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Abstract— In this paper, we aim to expedite the deployment
of challenging manipulation tasks involving both motion and
contact wrenches (forces and moments). To this end, we acquire
motion and wrench signals from a small set of demonstrations
using passive observation. To learn these tasks, we intro-
duce Trajectory parameterized Probabilistic Principal Compo-
nent Analysis (traPPCA) which compactly re-parameterizes
the acquired signals using trajectory information and encodes
the signal correlations using Probabilistic Principal Component
Analysis (PPCA). Finally, the task is transferred to a robot setup
by specifying the robot behavior using a constraint-based task
specification and control approach. This framework results in
increased robustness of the system against different sources
of uncertainty: imprecise sensors, adaptation of the tool, and
changes in the execution speed.

I. INTRODUCTION

Robot manipulation tasks often correspond to challenging
operations that involve both motion and contact wrenches.
As an example, let’s consider the manipulation of a bottle
opener to remove a crown cork from a bottle. We find
inspiration for our control scheme in the human dexterity
to perform manipulation tasks. We hypothesize that humans
have prior knowledge about the required motion to approach
with the bottle opener to align its hook with the crown
cork, as well as an estimate of the required movement to
remove the crown cork. However, the latter fine motion is
performed using the contact wrenches as feedback. Hence,
they perform the corresponding movements while feeling
resistance due to forces and moments. There is a large variety
of tasks that involve a similar interaction between motion
and contact wrenches, such as contour following, painting,
sanding, among others.

We leverage passive observation [1] to facilitate the acqui-
sition of the task information from human demonstrations.
To this end, using a device equipped with a pose tracker
and a force/torque (F/T) sensor, we perform a small set of
demonstrations towards different positions of the workpiece
while recording positions, orientations, forces, and moments.
We use these demonstrations to capture the trajectory shape,
but also to delimit the workspace in which the robot will
execute the task.

Our system generalizes this information by extending the
methodology presented in [2] which combines Learning
from Demonstration LfD (only at the position level with-
out learning the time evolution) with constraint-based task
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Fig. 1: Two robot applications are learned and deployed: bottle-opening
(up) and non-clamped contour-following (down). a) Demonstrations are
performed using passive observation. b) A robot moves to make contact
on a stiff workpiece. Collisions are avoided during the approach motions
based on proximity signals. c) The system aligns to reach the taught first
contact point. d) pose, wrench and evolution constraints are used to robustly
execute the learned tasks. See video attached to this paper.

specification and control. On one hand, in this work, we
introduce traPPCA to learn the motion model. This method
re-parameterizes the acquired signals with respect to inherent
trajectory information. First, all the signals are represented
in a relevant task frame (e.g., the bottle opener hook). Then,
instead of de-correlating poses and their time derivatives
doubling the number of the pose signals, as in the state of the
art, we encode the time evolution by re-parameterizing these
signals with respect to the degree-of-advancement speed,
which contains information of the time evolution of the
position and orientation. This methodology increases the
vector of task signals with only one signal, while increasing
the robustness against signal noise and misalignment of the
approach and contact phases. As in [2], the variability of the
whole set of signals and demonstrations is encoded using the
dimensionality reduction technique PPCA introduced in [3].

On the other hand, we based our robot controller on task
specification of motions involving contact wrenches in the
Task Frame Formalism (TFF) introduced in [4]. To this
end, we implement the TFF in the constraint-based frame-
work expression graph based Task Specification Language
(eTaSL) [5]. As a result, our system is able to generalize
robot motions that involve contact wrenches towards non-
demonstrated situations based on constraints imposed on the
evolution, pose, and full wrench signals, while at the same
time complying with environment and robot constraints (e.g.,
proximity-based collision avoidance [6] and joint limits).

The main contribution of this paper is to present a frame-
work that combines the following features:

1) The use of passive observation to enable a user to
perform demonstrations intuitively. In contrast to kines-
thetic teaching, a dedicated device (see Fig. 2) enables
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the acquisition of pose and contact wrench signals
without the need to compensate for the influence of
friction and inertial properties of the robot.

2) The use of trajectory information, such as the task frame
and its time evolution, to re-parameterize evolution,
pose and wrench signals. This methodology facilitates
the alignment of the contact and non-contact phases
while decreasing the number of signals corresponding
to the motion compared with the state of the art.

3) The implementation of the TFF using pose, wrench, and
evolution soft-constraints in eTaSL. This methodology
enables our system to generalize signals using the infor-
mation encoded in the learned model while complying
with robot and environment constraints. As a result,
our system has increased robustness against different
sources of geometric uncertainty such as transferring
the task to a robot setup and imprecise sensors.

