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Abstract— Pedestrian pose prediction is an important topic
related closely to robotics and automation. Accurate predictions
of human pose and motion can facilitate a more thorough
understanding and analysis of human behavior, which benefits
real-world applications, such as human-robot interaction, hu-
manoid and bipedal robot design, and safe navigation of mobile
robots and autonomous vehicles. This article describes a deep
predictive coding network-based approach for unsupervised
pedestrian pose prediction from two-dimensional (2D) camera
imagery and provides experimental results on two real-world
autonomous vehicle data sets. This article also presents a
discussion on topics for future work in unsupervised and
semi-supervised pedestrian pose prediction and its potential
applications in robotics and automation systems.

I. INTRODUCTION

Nowadays, robots exist in an environment filled with
moving people. A museum tour-guide robot such as [1],
[2] is constantly surrounded by crowds of pedestrians, some
needing guidance regarding various exhibitions and some
who may intentionally walk up to it or block its way to
“test” the system. A self-driving car or a delivery robot can
regularly find itself navigating a business district while trying
to avoid a collision in the midst of heavy pedestrian traffic.
In industrial settings, collaborative robots on assembly lines
must allow humans to stand in its proximity and learn to
recognize the intention of human workers based on their
movements and gestures to ensure safety and improve worker
ergonomics and productivity [3], [4]. As these examples
suggest, it is important for a robot or automation system to
correctly understand and predict human poses to determine
the intention of humans and make appropriate decisions and
actions to avoid collision as well as facilitate human-robot
collaboration.

The human pose is commonly represented using a kine-
matic skeletal system of body joint locations, or “keypoints,”
in the perception community. Given sequences of human
poses extracted from collected data, such as images or videos
in the past, the goal of pose prediction is to capture the
underlying motion model of humans and make inferences
about the pose and location of a person or persons at future
time-steps. There are a number of challenges associated with
pedestrian pose estimation and prediction, including body
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part occlusion by other pedestrians or vehicles, human ap-
pearance and clothing variety, data collection range, camera
viewpoint and lighting conditions, complex traffic scene in
the background, and stochasticity in human motion [5]–[7].

Various machine learning and deep learning methods have
been proposed for human pose prediction based on sequences
of motion data, including probabilistic dynamic models,
physics-based models, supervised deep neural networks, and
methods based on video generation. Deep learning (DL)
methods such as Recurrent Neural Networks (RNN), in
particular Long Short-Term Memory (LSTM) networks [8],
have shown superior performance compared with traditional
(non-deep) machine learning and physics-based methods for
pose prediction. However, supervised DL methods for pose
prediction in the literature typically require accurate skeleton
annotations of training sequences, which may be difficult
or expensive to obtain. If prior annotations are imprecise,
erroneous, or contain missing frames, the performance of
supervised DL methods may become sub-par. In this work,
we developed an unsupervised method for pedestrian pose
prediction given car-mounted monocular camera videos col-
lected by an autonomous vehicle. Our proposed system uses
a deep predictive coding network (PredNet) [9] as an unsu-
pervised video prediction method to generate future predicted
frames and perform image-based pedestrian pose detection,
which eliminates the need for accurate measurements and
prior skeleton annotations as required by standard supervised
pose prediction methods.

II. PREDNET-BASED UNSUPERVISED PEDESTRIAN POSE
PREDICTION

This section describes the foundation of our future frame
generation module, PredNet, and our proposed unsupervised
pose prediction pipeline.

A. PredNet

The PredNet [9] is a deep neural network inspired by
the concept of “predictive coding” from the neuroscience
literature. The PredNet architecture consists of four basic
layered units: recurrent representation (R), prediction (Â),
the input convolutional layer (A), and error representation
(E). The right-hand column of Figure 1 shows an illustration
of the four-layer PredNet structure used in our system. Given
a sequence of images (video data) as input, the target value of
the lowest layer A0 is set to be equal to the image sequence.
PredNet goes through a top-down and a bottom-up pass to
calculate the states of all units in each layer. First, at the
top-most layer (l = 3) at timestep t, the recurrent prediction
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Fig. 1: The system design for the proposed PredNet-based unsupervised pedestrian pose prediction network. The left column shows the
flowchart of the proposed system. For this illustration the input video has three timesteps (t = 0, 1, 2), but the input video can have more
than three frames. The right column shows the details of the four-layer PredNet module where the green, blue and red blocks represent
the recurrent representation (R), prediction (Â) and input convolutional layer (A), and error representation (E).

