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Abstract— Force/Torque(F/T) sensing technology enables
a dexterous robot control such as direct teaching, master-slave
system, and pick-and-place task. In general, 6-axis F/T sensor
is attached to the end-effector of the robot manipulator to
assist in utilizing advanced robot systems. However, in actual
applications, various tools such as robotic grippers, robotic
hand, grinders are attached to the sensor and it causes F/T
offsets with respect to the gravity. In this letter, Autonomous
Weight Compensating(AWC) technique for 6-axis F/T sensor
is presented. The proposed AWC technique can reduce the
F/T offsets by estimating the F/T offsets through installed
Inertial Measurement Unit(IMU) sensor. In this study, the 6-
axis F/T are measured based on capacitance sensing scheme
and to estimate the orientation of the sensor, a 9-axis
IMU sensor is installed inside of the sensor. Then, the F/T
offsets are calibrated via Artificial Neural Network(ANN)
model. Finally, the performance of the proposed method is
demonstrated through comparing the F/T data with both
trained data and untrained data.

I. INTRODUCTION
Nowadays, collaborative robots are designed to inter-

act with humans to enhance performance and efficiency.
Consequently, in order to achieve a safety in human-
robot interaction, interaction sensing systems are prereq-
uisite in the field of the advanced robot system. In partic-
ular, 6-axis Force/Torque (F/T) sensor is highlighted due
to its valuable uses in the dexterous robot such as direct
teaching, master-slave system, and safety system of the
robot [1]-[4]. In this system, a 6-axis F/T sensor provides
interaction forces from the objects. Moreover, a number
of advanced robotic platforms such as robot manipulator,
legged robot, and surgical robot have gradually embeded
F/T sensor to their system [4]-[10].

Particularly, in the field of the robot manipulator, a
6-axis F/T sensor is a prerequisite to conduct dexterous
tasks that aid the human-robot collaboration. However,
apart from the price, size and sensing range, there is a

This work was supported by the Technology Innovation Program
(20001228, Development of Coaxial Drive Module for Collaborative
Robot with Sensor SoC Technology) funded By the Ministry of
Trade, Industry & Energy(MOTIE, Korea)

1Y. B. Kim with the School of Mechanical Engineering,
Sungkyunkwan University, Suwon 440-746, South Korea. He is
now with AIDIN ROBOTICS, Suwon, Korea, 440-746 (e-mail
:ybkim@aidinrobotics.com).

2D.-Y. Seok, S. Y. Lee, J. Kim, G. Kang and H. R. Choi are with
the School of Mechanical Engineering, Sungkyunkwan University,
Suwon, Korea, 440-746 (e-mail :hrchoi@me.skku.ac.kr).

3U. Kim was with the School of Mechanical Engineering,
Sungkyunkwan University, Suwon 440-746, South Korea. He is now
with Korea Institute of Machinery and Materials, Deajeon 305-343,
South Korea. (e-mail :ukkim@kimm.re.kr).

Fig. 1. 6-axis F/T offsets respected with the gravity.

significant function that the sensor need to complement.
That is “Autonomous Weight Compensating (AWC)”
function for the 6-axis F/T sensor. This function helps
to measure pure interaction F/T. In other words, the
6-axis F/T sensors are generally influenced by gravity
on the attached tools (Fig.1) and it disrupts to measure
pure interaction F/T. Thus, to use the 6-axis F/T sensor
on the purpose of interaction sensing, this F/T offsets
need to be compensated.

Currently, to compensate F/T offsets from the at-
tached tool, manual processes are conducted. A company
called “Robotiq” provides a solution to compensate the
6-axis F/T offsets by conducting some manual works
[11]. In their solution, to compensate the 6-axis F/T
offsets, weight and center of mass are required and they
are estimated through some manual steps. This group
proposed three poses that are matched on each X, Y ,
and Z-axis with gravity. In the first pose, the X-axis of
the tool is placed perpendicular to gravity. Thus, the X-
axis force and Y -axis torque are acted in the first pose.
Similarly, in the second pose, the Y -axis of the tool is
located perpendicular to the gravity. In this pose, the Y -
axis force and X-axis torque are given. In the third pose,
the Z-axis of the tool is positioned parallel to gravity.
Hence, only the Z-axis force is measured and is used to
calculate the weight of the tool. Combining these F/T
information, the weight and center of the mass are finally
estimated.