4) The modularity and composability offered by the
constraint-based framework eTaSL. These properties en-
able a user to modify the degree-of-advancement speed
and the tool dimensions (only adapting the already avail-
able kinematic model) while maintaining the learned
model, control specification, and other hyperparameters.

5) The evaluation of our system by robustly generalizing,
in real-world scenarios, evolution, pose and wrench
signals from a small set of demonstrations. As a result,
our system can execute approach-and-contact tasks in
both stiff and deformable environments without using
motion-capture aids such as markers or trackers.

This framework is evaluated by learning and deploying two
robot applications (see Fig. 1): first, a robot is taught to
approach and open bottles with varying sizes positioned
and clamped vertically in non-demonstrated locations; and
second, a robot is taught to approach to get into contact with
a non-clamped workpiece positioned in non-demonstrated
locations, and subsequently follow a section of its contour
while maintaining contact.

II. RELATED WORK AND ASSUMPTIONS

Several learning algorithms have been used to encode
information from demonstrations in a set of basis functions.
For instance, Probabilistic Movement Primitives ProMPs [7]
and Dynamic Movement Primitives DMPs [8] encode the
information in the weights of chosen radial basis functions,
while Gaussian Mixture Models GMM, used in [9], [10],
[11], [12] employ a mixture of Gaussians as basis functions.
As these methods use general Gaussian representations, the
number of independent parameters scales quadratically with
the number of signals to learn. In contrast, as described in
[13], the PPCA algorithm captures the most significant cor-
relation while still ensuring that the number of independent
parameters grows only linearly with the number of signals.
This aspect is important to deal with the Machine Learning
phenomenon: curse of dimensionality [10]. Moreover, the
PPCA technique generalizes the learned information using
a linear combination of a weighted set of basis functions.
These weights correspond to the Degrees Of Freedom DOF

of the learned model and are controlled in eTaSL by speci-
fying them as feature variables while complying with robot
and environment constraints.

Several approaches have extended the mentioned methods
from only the generalization of joint/cartesian positions in
free space towards generalization of: (i) orientation during
transfer motions, as in [14] by learning unit quaternions
using DMPs, [11] by learning TP-GMM on Riemannian
Manifolds, or [12] by encoding angular velocity using GMM
in Coupled Dynamical Systems (CDS) [9]; (ii) orientations
during contact tasks, as in [15], [16] by learning unit
quaternions using DMPs, (iii) contact forces, as in [17], [18]
by learning this information using TP-GMM and extracting
stiffness parameters from demonstrations in the former, [19]
by encoding variable stiffness using a time varying linear
Gaussian control law, or [12] by explicitly expressing forces
as function of the distance to the CDS attractor; (iv) contact
moments in the operational space, as in [15] and [16], by
learning these variables using DMPs; and (v) transition
between contact and non-contact tasks, as in [18] by using
the variance of a Gaussian Process Regression (GPR) as
confidence value of belonging to a segment, [20], [21],
[22], [23], [24], [25] by using methods based on Hidden
Markov Models (HMM) models to represent the different
segments, or [12] by performing automatic segmentation
using a criterion defined by high variability within each
demonstration and systematic changes between different
demonstrations. Although these works introduced some of
the mentioned features, they did not present a simultaneous
combination of all of them. Specifically, on the one hand,
all the mentioned methods use Kinesthetic Teaching as the
way to perform demonstrations. Although this method allows
the system extracting parameters such as joint stiffness from
demonstrations, its application is limited to robot platforms
that offer active compliance. Furthermore, besides making
the demonstration process more cumbersome for non-expert
users, the platform’s friction and inertial properties also
influence the contact wrench measurements. On the other
hand, to the authors’ knowledge, none of these methods have
presented the ability to modify the execution speed and the
tool dimensions while maintaining learned model, control
specification, and hyperparameters, as well as complying
with robot and environment constraints.

To assess the potential to further generalize our approach
to other applications, we make our assumptions explicit:

Assumption 1: We consider applications consisting of a
non-contact phase (approach motion), followed by a contact
phase in which both motion and wrench signals are relevant.
The transition between both phases is well-defined by the
initial contact of the tool and the workpiece.

Assumption 2: The position of the object, the initial
position of the tool, and the shape of the position profile of
the approach can vary substantially during demonstrations
and executions; the other signals, however, vary only in a
limited way.