state Rt
3 is updated by passing a copy of the error signal

at previous timestep Et−1
3 and the recurrent prediction state

at previous timestep Rt−1
3 through the convolutional LSTM

units. For all subsequent layers l = 0, 1, 2, the recurrent
prediction state Rt

l is updated according to Et−1
l , Rt−1

l , and
an up-sampled copy of Rt

l+1. At each layer, the prediction
Ât

l is computed by a convolution of Rt
l followed by a ReLU

for non-linearity. The bottom layer Ât
0 is additionally passed

through a saturating linear unit (SatLU) to make sure the
predictions of the next frame do not exceed the maximum
pixel value. The error response at the bottom layer Et

0 is
calculated by passing the difference between Ât

0 and At
0

(predicted image and actual image) through a ReLU and then
divided into positive and negative errors and concatenated.
For l = 1, 2, 3, the errors from the layer below Et

l−1 are
passed through a convolution unit, followed by ReLU and
max pooling, to become the input to the next layer At

l . The
PredNet can be trained end-to-end using gradient descent
by minimizing the firing rates of the error neurons. The
prediction state of the lowest layer Ât

0 is returned as the
prediction result for timestep t. This process is repeated for
all timesteps t = 1 → T in the given image sequence. The
psuedo-code of the PredNet update process can be seen in
Algorithm 1 in [9].

Our pose prediction network is based on, but not limited
to, PredNet. In fact, the video prediction module (shaded
yellow) can be easily swapped with other video prediction
methods. We favor PredNet in our system as it has demon-
strated superior performance for future frame prediction with

moving backgrounds (as demonstrated in the original paper
on the KITTI benchmark suite [10]), which fits our goal of
predicting pedestrian poses from data as typically observed
from an autonomous vehicle perception system. PredNet is
also an unsupervised method, which has the advantage of not
requiring any annotation on skeleton or mesh of persons in
the scene in prior sequences. In the following experiments,
we used a four-layer PredNet structure with 3× 3 convolu-
tions and layer channel sizes of (3,48,96,192), and the same
parameter settings as described in [9] that produced effective
results on natural image sequence prediction.

B. Pose Prediction

Figure 1 provides an illustration for the full system for
our proposed PredNet-based unsupervised pedestrian pose
prediction network. Given a sequence of RGB images from
a camera video as input, the PredNet is used to predict
pixel-level RGB values for the next frame. Then, based
on predicted future frames, poses were extracted using pre-
trained human pose detectors. In our experiments, we used
the OpenPose human keypoint detector [11] to detect twenty-
five 2D keypoints of pedestrians based on predicted future
frames1. OpenPose is a deep CNN-based human pose and
keypoint detector and has shown state-of-the-art performance
in real-time, skeleton-based pose detection based on videos
and images containing multiple persons in various actions,

1OpenPose for image-based pose detection is avail-
able at: https://github.com/CMU-Perceptual-Computing-
Lab/openpose/blob/master/doc/quick start.md#quick-start.
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including common pedestrian actions such as standing and
walking. To further filter out false alarms caused by non-
human objects, such as tree branches, utility poles, and
billboards, another layer of human detector is applied to the
OpenPose detection results. In our system, we applied a pre-
trained Mask R-CNN method [12]2 to estimate bounding
box locations for humans and, thus, classify humans with
non-human objects. The poses detected within the “human”
bounding box are returned as the output of this system as
the predicted skeleton pose for the generated future frame.

Our system offers a solution to unsupervised pose pre-
diction inspired by human visual learning. Human drivers
are able to easily identify pedestrians and moving objects
in the environment based on past observations as the car is
in motion. Additionally, human drivers do not necessarily
require the exact metric of pedestrians in past sequences to
know their pose (for example, walking in a direction that
could intersect with the car). Our pose detection system
generates future frames based solely on a car-mounted cam-
era and performs direct pose estimation per-frame, which
no longer requires accurate measurements and annotations
for historic skeleton sequences (which often further requires
expensive data collection instruments such as 3D LiDAR3)
as required by prior work. In addition, the PredNet module
inherently incorporates implicit models of scene structures
and movements of objects such as buildings, streets, and
pedestrians as observed from a moving vehicle. Moreover,
previous supervised pose prediction methods often perform
poorly with imprecise measurements or occluded body parts
in previous frames, yet our method naturally alleviates the
missing-data problem since our pose detector is performed
per-frame and does not rely on previous skeleton detection
results.