This method is the most common process of compen-
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sating the 6-axis F/T offsets. However, this method could
be very critical issue due to the requirement of human
resource in the factory. Also, there are the possible
errors introduced by human interventions. Dimes et
al. proposed an optimal variable admittance control
which includes the weight compensation algorithm [12].
The weight and center of mass are estimated by using
attached 6-axis F/T sensor. According to their proposed
method, manual processes are not required, but this
technique demands additional computing time to obtain
6-axis F/T offsets.

Also, for some medical robotic systems 6-axis F/T
sensors are used for haptic feedback, pressure control
and user interaction. In this application, for accurate
force and torque detection during operation, the tool’s
weight related force and torque must be subtracted [13],
[14]. Kim et al. used 6-axis F/T sensor to develop bone
fracture reduction robotic system to relieve the surgeon’s
physical load. However, the knob’s gravity caused by the
offset force deteriorate the robot’s maneuverability in the
interactive control. Thus, they introduced a gravity force
compensation method which uses the 6-axis F/T sensor
with the rotation matrix from the manipulator. However,
this approach still needs to know the rotation matrix
from the manipulator, thus the gravity compensation
method cannot be independent to the robot system.

In this research, a novel AWC technique for the
6-axis F/T sensor is proposed which can solve the
requirement of manual works and also, it also has benefit
to reduce extra computing time for compensating 6-axis
F/T offsets. Also, the proposed technique can simply
realize by embedding a 9-axis IMU sensor into the 6-
axis F/T sensor. In this letter, in regards to the 6-axis
F/T sensing, previously developed capacitance sensing
technology is used [6], [15] and an IMU sensor is installed
to estimate the orientation of the sensor. Also, ANN
model is introduced in estimating process of the F/T
offsets.

The rest of the letter is organized as follows: The con-
cept and configuration of the 6-axis sensor is presented in
Section II. Section III introduces the calibration process
using ANN model. Section IV addresses the evaluation
processes of the proposed sensor. Finally, conclusions are
presented in Section V.

II. CONCEPT OF 6-AXIS F/T SENSOR FOR AWC
TECHNIQUE

A. Mechanical Structure of 6-axis F/T sensor
The proposed 6-axis F/T sensor consists of four

mechanical parts and one signal processing board. Each
part is assembled through a bolting connection without
any bonding process. Figure 2 presents the configuration
of the signal processing board and sensing plate. The
air gap between the signal processing board and the
sensing plate is created when the deformable plate is
assembled to the bottom plate. In addition, the sensing
electrode covers the entire edge of the PCB. Thus, the

Fig. 2. Detailed configuration of generated sensing gap in vertical
and horizontal direction.

Fig. 3. Configuration of 9-axis IMU sensor installation.

air gaps are generated parallelly and orthogonally. The
capacitance sensing scheme is based on the orthogonal
configuration of two conductive electrodes [16]. In this
research, the sensing plate is connected to the ground
which generates capacitance between the electrode of
the signal processing board. Also, according to (1), (2),
the flange effect is generated on parallel and orthogonal
electrode.

∆C = ∆Cwr +∆Cfr (1)

∆Cwr = ε0εr
∆A

∆d
, (2)

where ∆C denotes the change in capacitance, and
∆Cwr and ∆Cfr denote the capacitance variation in
the covered area and the variation owing to the fringe
effect, respectively. Additionally, ε0 and εr represent the
dielectric constant and the static relative permittivity.
Furthermore, ∆A and ∆d represent the change in the
overlapping area and the distance between the two
electrodes, respectively. Capacitance variation owing to
the fringe effect can be derived as follows [6]



Fig. 4. Installation of sensing PCB. (a) CDC sensors and IMU
sensor installed PCB design. (b) Connection of sensing PCB with
the bottom plate.

