outer shape. Finally, for object D during the exploration, the
estimated shapes by our method and the tactile exploration
method were very similar, and the uncertainty measure and
area error were almost the same. Due to the low similarity
between the inner and outer shapes, our method did not

exploit the visual-outer shape for inner shape estimation.
In summary, all the simulation results suggest that our

method can estimate and exploit the similarity between the
visual-outer and tactile-inner shapes for the efficient inner
shape estimation of the objects covered by soft materials.
Even with low similarity, since the visual-outer shape is not
exploited by the inner shape estimation, there are almost no
adverse effects on estimation accuracy.

VI. ACTUAL ROBOT EXPERIMENT

Finally, we investigate the effectiveness of our method
in an actual robot experiment. The role of 2D simulations
in the previous section validated the effectiveness of our
visual-tactile-based method compared with tactile-based ex-
ploration. Since the same path can be followed for both cases,
we can focus on validating the mechanism’s shape estimation
performance with similarity inference between the visual-
outer and tactile-inner shapes and its effect on the inner-
shape estimation in detail. Here, we validate our method’s
effectiveness with 3D objects in real robot experiments where
our visual-tactile-based method and the tactile-based method
comparison follow different paths in exploration.

A. Experimental Settings

1) Environment: We used arm and body mannequins
covered by different clothes (Fig. 6) for an exploration
experiment by an actual robot. Fig. 7 shows its environment.
We used Universal Robots’ UR5 with six degrees of freedom
as an actual robot, Kinect v2 as a visual sensor, and a 3-axis
OptoForce OMD-20-SE-40N as a tactile sensor. To restrict
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the exploration range, we designed penalty function C(x):

C(x) =

{
−β dist(x)2 (out of range)
0 (otherwise), (25)

where β = 100, dist(x) is the distance between robot
position x and the exploration range’s boundary shown in
Figs. 6a and 6d. To improve the calculation efficiency, we
downsampled vision-based point cloud by averaging points
divided in a 5 cm voxel (Fig. 7c). We evaluated each method
using the uncertainty measure, the Hausdorff distance, and
the similarity described in previous section.

2) Exploration Setting: Similar to the simulation, we
compared our method with a previously proposal [7]. Our
method obtains visual information once before exploration.
We initially gave each method a direction to an object. The
exploration starts when the robot touches the object for the
first time and terminates when the travel length reaches 1.5
m. The exploration parameters are set as α = 1.0 cm,
σ2 = 0.08, and, θx = 0.15.

3) Robot Control Framework: The robot movements can
be divided into the tangential direction and the normal
direction to the object. Since we placed a 3-axis OptoForce
OMD-20-SE-40N in the robot’s fingertip in this experiment,
the square root of the sum of the squares of these three
forces is set on the robot fingertip as the contact force, and
contact is detected if the magnitude of the contact force
exceeds 1.0 N. Because the robot searches for unknown
objects, unexpected force may be exerted on it in tangential
and normal movement directions. To prevent this, when the

Fig. 8: Exploration by our method with object G

contact force exceeds 5.0 N, it moves in a normal direction
opposite the object until the contact force becomes 5.0 N or
less. These constraints allow the robot to search safely.

B. Result

Figure 8 shows the exploration by the actual robot using
our method with object G. Fig. 9 shows the result of
our visual-tactile-based exploration and the previous tactile-
based exploration in actual robot environments, with the
results of the uncertainty measure and the Hausdorff distance.
For objects E and G that wear thin clothes, the Hausdorff
distance indicates that our method had high estimation accu-
racy even from the beginning of the exploration. Since both
the uncertainty measure and the Hausdorff distance were
continuously low, we did an efficient inner-shape estimation
by estimating and exploiting the similarity between the
visual-outer and tactile-inner shapes. For object F that wears
loose clothes but the arm’s shape is almost recognizable, the
estimated shape was initially affected by the outer shape,
and the estimated shape shrank to the accurate inner shape
as the exploration progressed. For object H that wears
loose clothes, our method and the previous method had
similar estimated shapes, and the uncertainty measure and
the Hausdorff distance were almost the same. Thus, our
method did not exploit the visual-outer shapes since inner
and outer shapes were dissimilar. Visual-tactile based and
tactile based exploration methods took 20.38±3.14 min and
16.75±2.38 min for 1.5 m exploration, including 150 times’
motion planning and execution. Each motion planning took
8.15± 1.26 s and 6.70± 0.95 s, respectively.