III. EXPERIMENTAL RESULTS: JAAD AND PEDX

We present experimental results of our proposed pose
prediction approach on two real-world autonomous vehicle
perception data sets, Joint Attention for Autonomous Driving
(JAAD) and PedX. The JAAD Dataset [13]–[16] contains
346 video clips collected from one of three different high-
resolution monocular cameras in North America and Europe.
The camera is positioned inside the car below the rear view
mirror. The frame rate is 30 frames per second (FPS). The
PedX dataset [17] is a large-scale multi-modal dataset for
pedestrians collected at intersections in downtown Ann Ar-
bor, MI, USA in 2017. The dataset provides high-resolution
stereo images and LiDAR data with manual 2D ground-
truth annotations. The data was captured using two pairs of
stereo cameras and four Velodyne LiDAR sensors. Figure 2
shows the data collection set-up of the PedX dataset. We
only use data from one of the forward-facing cameras with

2Pre-trained COCO weights for Mask R-
CNN human detection are available at
https://github.com/Superlee506/MaskRCNNHumanpose/releases.

3Light Detection and Ranging, an instrument commonly used for au-
tonomous vehicle perception to measure precise ranges of objects. High-
resolution LiDARs can be expensive.

6FPS frame rate in the following experiments. Both JAAD
and PedX provide car-mount RGB videos in urban traffic
scenes and observe pedestrian movements in-the-wild. The
JAAD dataset was collected on a moving car (thus, moving
background and moving pedestrians), while the PedX dataset
was collected on a parked autonomous vehicle (stationary
scene, moving pedestrians). The JAAD dataset also includes
a variety of traffic scenes such as roads and parking lot, while
PedX focuses on three urban intersections.

Velodyne LiDARs

RGB
Cameras

Fig. 2: The PedX data collection system on an autonomous vehicle,
parked at an intersection in downtown Ann Arbor, MI, USA.

The JAAD dataset contains 81,906 frames in total. We di-
vided the JAAD dataset in 30-frame sequences (one second-
long) and used randomly-shuffled 85% of the sequences for
training, 5% for validation, and tested on the remaining 10%
sequences (8,280 frames). We used the same parameters
of the PredNet model as described in [9] and trained the
model from scratch. The input images were down-sampled
to 256 × 456 to accommodate the computer memory while
maintaining the aspect ratio. We also divided the PedX
dataset into 30-frame sequences (approximately five seconds
long) and used the PredNet module trained from JAAD to
test on all 484 PedX sequences (14,520 frames).

A. Frame Prediction Results

We first report the quantitative evaluation of the predicted
future frames as compared to the actual collected video
frames. Two metrics are used, mean-squared-error (MSE)
and the Structural Similarity Index Measure (SSIM) [18].
The MSE calculates the pixel difference between the pre-
dicted and actual frames (the lower the better) and the
SSIM is correlated with perceptual similarity (the larger the
better). We also report the results from the trivial solution of
copying the last frame as baseline. As shown in Table I, the
PredNet module is effective in predicting the future frame
and achieves better performance in both MSE and SSIM
in both JAAD and PedX data sets. The MSE is lower and
the SSIM is higher for the PedX dataset overall since the
background scene in PedX data is fixed while the background
changes as the car moves in the JAAD dataset.

Figure 4 provides visual examples of the future frame
prediction results of PredNet on sample sequences from
JAAD and PedX. We observed that the frames predicted
by PredNet (row 2 and row 5) were very similar visually
to frames from the actual video clips (row 1 and row 4).
The frame prediction step was also capable of extrapolating
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sky and textures of other objects and making fairly accurate
predictions, such as when cars move in or out of the frame.

TABLE I: Evaluation of next-frame predictions on JAAD and PedX
data sets. The best performance is in bold and the standard deviation
across three runs is presented in parentheses in the following tables.

MSE (×10−3) SSIM
PredNet on JAAD 2.621(0.587) 0.926(0.017)
Copy Last Frame on JAAD 6.602(0.732) 0.904(0.028)
PredNet on PedX 1.244(0.093) 0.962(0.003)
Copy Last Frame on PedX 1.759 0.955

B. Pose Prediction Results

The output of PredNet frame prediction is of shape
(N,T, 256, 456, 3), where N is the number of sequences
and T is the sequence length (T=30). To ensure optimal
performance of the OpenPose keypoint detector, we used the
pyplot.savefig function in matplotlib in Python to save the
frame predictions with dpi (dots per inch) equals to 1000,
resulting in 2791 × 4967 images for the JAAD dataset and
2687×3645 for the PedX dataset for pose prediction. We call
this process “up-sampling”. The OpenPose was then applied
to the up-sampled (saved high-resolution) images to detect
pedestrian keypoints.