Assumption 3: All properties of the demonstration and
execution set-up are known or can be easily estimated. These
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properties correspond to: (i) the used robot setup including
robot, tool, F/T-sensor, tracking sensor, and camera system;
(ii) the kinematic model of the robot setup, which can
be easily specified using the Universal Robot Description
Format (URDF); (iii) tool weight and center of gravity, while
inertial forces can be neglected due to the low accelerations
during demonstration and execution; and (iv) a rough
estimate of the mechanical contact stiffness between the tool
and the workpiece, which is assumed to remain consistent;

Assumption 4: An available industrial vision solution,
such as Pick-it, is calibrated to obtain the initial contact
position.

III. INFORMATION GENERALIZATION

In this section, we extend the LfD methodology presented
in [2] towards traPPCA, which, besides encoding position
signals pf ∈ R3, also deals with orientation qf ∈ R4,
wrenches uf ∈ R6, time evolution ξ̇ ∈ R, and segmentation
between contact and non-contact motions. To this end, a
user performs N demonstrations via passive observation (see
Fig. 1.a). These demonstrations contain D = 13 signals with
T samples of pose and wrench measurements. Considering
assumptions 1 to 4, these signals are parameterized using
trajectory information as follows:

1) Measured poses (position and orientation) of each
demonstration are expressed in the task-frame corre-
sponding to the tool and referenced with respect to its
initial pose.

2) Based upon two thresholds on the Euclidean norm of
the force and moment signals, each demonstration is
subdivided into A = 2 segments corresponding to
motions without and with contact between the tool and
the workpiece.

3) The D signals of each a-th segment are normalized
separately such that they become independent of time.
These signals are re-parameterized using the degree-of-
advancement ξ(t), defined in [26] as a linear combi-
nation of the normalized position path coordinate and
an equivalent value for the orientation. This value is
calculated as follows:

ξa(t) = w

∫ t
ta,0
||vp||dt∫ ta,T

ta,0
||vp||dt

+ (1− w)

∫ t
ta,0
||ω|| dt∫ ta,T

ta,0
||ω|| dt

(1)

ξ(t) = ξa(t) + (a− 1), (2)

where vp and ω correspond to the translational and
angular velocity computed using Euler approximation,
respectively; the weighting factor w = 0.5 gives equal
importance to the translation and rotation information;
and ta,0 and ta,T , are the initial and final time for each
a-th segment, respectively. As a result, for the type of
applications aimed in this paper, approach and contact
phases correspond to 0 ≤ ξ ≤ 1 and 1 ≤ ξ ≤ 2,
respectively, while ξ = 1 corresponds to the expected
first contact.

4) The time evolution is encoded in the learned model by
first computing the degree-of-advancement speed ξ̇(t)

applying the Euler approximation over ξ(t) and then,
adding this as a new signal resulting in D = 14.

5) Subsequently, each segment a is re-sampled with the
same number T = 50 of ξ-equivalent samples using
spline interpolation.

6) Finally, let us express fd,n(ξj) as the j-th sample that
corresponds to the d-th signal of the n-th demonstration,
with j ∈ 1 . . . TA, d ∈ 1 . . . D, and n ∈ 1 . . . N . For
each demonstration n, the discrete samples fd,n(ξj) are
assembled in the rows of a matrix F̄ ∈ RN×TAD in the
following form:

F̄ n,TA(d−1)+j(ξj) = fd,n(ξj), (3)

where the indices of F̄ correspond to row and column,
respectively.

As in [2], a Gaussian distribution is assumed for the
elements of each row in (3). This distribution can be de-
scribed by the following latent variable model as a function
of the degree-of-advancement ξ and a vector χf lv ∈ RM
containing M latent variables χf lv, referred to as PPCA in
[3]:

f(ξj ,χf lv) = W (ξi)χf lv + b(ξi) + σ2(ξj), (4)

where f(ξj ,χf lv) ∈ RD is the generated signal, W (ξj) ∈
RD×M is a matrix containing M ≤ N − 1 basis functions
encoding the signal variability, b(ξj) ∈ RD is the signal
average over all demonstrations, and σ2(ξj) corresponds to
a Gaussian noise. As explained in [2], these parameters are
calculated by first estimating the maximum likelihood from
F̄ as follows:

b(ξj) =
1

d

N∑
n=1

F̄ n(ξj)
T , (5)

D(ξj) =
[
F̄ 1(ξj)

T − b(ξj) . . . F̄N (ξj)
T − b(ξj)

]
, (6)

σ2(ξj) =
1

DTA−M

N∑
j=M+1

λj , (7)