Fig. 5. Assembly of the 6-axis F/T sensor. (a) Assembly of
deformable plate. (b) Fully assembled sensor.

∆Cfr = 2ε0εr

[(
K ′(kin(d0))

K(kin(d0))
+
K ′(kout(d0))

K(kout(d0))

)
−
(
K ′(kin(d

′))

K(kin(d′))
+
K ′(kout(d

′))

K(kout(d′))

)]
(3)

where K(k) represents the complete elliptic integral. kin
and kout represent the modulus, d0 represents the initial
distance, and d′ = d0 −∆d [6].

In the manufactured signal processing board, it em-
beds eight CDC (Capacitance to Digital Converter)
sensors on the backside and a 9-axis IMU sensor on
the front side (Fig. 3). As a result, eight capacitance
data, a 3-axis gyroscope, a 3-axis accelerometer, and a 3-
axis magnetometer data can be obtained from the sensor
PCB.

In order to optimize the capacitance variation with
desired F/T, the deformable plate is analyzed as four
cross-elastic beams with compliant beams. This analysis
technique is introduced in the previous research [15].
B. Electrical component of 6-axis F/T sensor

1) Capacitance to 6-axis F/T: In this research, inde-
pendent eight positive electrodes are located on the four

Fig. 6. Neural network of ANN model for compensating the F/T
offsets from the attached tool.

edges of the signal processing board [8]. Therefore, it
makes a total of eight independent capacitance variations
associated with the deformation of 6-axis F/T. In order
to minimize the outer electromagnetic interference on
the sensor, the CDC sensors are placed near the sensing
electrode.

But, capacitance varies non-linearly in regards to
the distance variation. Thus, the non-linearity of each
capacitance variation results to the phenomenon and
inaccurate sensing of the result. To obtain the linearly
converted data, commonly, the mathematical models are
founded as an exponential or polynomial function. How-
ever, to derive entire relations of parallel and orthogonal
deformation, a lot of computing time to solve high-
level non-linearity fitting functions within the operating
period is required. Furthermore, it needs to multiply the
calibration matrix after the linear converting process. In
this letter, we used a deep-learning method which was
introduced in the previous paper in order to convert
capacitance to 6-axis F/T along with the linear con-
verting process of capacitance [17]. This method offers
high performance for regression of data and a non-linear
activation function is utilized for linear fitting. Thus, the
eight capacitance data can successfully converted to the
6-axis F/T.

In regards to capacitance sensing, capacitance-to-
digital (CDC) chip (AD7147, Analog Devices) are se-
lected. The CDC chip provides a maximum sampling rate
of 1.3 kHz and 16-bit resolution. The developed sensor
installs eight CDC chips to satisfy the 1 kHz sampling
rate, simultaneously. The digitalized capacitance data
in the CDC chip is transferred to the MCU chip
(STM32F103 series, ST) via a serial peripheral interface
bus (SPI) communication interface.

2) IMU data to roll, pitch and yaw: The 9-axis IMU
values are used to convert into the Euler angle of the



TABLE I
Specifications of the 6-axis F/T sensor

Quantity Value Unit
Diameter 82 mm
Height 25.5 mm
Weight 250 g
Force range ±500 N
Torque range ±20 Nm
Sampling rate 1000 Hz
Gyroscope Full-scale range ±500 ◦/s
Accelerometer Full-scale range ±4 g
Magnetometer Full-scale range ±4800 µT

Fig. 7. Evaluation set-up used to obtain training data and
untrained test data with UR10 manipulator.

end effector (φ, ϕ, and ψ) by using the equations below.
From the 3-axis gyroscope measurements, the orienta-

tion of the sensor can be estimate as follows

φg = φg +

∫
∆Gxdt (4)

ϕg = ϕg +

∫
∆Gydt (5)

where, φg, ϕg are estimated φ, ϕ using gyroscope mea-
surement. Gx and Gy represents X, Y -axial gyroscope
measurements from the sensor.