Since the JAAD dataset did not provide skeleton anno-
tations, we used OpenPose pose detection results filtered
by Mask R-CNN, based on the actual video frames, as the
ground-truth. We then compared the pose detection results
from our proposed approach based on the predicted future
frames to the ground-truth and calculated the root-mean-
square-error (RMSE) results. In PedX, we also report the
RMSE results between our pose prediction results and the
manual 2D annotations. We compared our approach with two
previous supervised deep learning pose prediction methods,
LSTM-3LR [6] and a frame difference method adapted from
Bio-LSTM (Bio-LSTM-Lc) [19]. For LSTM-3LR, we used
a stacked three-layer LSTM with 64 units and 250 training
epochs in our experiments. For the frame difference (Frame
Diff.) method, we used the most prominent gait feature,
the gait periodicity loss (Lc) in the Bio-LSTM objective
function, with a two-layer stacked LSTM recurrent neural
network for pose prediction. We also reported the RMSE
results from the naive baseline by copying poses from the
last frame.

Table II presents the pose prediction results on the JAAD
dataset. The RMSE-x, RMSE-y, and RMSE-xy columns
corresponds to the RMSE results on the x-axis (width of
the image), y-axis (height of the image), and average of
both, respectively. The lower the RMSE results, the better the
prediction performance. The second row shows the RMSE
results in pixels. The last row below the double line shows
the percentage pose prediction error normalized by bounding
box (bb) sizes, and their corresponding error values in
metric space in centimeters. The symbol =∧ means “corre-
sponds to”. As shown, our proposed approach yields smaller
RMSE mean and standard deviation values than comparison
methods in both x and y (width and height) directions,

TABLE II: Evaluation of pose prediction on the JAAD dataset.
RMSE-x RMSE-y RMSE-xy

Copy Last Frame 102.534(165.329) 89.801(137.015) 101.561(148.418)
Frame Diff. 92.456(151.035) 78.352(117.988) 89.816(132.828)
LSTM-3LR 72.366(125.301) 57.324(95.502) 68.374(109.531)

Ours 29.347(39.818) 19.088(21.685) 26.516(30.623)

Ours: bb 0.145(0.144)
=∧ 14.5(14.4)cm

0.040(0.042)
=∧ 8.0(8.2)cm -
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Fig. 3: The predicted skeleton RMSE results of our proposed
method, in pixels. Each circle represents a keypoint (a joint) on the
body. The 25 keypoints include left and right shoulders, elbows,
wrists, hips, knees, ankles, eyes, ears, feet, toes, heels; and nose,
neck, and center of hip. The colors of the circle represents the mean
RMSE results across three runs; yellow shows higher error and dark
blue shows low error. The size of the circle represents the standard
deviation value at each joint; the larger the circle, the higher the
standard deviation.

indicating the effectiveness and consistency of the proposed
method. The two supervised comparison methods, LSTM-
3LR and Bio-LSTM, were both originally developed for
3D skeleton/mesh prediction and require accurate full-body
annotations in previous frames. In this experiment, where 2D
keypoints detected in previous frames are often imprecise or
missing due to occlusion, those supervised methods produced
higher error. The trivial solution of directly copying the last
frame yielded the highest error in both height and width
directions, which is as expected since this baseline method
does not account for pedestrian motion in between frames
at all. Our proposed pose prediction method, on the other
hand, produces pose estimations based on the predicted
future frame and does not require previous skeleton detection
results, which resulted in significantly smaller error and more
consistent pose prediction results.