W (ξj) = UM (ΛM − σ2 I)1/2 R, (8)

where UM and {λ1, . . . , λM} are the eigenvectors and
eigenvalues of the covariance matrix DDT , ΛM is
a diagonal matrix containing the eigenvalues ΛM =
diag(λ1, . . . , λM ); and R corresponds to an arbitrary trans-
formation matrix that, for convenience, is chosen as the
identity. Then, the terms in (4) are made continuous by
performing a cubic spline interpolation over the TA samples
for each signal as a function of ξ. Therefore, subtracting
the signal noise from (4), it yields the following continuous
function:

f(ξ,χf lv) = W (ξ)χf lv + b(ξ), (9)

Finally, the generated signals in (9) are mapped to the
following representations: (i) the position signals are ex-
pressed as a position vector pf (ξ,χf lv) ∈ R3 , (ii) the
quaternion corresponding to orientation signals is normalized
and expressed as a rotation matrix Rf (ξ,χf lv) ∈ R3×3, (iii)
the force and moment signals are assembled in a wrench
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vector uf (ξ,χf lv) ∈ R6, and (iv) the time derivative of
the degree-of-advancement is expressed as ξ̇f (ξ,χf lv) ∈
R. Note that the generated orientation corresponds to a
quaternion linear interpolation. These components are then
normalized, resulting in a methodology similar to the well-
known normalized quaternion linear interpolation (LERP)
[27].

IV. CONTROL DESIGN

In this section, we present the most relevant aspects from
[2] to specify robot behaviors that consider sensor input as
well as robot and environment constraints. Furthermore, we
introduce an extension by implementing the TFF to deal
with complex tasks in which the robot tool is in contact
with a workpiece. To this end, the robot control is expressed
leveraging the definition of eTaSL soft-constraints, which are
defined by joint position variables q, feature variables χf ,
and the time variable t. The introduction of feature vari-
ables in eTaSL allows the specification of DOF associated
with the task such as the degree-of-advancement ξ or the
latent variables χf lv in the learned model. The constrained
optimization problem in eTaSL takes the following form:

minimize
x

xTHx (10a)

subject to LA ≤ Ax ≤ UA (10b)

where the argument x is a vector
[
q̇T χ̇Tf εT

]T
that

contains: the time derivative of the robot joint variables q̇,
the time derivative of the feature variables χ̇f , and a slack
variable ε for each soft-constraint. The weights w in the
diagonal of H enable the system to deal with conflicting
constraints. LA and UA are lower and upper bounds of the
constraints described by matrix A, respectively.

In [2] it is described how eTaSL enables the specification
of constraints (10b) using three kinds of velocity-resolved
controllers: first, commanding a task expression e(q,χf , t)
to evolve towards zero (11) following a first-order system
with time constant k−1; second, commanding a task expres-
sion g(q,χf , t) to follow a desired velocity v (12); third,
commanding a (sensor) measurement h to evolve towards a
target h∗ following a first-order system with time constant
k−1, by describing this evolution as a model m(q,χf , t).
These constraints are formulated as follows:

J

[
q̇
χ̇f

]
= −ke− ∂e

∂t
+ ε, (11)

J

[
q̇
χ̇f

]
= v − ∂g

∂t
+ ε, (12)

Jm

[
q̇
χ̇f

]
= −k(h− h∗)− ∂m

∂t
+ ε. (13)

The task function Jacobians J and Jm map the time
derivatives of states q and χf into the time derivatives of
the task variables e.

We define the following constraints to describe the robot
behavior:
Constraint 1. Motion and wrench signal generation: The
generation of new signals is done by first defining the latent

variables χf lv in (9) as eTaSL feature variables. Then, a
constraint (11) is imposed such that at the instance in which
the first contact is expected, pf (ξ,χf lv)|ξ=1 coincides with
the target contact position p∗ ∈ R3 obtained from a 3D
vision system. This behavior is formulated as:

e1 = pf (ξ,χf lv)|ξ=1 − p∗. (14)

Constraint 2. Reactive time evolution: The evolution along
the signals is driven by, first, defining the degree-of-
advancement ξ as a feature variable; and then, commanding
its time derivative to follow the generated profile ξ̇f (ξ,χf lv)
by specifying constraint (12) with:

g2 := ξ and v := ξ̇f (ξ,χf lv) (15)

This results in a behavior in which the degree-of-
advancement speed ξ̇ can deviate from the generated profile
due to the reactive behavior during the task execution.