Figure 10 shows the transitions of the estimated similarity
for the four objects. Objects E and G obtained continuously
high similarity during the exploration. Object F obtained
slightly less similarity as the exploration progressed, al-
though it remained relatively high. The transition of object
H’s similarity is lower than the other objects. Our method can
estimate the reasonable similarity between inner and outer
shapes.

Figure 11 shows the initial exploration direction on each
object with our method and the previous tactile exploration
method. By using visual information to a tactile exploration,
the initial exploration distances were changed.

In summary, in actual robot experiments, our method
achieved efficient exploration based on the estimated similar-
ity between visual-outer and tactile-inner shapes. Even with
low similarity, since the visual-outer shape is not exploited
in the inner shape estimation, we found almost no adverse
effects on the estimation accuracy.
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tactile-inner shapes of our visual-tactile exploration method
in exploration for objects E to H.

VII. DISCUSSION

Our primary motivation for this study is partner robots
that talk, watch, and care for people in such private spaces
as homes and care facilities. To improve the affinity between
humans and robots, touch care is useful because it provides
not only visual and auditory stimulation through dialogue but
also tactile stimulation at the same time. In such situations,
people will probably touch the outside of their clothing more
often than they will directly touch another person’s body.

Many other cases exist where our approach becomes
important, including when pastries are wrapped in paper or
plastic and water bottles are covered with shock-absorbing
fabrics. Generally, if the inner object is fragile or deformable
and if the outer surface is loose, handling with tremendous
force/torque is dangerous. Another future direction of our

Object E
Tactile Visual-tactile

Object F
Tactile Visual-tactile

Object G
Tactile Visual-tactile

Object H
Tactile Visual-tactile

Fig. 11: Initial exploration direction on objects E to H with
tactile and visual-tactile information

work is investigating how to adjust the compliance of the
robot control with the looseness/tightness of the outer sur-
face.

Our current framework has several limitations. First, our
framework implicitly assumes that just one object is covered
with soft materials due to utilized tactile motion planning
for maintaining contact with the object that is currently
being touched. Second, it assumes that the internal object is
not moving over the shape estimation process. Future work
will manage this limitation by introducing another latent
variable in the model to represent such moving position and
orientation.

Another limitation of our framework is its estimation of
the global similarity between visual-outer and tactile-inner
shapes. Thus, our method may fail to capture the local
similarities of shapes. Our framework can be extended with



a local similarity measure that would extend latent task label
tin/out from a scalar to a set where each element is assigned
to a local area of the target space. This framework could be
implemented by expanding the size of task matrix Kt in (10)
so that each element of the gram matrix captures the local
similarities between the inner and outer shapes.

Intriguing future work will extend our framework so that it
can explore not only the inner shape of rigid objects covered
with soft materials but also such other characteristics of
deformable-inner objects as stiffness, inertia, surface texture,
center of mass, and shape [31].

VIII. CONCLUSION

In this paper, we considered the problem of inner-
shape estimation of objects covered with soft materials.
We proposed an active tactile exploration framework that
can utilize the visual-outer shape to efficiently estimate
the inner shape of objects covered with soft materials. We
confirmed through actual robot experiments that the proposed
framework achieved an efficient exploration based on the
estimated similarity between visual-outer and tactile-inner
shapes. Even with low similarity, since the visual-outer shape
is not exploited into the inner shape estimation, there were
almost no adverse effects on the estimation accuracy.
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