From the 3-axis acceleration measurements, the orien-
tation of can be estimate as follows

φa = atan
Ay√

A2
x +A2

z

(6)

ϕa = atan
−Ax√
A2

y +A2
z

(7)

Here, φa, ϕa are estimated φ, ϕ using acceleration mea-
surement. Ax and Ay represents X, Y -axial acceleration
measurements from the sensor.

Fig. 8. Estimated euler angle: black line shows the reference Euler
angle, red line shows the estimated Euler angle.

In this research, the complementary filter is used to
estimate φ, ϕ.

φ = α · φa + β · φg (8)
ϕ = α · ϕa + β · ϕg (9)

Here, α, β denote the gain for calculated φ, ϕ from
gyroscope, acceleration measurement. And β = 1 − α.
Generally, α can calculate as follow:

α =
τ

τ + δt
, (10)

where τ is the desired time constant and δt means
sampling frequency. In this letter, we set α as 0.96.
Finally, Yaw angle is estimated using estimated φ, ϕ
and magnetometer data as follows

Yh = (My · cos(ϕ))− (Mz · sin(ϕ)) (11)
Xh = (Mx · cos(φ))− (My · sin(ϕ) · sin(φ)) + ...

(Mz · cos(ϕ) · cos(φ)) (12)

ψ = atan
Yh
Xh

(13)

where, Mx,My and Mz represent X, Y and Z-axial
magnetometer measurements from the sensor, respec-
tively. 9-axis IMU chip (MPU9250, Invensense) is used
to estimate the orientation of the sensor. This chip fea-
tures three 16-bit analog-to-digital (ADC) for gyroscope
outputs, three 16-bit ADC for accelerometer outputs
and three 16-bit ADC for magnetometer output. For the
communication, the I2C is selected with a sampling rate
of 4 kHz.



C. Implementation
Based on the aforementioned configurations and the

arrangement of the sensing elements, a 6-axis F/T sensor
was designed. The mechanical parts were manufactured
through conventional machine works and surface was
treated through anodizing to prevent electromagnetic
noises. Figure 4. (a) shows the manufactured sensing
PCB which embeds IMU sensor in the front and CDC
sensors in back. The sensing PCB is installed through a
via bolting connection. (Fig. 4 (b)) Figure. 5 illustrates
the assembly of the 6-axis F/T sensor. Figure 5. (a)
shows the are assembly of deformable plate and bottom
plate. In this step, the capacitance is generated between
the sensing plate and the sensing PCB. Finally, Fig.
5. (b) shows fully assembled 6-axis F/T sensor. The
physical dimensions, sampling rate and force measuring
range are listed as in Table I.

III. AUTONOMOUS WEIGHT COMPENSATION
(AWC) TECHNIQUE

A. AWC process based on ANN model
To compensate the F/T offsets from the attached tool,

6-axis F/T and estimated roll, pitch, and yaw angle
are utilized. The relationship between 6-axis F/T and
the F/T offsets from the attached tool can be obtained
through use of adjoint transformation as follows [16]:

FT c = FT r + FT i (14)

Here, FT c represents the measured F/T which are
expressed relative to sensor frame {S}. FT r and FT i

represent the calculated reference F/T offsets and pure
interacted F/T respectively. FT r can calculate as fol-
lows:

FT r =

[
RBS 0

−RBSP̂ T RBS

]
FT T (15)

FT T =
[
0 0 mtg 0 0 0

]T (16)

RBS represents the rotation matrix from base frame
{B} to sensor frame {S}. P̂ T represents the skew-
symmetric matrix of the vector P T which express the
center of mass. FT T represents the weight force vector.