Constraint 3. Motion control: The pose of a task frame in
the robot Γ(q) := {p(q),R(q)} is commanded to follow a
generated pose Γf (ξ,χf lv

) :=
{
pf (ξ,χf lv),Rf (ξ,χf lv)

}
by imposing the position evolution and orientation evolution
using constraint (11) with:

e3,p := p(q)− pf (ξ,χf lv), (16)

e3,R := δ(q, ξ,χf lv) (17)

where δ(q, ξ,χf lv) corresponds to the equivalent axis rep-
resentation [28] of R(q)Rf (ξ,χf lv)−1.

Constraint 4. Wrench control: To influence the robot motion
given the generated wrench profile, first, we define instanta-
neous changes in the position p(q)† ∈ R3 and the equivalent
axis representation of the orientation φ(q)† ∈ R3 measured
with respect to an instantaneous coinciding task frame. Then,
we constrain their time derivative to be proportional to the
difference between a target wrench uf ∈ R6 and a measured
wrench u ∈ R6. We introduce this behavior using constraint
(13).

m4 :=

[
p(q)†

φ(q)†

]
, (18)

h4 := −K−1x u, and h∗4 := −K−1x uf , (19)

where the stiffness between the tool and the environment
is represented by a matrix with stiffness coefficients for
translation kp ∈ R3×1 and orientation kδ ∈ R3×1 in its
diagonal Kx := diag(kpx, kpy, kpz, kδx, kδy, kδz).

Constraint 5. Additional Constraints: To increase safety in
the system and enable human-robot interaction additional
constraints were composed, offering proximity-based colli-
sion avoidance [6], workspace limits, and joint position and
velocity limits [5] and [2].
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Fig. 2: A teaching tool equipped with a bottle opener left and a bearing
to follow a contour right. The tool is instrumented with a tracker, a handle
and an F/T sensor. The corresponding task frame is depicted for each tool.

TABLE I: Constraint parameters.

Constraint Parameter Value Unit

1 k1 15 s−1

w1 1.25

2 w2 2

3 k3 4 s−1

w3 1

4

kpx, kpy, kpz 1800 N/m
kδx, kδy, kδz 180 Nm/rad

k4 4 s−1

w4 [0, 1]

V. EXPERIMENTAL RESULTS

This section discusses two experimental use cases to val-
idate our approach. Both experiments involve robot motions
with and without contact while satisfying assumptions 1 to
4. However, both applications differ radically.

In both experiments, we leverage passive observation to
record time-series of poses and wrenches from five demon-
strations. To this end, we use a device equipped with an
HTC-Vive tracker (accuracy up to 8 mm) and a 6-axis JR3-
67M F/T sensor (accuracy of 1 % of the measuring range,
i.e., ±200 N for forces and ±12 Nm for moments). Both
sensors are mounted as shown in Fig. 2.a.

Then, we subdivide the demonstrations in non-contact and
contact segments using thresholds for the force and moment
norms of 0.9 N and 0.01 Nm, respectively. To calculate
these thresholds, we lower their value until obtaining false-
positive contacts. To improve the F/T sensor’s accuracy, we
balance the sensor removing the wrench drift before every
demonstration and execution. Four basis functions (M = 4)
are chosen to encode the demonstrated information based
on the variance encoded in each of them (see Fig. 3). The
selection of this number is very intuitive: three is the least
number to generalize at the position level and four is the
maximum number given the small number of demonstrations.
During the execution, the position of the contact point p∗ is
sensed using the commercial Pick-it 3D vision system with
a reported accuracy of ±5 mm.

The hyperparameters of the controller presented in sec-
tion IV are reported in table I. These values were intuitively
tuned since all of these parameters have a clear physical
meaning, such as time constant k−1i for each constraint i of

Fig. 3: Graphical representation of the position information captured in
the learned model and its corresponding generated signals for the approach
motion 0 ≤ ξ ≤ 1 in the bottle-opening case. a) Variance in the position
signals captured by the decoupled basis functions in the learned model (9).
Their shaded projections in the planes are displayed. b) Position signals
generated by a linear combination of the basis functions in a) for eight
bottle positions.

type (11) or (13), or stiffness. When combining constraints,
the robot behavior is influenced by the relation between the
weights wi for each constraint i. Therefore, they are specified
according to the following intuitive guidelines:

1) k1 has a high value to impose a fast convergence of
constraint 1. w1 has a slightly larger value than w3

and w4, thereby ensuring to reach the sensed point p∗

while enabling deviations to deal with uncertainties of
the vision system.