Figure 3 plots the skeleton RMSE results in pixels at
each joint. As shown, the body center has the lowest error
whereas the extremities (hands and feet/heels) show both
larger mean and standard deviation error values, which is
understandable as the hands and feet are the most flexible
part of the human body and also most easily occluded,
therefore the most difficult to predict. To further “translate”
the image-level evaluation (in pixels) to metric space (in
meters), we computed the pose prediction errors normalized
by the heights and widths of the corresponding bounding
boxes detected by Mask R-CNN. The last row in Table II
shows the percentage error with respect to human bounding
box sizes. Assuming that a person is approximately two
meters tall and one meter wide, our average pose error in the
physical space is approximately 14.5cm in lateral direction
and 8cm height-wise.
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PredNet: Next-
Frame Prediction

Ours:
Pose Prediction

Actual

PredNet: Next-
Frame Prediction

Ours:
Pose Prediction

Ground-Truth
Poses

PredNet: MTP
Frame Prediction

Ours: MTP
Pose Prediction

Fig. 4: An example of sample frames from the JAAD and PedX video sequences, the PredNet future frame prediction results, and the pose
prediction results of our proposed system. The top six rows show next-frame prediction results. The first three rows are from the JAAD
dataset, where two pedestrians are walking in a parking lot, and the middle three rows are from the PedX dataset, where a pedestrian is
walking across the crosswalk at an intersection. The bottom three rows show the ground-truth poses from the JAAD dataset, the multiple-
timestep frame prediction results, and our MTP pose prediction results. The original video sequences are 30-frames-long, which is equal to
one second in JAAD and five seconds in PedX. Here we plot t = 1, 7, 13, 19, 25, which corresponds to approximately 0.2-second-spacing
in JAAD sequence and 1-second-spacing in PedX. For more results containing consecutive frames, please see supplementary video.
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We used the PredNet module trained from JAAD to test
on the PedX dataset. Table III presents the pose prediction
results on PedX. Since the PedX dataset contains manual
ground-truth (GT) annotations, we compared our pose pre-
diction results to both the manual GT and the poses detected
by OpenPose on the actual video clip. We also evaluate the
accuracy of the OpenPose keypoint detector compared with
the manual GT. Compared with Table II, the PedX prediction
results have slightly higher RMSE than when tested on JAAD
dataset due to the frame rate being five times higher in
JAAD than PedX, and that the PedX scenes have never been
observed in training. Nevertheless, using the model trained
on JAAD can still make pose prediction on previously unseen
PedX contexts with relatively small error (25.1cm in width
and 12.6cm in height).

Figure 4 show visual examples of pose prediction results
for sample sequences from JAAD and PedX. The predicted
skeleton poses were overlaid with the predicted RGB images
in row 3 and row 6. Our pose prediction system can correctly
detect and predict human poses in the scene based on the
predicted future frame from PredNet. Particularly, when a
pedestrian was partially occluded because of the motion of
the ego vehicle (the vehicle with the data collection camera),
as shown in the last column of row 3, our pose prediction
process was still able to detect the correct pose and mark
that the legs are occluded (not plotted on the image).

TABLE III: Evaluation of pose prediction on the PedX dataset.
The “OP Actual vs. GT” row shows the RMSE results between
pose detected by OpenPose on the actual video clip and the manual
ground-truth annotation (GT). The “Ours vs. OP Actual” row shows
the RMSE results between our proposed method and poses detected
by OpenPose on the actual video clip. The “Ours vs. GT” row shows
the RMSE results between the OpenPose pose on the predicted
video clip (i.e., our proposed method) and manual GT.

RMSE-x RMSE-y RMSE-xy
OP Actual vs. GT 39.616(49.049) 31.014(45.166) 38.634(52.428)
Ours vs. OP Actual 58.235(33.514) 33.486(22.751) 49.689(24.653)
Ours vs. GT 68.781(47.798) 43.546(40.845) 62.000(45.836)

Ours: bb 0.251(0.148)
=∧ 25.1(14.8)cm

0.063(0.055)
=∧ 12.6(11.0)cm -

C. Multiple-Timestep Prediction

This section presents experimental results of predicting
multiple timesteps (MTP) in the future. Given ten actual
observed frames in the JAAD dataset, our PredNet-based
video generation module extrapolates the next 20 timesteps,
in which the 11th frame prediction was fed back to the
network as input to generate the 12th frame prediction, and
so on. Then, our pose prediction module performs pose
estimation on the predicted frames. Since R0

l and E0
l in

PredNet were initialized to zero, the prediction at the initial
timestep was spatially uniform and therefore not considered
in our analysis.