In the previous researches, the FT r is calculated
according to the above equations [11], [12]. In this letter,
the ANN model is applied to estimate the F/T offsets
(FT g) as shown in Fig. 6. The 6-axis F/T and estimated
roll, pitch, yaw are the inputs of the ANN model and the
reference F/T offsets (FT r) is the target of the ANN
model. The ANN model consists of two hidden layers
and 6 output layers. The weights, bias and non-linear
activation functions of each layer are determined based
on the calibration process.

wn,i+1 = wn,i − γ
δE

δFTc,i
[f ′(activeF )]nz1,i (17)

Fig. 9. Calibration result of training data: black line shows the
reference F/T, red line shows the estimated F/T, and blue line
shows the errors of F/T

Fig. 10. Evaluation set-up used to obtain Z-axial torque data.

where, w denotes the a weight of ANN model and it
subscripts n and i represents states at the ith iteration.
z1,i is referred to as the hidden layer. The i+ 1th weight
is updated through the error back propagation using
ith parameters. E = |FT r − FT g| is expressed as the
absolute difference between the reference F/T (FT r) and
the estimated F/T (FT g). For the non-linear activation
function, the logistic sigmoid function is applied as
follow.

fsigmoid(x) =
1

1 + e−x
(18)



TABLE II
ERROR IN TRAINED DATA SET

Trained max
N, Nm %(FSO)

Fx 1.840 0.484
Fy 6.356 0.636
Fz 2.427 0.243
Tx 0.318 0.795
Ty 0.242 0.605
Tz 0.009 0.023

B. Data Training
To obtain the training data set, ‘UR10’ robot manip-

ulator was used to provide orientations and positions
to the sensor as shown in Fig. 7. The proposed 6-axis
F/T sensor was connected to the end-effector of the
manipulator. A dummy tool is attached to the sensor
which is consisted of two loads of 1kg, 3D printed parts,
bolts, and nuts. Totally, the weight of dummy tool is
2,216 g. In this experiment, the spherical helix path
is applied to achieve various orientations of the robot
arm. Through this process, various ratios of force vectors
are measured from the sensor depending on the gravity
applied to the dummy tool.

Fig. 8 presents the result of the estimated Euler
angle. The reference Euler angle (black line) is calculated
through the rotation matrix from the manipulator and
the estimated Euler angle (red line) show the calculated
Euler angle based on Eq. (8), (9) and (13).

According to the ANN model conducted to estimate
the F/T offsets of the dummy tool, we can calculate the
pure interacted F/T by subtracting the estimated F/T
from the measured F/T as shown in the equation below:

FT g ≃ FT r (19)
FT i ≃ FT c − FT g (20)

where FT g represents the estimated F/T offsets of
dummy tool. Consequently, the sensor can export the
pure interacted F/T without any manual works and also,
additional computing time is not demanded.

Fig. 9 presents the result of the proposed method. The
reference F/T (FT r) (black line) represents calculated
F/T using rotation matrix from the manipulator and
F/T offsets (red line) using equation (14). The known
dummy tool’s weight, the center of mass and the rotation
matrix from UR10 are used to calculate the reference
F/T. The estimated F/T (FT g) (red line) shows the re-
sults of the proposed ANN model. The blue line presents
the differences between reference F/T and estimated
F/T. As it shows, the result from proposed ANN model
is almost matches with the reference F/T. The maximum
F/T offset are summarized as in Table II. It shows, the
maximum force error is under 0.7 of %FSO (Full-Scale

Fig. 11. Calibration result of training data: black line shows the
reference F/T, red line shows the estimated F/T.

Output) and the maximum torque error is under 0.8 of
%FSO.

The Z-axial torque also can be estimated based on
the proposed method. To train Z-axial torque, another
evaluation set-up was installed to the UR10.(Fig 10) In
this set-up, the loads are placed 16 mm apart from the
center in X-axis. Also, 4 kg loads are installed to applied
Z-axial. Thus, approximately 0.67 Nm can be applied to
Z-axial torque.