2) Similarly, w2 is defined to command ξ̇ to follow the gen-
erated degree-of-advancement speed signal ξ̇f (ξ,χf lv)
while allowing deviations to comply with the rest of the
constraints.

3) w3 is defined as a reference to tune w1, w2, and w4.
4) w4 is set to zero during the approach phase while

increasing its value at a constant rate 1 s−1 until it
reaches one at ξ = 0.95, just before the initial contact
is expected. This behavior enables enough flexibility to
deal with cases in which the initial contact occurs before
expected. The maximum value of w4 is designed to give
constraint 4 the same priority as constraint 3 during the
contact phase.

5) k3 and k4 are set considering that in velocity-resolved
controllers affecting directly the motion of industrial
robot gains are typically limited to 4 to 5 s−1.

6) Stiffness values kp and kδ are estimated experimentally.

Constraints 1 and 2 correspond to task constraints. They
do not affect the robot motion directly, but they do so by
interacting with constraints 3 to 5. Furthermore, the estimated
stiffness is primarily a property of the contact interaction
between the tool and the workpiece. However, compliance
of the robot may reduce the overall stiffness. These insights
enable tuning the parameters for a particular setup and then
transferring them to other setups.
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Fig. 4: Snapshots of four experiments to test the robustness of the system.
The green rhombuses correspond to the expected contact point p∗ provided
to the system. a) Baseline experiment, the robot makes contact at the ground
truth contact point. b) The expected contact point is intentionally shifted
−5 mm in the y-axis with respect to the ground truth. c) The bottle is
tilted 10◦ around the world y-axis. d) The degree-of-advancement speed
and the tool length are increased 3.5 and 1.5 times, respectively.

A. First experiment: bottle-opening

In the first experiment, a user demonstrates how to
manipulate a bottle opener to remove a crown cork (see
Fig. 1.a). To show the generalization of our system, we
clamped bottles with different sizes oriented vertically in
different positions. Slight variations in their orientations (
±10◦ measured with respect to the normal to the table) were
intentionally introduced.

Fig. 3 shows how our approach linearly combines the
learned basis functions (Fig. 3.a) to generate new trajectories
towards non-demonstrated bottle positions (see Fig. 3.b). As
a result, for a new bottle location, the opener is aligned to
hook the cap while avoiding collisions with the bottle during
the approach motion.

We tested the robustness of our system by establishing
a baseline in which we commanded the robot to follow
motion-wrench signals generated towards a ground truth con-
tact point (see Fig. 4.a). Subsequently, we did experiments
commanding the robot to follow motion-wrench signals
generated towards positions shifted ± 3, 5 and 8 mm in the
world x, y and z axis from the ground truth. For instance,
Fig. 4.a depicts an experiment in which the expected contact
point is shifted −5 mm in the y axis with respect to the
ground truth. During execution, the robot got stuck at one
side of the cap. The generated wrench controller enabled the

Fig. 5: Signals reported from successful experiments in the bottle-opening
application by commanding robot motions: a) towards a ground truth point
(see Fig. 4.a); b) towards a point shifted from the ground truth 5 mm in
the y axis (see Fig. 4.b); and c) by increasing the degree-of-advancement
speed and the tool length 3.5 and 1.5 times, respectively (see Fig. 4.d). The
instances in roman numbers correspond to the snapshots in Fig. 4.

system to recover and successfully complete the task.
We performed additional experiments to prove robustness

against changes in the orientation of the bottle. To this end,
the bottle was tilted ± 5◦, 10◦ and 15◦ around the world
x, and y axis (see Fig.4.c). The results of the experiments
are reported in table II. Finally, we performed experiments
in which we extended the length of the bottle opener used
to record demonstrations 1.5 times (see Fig.4). We modified
the kinematic specification for the task frame and the inertial
properties of the tool accordingly. Subsequently, we sped
up the task execution by multiplying the generated degree-
of-advance speed ξ̇f by a factor of 3.5 while maintaining
the learned model, control specification and hyperparameters
reported in table I.