Figure 6 shows the multiple-timestep frame prediction re-
sults evaluated by the aforementioned two metrics, MSE and
SSIM. Recall that the MSE calculates the pixel difference
between the predicted and actual frames (the lower the better)
and the SSIM is correlated with perceptual similarity (the

larger the better). The second timestep produced high frame
error due to the fact that there is no motion information
available yet in the sequence, causing the frame recon-
struction to be blurry. In the next few timesteps, PredNet
learned the underlying dynamics in the motion sequence
and the predicted frames better matched the input (actual)
frames, resulting in relatively low MSE and high SSIM
results between timesteps 3-10. This observation is consistent
with the description in [9]. After time step 10 (in the MTP
process), since previous predictions were used as input to
extrapolate future frames, the frame errors were higher than
next-frame prediction results and the MSE increased (and
SSIM decreased) over time.

Figure 7 shows the pose prediction results for time steps 2-
30 based on the MTP frame predictions, with comparison to
the next-frame prediction results. In time steps 2-10, where
the actual frames were used as input, the MTP process is the
same as the next-frame prediction and they yield comparable
RMSE results. In time steps 11-30, where the previous pre-
diction results were recursively iterated as inputs to generate
future frames, the MTP error are higher than next-frame
prediction and increased significantly over time as the noise
overcame the system. Qualitatively, the bottom three rows in
Figure 4 shows the MTP frame and pose prediction results of
a sample sequence from the JAAD dataset. As time increases,
the MTP model was still able to capture certain motions
in the scene, such as the movements of the clouds and
surrounding cars in the parking lot. However, the frame
predictions eventually became more and more blurry due
to the accumulation of noise and uncertainty, thus causing
inaccurate and missed pose detection results (such as the
person on the right-hand side) in its extrapolations after the
first ten time steps.

D. Discussion

The quantitative and qualitative results presented above
show that our proposed PredNet-based unsupervised pose
prediction approach can produce accurate pose prediction
results. Using two real-world data sets in autonomous driving
contexts, JAAD and PedX, we show that our proposed
approach is applicable to a variety of driving scenes and the
frame prediction models are can be generalized to previously
unseen environments.

Our PredNet-based frame prediction step produces realis-
tic future frames, accounting for both vehicle and pedestrian
motions. We also observed that parts of the predicted frames
can be blurry later in the sequences (when t increases) due to
down-sampling, particularly in small textured regions, such
as the pedestrian’s facial features, or unfamiliar regions, such
as when the red car entered the scene in the middle of the
sequence in Figure 4. In PedX, the blur effect seemed more
prominent due to the fact that we used a PredNet model pre-
trained on JAAD and the PedX environments were not learnt
in training and that the spacing between frames was longer
in PedX due to a low frame rate. However, such blur effect
did not have a significant impact on the pose prediction step
and we observed that our pose prediction module can still
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Runtime

downsample: 2hr42min PredNet-train: 36hr4min PredNet-test: 22min upsample: 27hr56min
OP pose detection: 58min Mask R-CNN filter: 2hr9min Compute RMSE: 3min

Fig. 5: Computation time analysis for the JAAD dataset experiments, trained and validated on 73,626 frames, tested on 8,280 frames.

Fig. 6: Multiple-timestep frame prediction results on the JAAD
dataset. The x-axis marks the timesteps (the last 20 timesteps were
extrapolated from the MTP process) and the y axes show the frame
MSE (left, red) and SSIM (right, blue).

Fig. 7: Multiple-timestep pose prediction results on the JAAD
dataset. The x-axis marks the timesteps (the last 20 timesteps
were extrapolated from the MTP process) and the y-axis marks the
openpose skeleton joint RMSE in pixels. The solid lines show the
MTP results and the dashed lines show the next-frame prediction
results. The red, blue, and green colors represent the RMSE results
on the x-axis (width of the image), y-axis (height of the image),
and average of both, respectively.

successfully detect the skeleton joint locations of pedestrians
based on predicted future frames.

Our proposed approach does not rely on manually-defined
models and distributions but instead performs frame-based
2D pose prediction. Our approach transforms the standard
supervised learning problem, which requires full-body pose
annotations in prior sequences, into an image-data-driven,
unsupervised framework. Our frame prediction step realisti-
cally predicts scene dynamics as well as the relative motion
between pedestrians (or moving objects) and background,
and our pose detection step naturally handles occlusion based
on the OpenPose detector. Moreover, our approach produces
both the RGB future frame as well as the future pose, which
makes the pose visually interpretable within the frame.