Fig. 5 depicts a comparison between the mentioned ex-
periments. Position, orientation, and moment signals were
similar in the three cases. However, reported force deviations
are high in b) and c) due to the misalignment of the expected
contact point and the higher speed, respectively. In a) and c)
the initial contact happens at the expected instance ξ = 1,
while in experiment b) it occurs before the expected instance
ξ < 1 (see first contact in Fig.4). The latent variables in Fig 5
remain constant around the same value when all constraints
are satisfied, i.e., the executed motion corresponds to the
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TABLE II: Successful (X) and failed (×) experiments of the bottle-opening
case when shifting positions and orientations from a baseline

mm x-axis y-axis z-axis ◦ x-axis y-axis

+3 X X X +5 X X

+5 X X X +10 × X

+8 × × × +15 × ×

−3 X X X −5 X X

−5 X X X −10 X X

−8 × × X −15 × ×

Fig. 6: Relevant signals reported for a contour tracking experiment. During
the approach motion, p(q) deviates from the generated signals to avoid
obstacles sensed by the proximity sensors. During the contact phase, the
system is able to correct the deviations between the position of the real
contour and the estimation of the learned model.

generated one. However, when there are deviations, their
values change, adapting the generated signals in (9), and
hence adding flexibility to the system. Additionally, devia-
tions from the generated degree-of-advancement speed add
flexibility to the system. As result, rapid motions encoded
from demonstration, such as the one performed by the user
immediately after removing the cap are supressed during
execution, thereby complying with robot constraints (see
after second 15 in Figs. 5.a and 5.b, and second 5 in Fig. 5.c),

B. Second experiment: contour-following

In a second experiment, a user demonstrates how to
manipulate a tool with a bearing to make contact at a specific
point of a workpiece and subsequently follow its contour
(see Fig. 1). The workpiece is placed in different positions
(with low variability in the orientation) lying on a rubber
mat to increase friction with the table while still enabling
displacement by exerting high forces. The desired first point
of contact is perceived by the same vision system as in
the first experiment. We executed this task by adapting the
corresponding kinematic chain while maintaining the same
control specification and hyperparameters as in table I.

Fig. 6 shows that the robot is able to avoid collisions with
the hand of a person perceived by proximity sensors, while
successfully completing the task (see Fig. 1.b). During the
contact phase, the pose-wrench constraints enable the system

to correct the motion of p(q) to follow the real contour, while
maintaining contact.

Larger deviations between the generated and executed
position position paths can be observed in Fig. 6 (30 - 40s).
These deviations cause increments in the reported forces,
however, without dragging the contour.

Finally, additional experiments were performed, in the
bottle-opening and contour-following case, to compare the
task execution resulting from the proposed motion-wrench
constraints against a task execution only defined by the
motion constraints, and another one only defined by the
force constraints. Ten trials were performed for each of the
three sets of constraints. Success in the first experiment
corresponds to opening the bottle, while in the second it
corresponds to follow at least 95 % of the contour. For
these 10 trials the proposed methodology based on motion-
wrench constraints showed 100 % success rate while the
other constraint definitions only succeeded in 10 % of the
trials. Results showed that by using only motion constraints
in the contour-following, the robot exerted more than 20 N,
thereby dragging the contour. In the bottle-opening case, the
use of only motion or wrench constraints resulted in either
missing the cap or activating the robot emergency stops due
to the high forces. These insights confirm that the definition
of only wrench or pose constraints is insufficient to achieve
the proposed tasks robustly.

VI. DISCUSSION

This paper combines LfD and constraint-based task speci-
fication to learn manipulation tasks that involve contact. Our
assumptions fully describe a category of tasks which, besides
covering the presented use cases, also encompasses other
applications such as painting, polishing, among others.

The acquisition of motion and wrench information via
passive observation facilitates a non-expert user to perform
demonstrations intuitively without affecting the measure-
ments compared to kinesthetic teaching. However, as future
work, we propose to improve the human interface by de-
creasing the size of the pose and F/T sensors. In this way, we
will be able to further improve the ergonomy of the teaching
device.

Our method alleviates the curse of dimensionality affecting
machine learning. This characteristic is attributed to

(i) the representation of the time evolution by reparame-
terizing signals and adding its time-derivative as one signal
to the model instead of six as used in the state of art;
and (ii) the use of the dimensionality reduction technique
PPCA to capture the most meaningful information. Linearity
in the learned space increases the predictability of our
system, thereby improving robustness and safety in a human-
robot collaborative scenario. Generalization of behaviors that
cannot be captured due to the linearity assumption, e.g.,
circumventing obstacles by multiple sides, can be included
by either specifying them in eTaSL or encoding them using
a mixture of PPCA models [13] at the expense of increasing
the number of demonstrations.
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The use of passive observation and the implementation
of the TFF using pose, wrench, and evolution constraints
enabled the decoupling of the task and the robot platform.
We proved that our system was able to execute the task by
modifying the kinematic chain while maintaining the learned
model, control specification, and hyperparameters. As future
work, we will transfer the same task to other platforms.

Our system can generalize motion and wrench signals to-
wards non-demonstrated positions while being robust against
uncertainties associated with the vision system, small vari-
ations in workpiece orientation, and large variations in
execution speed. As future work, we propose to encode
information of the angular velocity as in [26], [15] to improve
the generalization in the orientation signals.

Future work will focus on relaxing several of the as-
sumptions and extending the robustness to other types of
variations, allowing a rapid generalization for a wider range
of applications.

VII. CONCLUSIONS

A learning approach was proposed for a specific category
of tasks involving contact and non-contact motions. This
category of tasks involves positions, orientations, forces,
moments, a sensor-skin and a camera. Assumptions related
to this category were made explicit. Learning from demon-
stration was applied to the position, orientation, force and
moment signals and integrated with the rest of the task
specification using the task specification language eTaSL. We
succeeded in learning two radically different applications, a
bottle-opening and a contour-following application, from a
limited number of demonstrations. Although not explicitly
demonstrated in this letter, we are independent of the specific
robot used, as long as the kinematics and robot-related
constraints are correctly modeled and in range for the given
task.

As a result, our system has the potential to decrease the
costs associated with the required hardware to deploy robot
applications in industry. This aspect is essential to bridge the
gap between LfD and real industrial applications.
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pbd framework for fast deployment of bi-manual assembly tasks,” in
IEEE Int. Conf. Hum. Rob., nov 2018, pp. 166–173.

[17] L. Rozo, D. Bruno, S. Calinon, and D. G. Caldwell, “Learning
optimal controllers in human-robot cooperative transportation tasks
with position and force constraints,” in Proc. IEEE/RSJ Int. Conf. Int.
Robots and Systems, vol. 2015-December, 2015, pp. 1024–1030.

[18] J. Silverio, Y. Huang, L. Rozo, S. Calinon, and D. G. Caldwell,
“Probabilistic learning of torque controllers from kinematic and force
constraints,” in Proc. IEEE/RSJ Int. Conf. Int. Robots and Systems,
2018, pp. 6552–6559.

[19] A. X. Lee, H. Lu, A. Gupta, S. Levine, and P. Abbeel, “Learning
force-based manipulation of deformable objects from multiple demon-
strations,” in Proc. IEEE Int. Conf. Robotics and Automation, no. June,
2015, pp. 177–184.

[20] A. K. Tanwani, J. Lee, B. Thananjeyan, M. Laskey, S. Krishnan,
R. Fox, K. Goldberg, and S. Calinon, “Generalizing Robot Imitation
Learning with Invariant Hidden Semi-Markov Models,” in Interna-
tional Workshop on the Algorithmic Foundations of Robotics (WAFR),
nov 2018.

[21] N. Figueroa and A. Billard, “Transform-Invariant Non-Parametric
Clustering of Covariance Matrices and its Application to Unsu-
pervised Joint Segmentation and Action Discovery,” arXiv preprint
arXiv:1710.10060, oct 2017.

[22] N. Figueroa, A. L. P. Ureche, and A. Billard, “Learning complex se-
quential tasks from demonstration: A pizza dough rolling case study,”
in ACM/IEEE International Conference on Human-Robot Interaction,
vol. 2016-April, 2016, pp. 611–612.

[23] T. M. Hagos, M. Suomalainen, and V. Kyrki, “Segmenting and
sequencing of compliant motions,” in IEEE Int. Conf. Intell. Robot.
Syst., oct 2018, pp. 6057–6064.

[24] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, and J. Peters,
“Towards learning hierarchical skills for multi-phase manipulation
tasks,” in Proc. IEEE Int. Conf. Robotics and Automation, 2015, pp.
1503–1510.

[25] M. Racca, J. Pajarinen, A. Montebelli, and V. Kyrki, “Learning in-
contact control strategies from demonstration,” in Proc. IEEE/RSJ Int.
Conf. Int. Robots and Systems, 2016, pp. 688–695.

[26] J. De Schutter, “Invariant Description of Rigid Body Motion Tra-
jectories,” Journal of Mechanisms and Robotics, vol. 2, no. 1, pp.
011 004/1–9, feb 2010.

[27] E. B. Dam, M. Koch, and M. Lillholm, “Quaternions , interpolation
and animation,” pp. Technical Report DIKU–TR–98/5,40–50, 1998.

[28] R. M. Murray, Z. Li, and S. S. Sastry, A mathematical introduction to
robotic manipulation. Boca Raton, FL: CRC Press, 1994.

8343