One of the challenges associated with such frame-based

pose prediction methods is the performance of the pose pre-
diction depends significantly on the accuracy of the human
detector, i.e., the OpenPose and Mask R-CNN algorithms
used in our system. Although highly effective most of the
time, the human detectors can occasionally produce false
alarms, such as mistaking a windshield wiper or a billboard
painting as a pedestrian, or mis-identifying tree branches or
dark shadows as a person, especially under difficult lighting
conditions such as sun glare, as shown in Figure 8. It is also
challenging at times to accurately identify multiple persons
moving in a crowd at a distance. This can be solved by
better positioning the camera, such as outside the windshield
wiper or on top of the car to avoid potential interference of
the wipers, using more vigorous noise filtering approaches,
and exploring alternative sensor modalities to compensate the
lighting and other environmental effects on RGB cameras.

Fig. 8: Examples of OpenPose false alarms, where a windshield
wiper and a person on the billboard were mis-identified as pedes-
trians (top) and tree branches were mis-identified as pedestrians due
to dark shadows under glare (bottom).

E. Analysis on Computation Time

Our proposed network was implemented in Python 3.6
using the Keras framework [20]. The PredNet module was
trained on a desktop computer with Intel Xeon 2.10GHz CPU
with four NVIDIA TITAN X GPUs and 128 GB memory.
The memory requirement can be reduced if the input video
is of lower resolution or if the sequence length is smaller.
After PredNet was trained, the pose detection module was
performed on a desktop computer with Intel i7 3.60GHz CPU
with two NVIDIA TITAN X GPUs.

Figure 5 shows a breakdown of our end-to-end compu-
tation time for the JAAD dataset experiments (next-frame
prediction). The PredNet training and upsampling are the two
most time-consuming tasks. However, the PredNet training
step can be omitted when a pre-trained PredNet model is
applied to other data sets, such as in our PedX experiments.
The training time also varies if the input data size changes.
The inference time for the PredNet testing stage is approx-
imately 20ms per frame. The OpenPose pose detection step
is also quite fast, taking approximately 418ms per frame.
In our current implementation, since our pose detector and
noise filter are both image-based, we saved all up-sampled
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RGB images to disk. Therefore, the upsampling and Mask
R-CNN filter steps include the long disk read and write
time. Future work will include investigating non-image-based
pose prediction methods. Additionally, the pose detection and
filtering steps can be trivially parallelized.

IV. FUTURE OF POSE PREDICTION AND CONCLUSIONS

This article presented an unsupervised pedestrian pose
prediction system based on a deep predictive coding network
for autonomous vehicle perception. Our system combines
video generation approaches, such as PredNet, and frame-
based pose detectors, such as OpenPose and Mask R-CNN,
and shows effective future pose detection performance on
real-world autonomous vehicle applications.

There are several new research directions related to this
work. This article focused on autonomous driving percep-
tion applications, but human pose prediction can be widely
applied in various robotics and automation applications, in-
cluding virtual reality, sports and artist posture analysis, and
medical assistance. In many robotics and automation applica-
tions with abundant perception data, accurate annotations are
expensive and difficult to obtain. Therefore, it is necessary to
further develop unsupervised and semi-supervised learning
methods given sparse and imprecise labels for pedestrian
pose prediction in various contexts. Particularly, with human
pose analysis and sequence prediction, additional investiga-
tion can be conducted to incorporate more realistic spatial,
temporal, textural, semantic, and biology-derived constraints
in the learning model [21]. Furthermore, mobile robots and
automation systems are interacting with the real world. In
autonomous driving, pedestrians and vehicles are constantly
making decisions based on their interactions and finding the
balance between achieving certain goals and avoiding risk
and collision. Interesting future work will include incorporat-
ing pedestrian-pedestrian and pedestrian-vehicle interactions
in pose and trajectory prediction and use such prediction
results for activity inference, low-level decision making (such
as stop/go), and path planning.

Our current pose prediction performance depends on the
accuracy of the frame prediction in RGB image space,
which may become more challenging as weather and lighting
conditions change. Future work will include investigating hu-
man pose prediction based on alternative or complementary
sensors, such as depth cameras and thermal imaging cameras.
With the development of advanced computing units, network
architecture design and automated parameter settings for
improving the efficiency and scalability of deep learning
approaches can be further studied as well.

Finally, it is essential to develop evaluation metrics for
pose prediction, particularly when ground-truth is not avail-
able or imprecise. An open problem remains as to how to
evaluate if the predicted pedestrian poses are natural and
realistic and if they are in accordance with the traffic rules
and regulations and ethics.
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