Fig. 11 presents the result from the second set-up. The
reference F/T (FT r) (black line) represents calculated
F/T using rotation matrix from the manipulator and
F/T offsets(red line) using equation (14). As it shows,
the proposed method could estimate the Z-axial torque.

IV. EVALUATION
To verify the reliability of the proposed method, the

result should be verified with untrained data. Also, the
experiment was conducted through the first evaluation
set-up. To obtain the untrained data set, the manipulator
is moved in X, Y axis as shown in Fig. 12. The result
based on the untrained data is presented in Figs. 13 and



Fig. 12. Experimental images during the evaluation experiment:
X, Y axial F/T offsets are occurred due to the attached dummy
tool.

Fig. 14. This result presents three phases to compare the
effectiveness of the proposed method.

In Figs. 13 and Fig. 14, the black line represents
the measured F/T data including F/T offsets from the
attached dummy tool (FT c), the blue line represents the
calculated F/T which indicates the reference F/T offset
is subtracted from the measured F/T data (FT c−FT r).
The reference F/T offset is obtained by using known
weight, center of mass and the rotation matrix. This
method is traditional strategy that is introduced in the
introduction section. Red-dot-line represents the AWC
applied F/T value (FT c −FT g). In the first phase, the
gravity of the dummy tool only affects to the sensor. In
other words, any external interaction is not applied to
the sensor. As shown in Fig. 14, the black line shows 6-
axis F/T offset as a result of the attached dummy tool.
The blue line shows that the F/T offset of the attached
dummy tool is compensated by subtracting reference
F/T offset. Here, the red-dot-line shows that the AWC
applied sensor data. As it shows the data is almost
fitted with the blue line which indicates it successfully
reduces the 6-axis F/T offset from the attached dummy
tool. The errors in each phase are listed as in Table
III. In the first phase the maximum force error between
(FT c −FT r) and (FT c −FT g) is under 0.9 of %FSO
and the maximum torque error is under 0.15 of %FSO.

In the second phase, the dummy tool is headed to Z-

Fig. 13. Experimental results during the evaluation: X, Y axial
F/T offsets

are occurred due to the attached dummy tool.

axis. Hence, only the Z-axial gravity force is applied to
the sensor while the external 6-axis F/T is indiscrimi-
nately acted to the sensor. In this phase, it shows that
the AWC applied sensor data and the original sensor
data measure the same 6-axis F/T values. In the second
phase the maximum force error is under 1.1 %FSO and
the maximum torque error is under 1 %FSO.

Finally, In the third phase, the axial F/T offsets and
the interaction 6-axis F/T are applied simultaneously.
The black line shows the measured F/T are also influ-
enced by the F/T offsets. Conversely, the red-dot-line
shows that the sensor can measure the pure interaction
F/T regardless of the gravity effected on the dummy
tool. In the third phase, the maximum force error is
under 0.7 of %FSO and the maximum torque error is
under 0.8 of %FSO.

V. CONCLUSIONS
This letter proposes a 6-axis F/T sensor that is

capable of novel Autonomous Weight Compensation
(AWC)technique. For the 6-axis F/T sensing, eight ca-
pacitance values are used and for the orientation estima-
tion, the Euler angles are used which can be calculated by



Fig. 14. Expanded results in three phases.

TABLE III
ERROR IN UNTRAINED DATA SET

Untrained max
Phase 1 Phase 2 Phase 3

N, Nm %(FSO) N, Nm %(FSO) N, Nm %(FSO)

Fx 4.323 0.859 4.431 1.049 3.554 0.638
Fy 3.592 0.718 3.303 0.661 3.323 0.665
Fz 0.564 0.113 1.060 0.212 0.947 0.189
Tx 0.028 0.140 0.172 0.858 0.135 0.673
Ty 0.013 0.063 0.190 0.949 0.152 0.760
Tz 0.007 0.035 0.126 0.630 0.026 0.129

using installed 9-axis IMU sensor. To achieve the simple
manufacturing work and easy assembly process, the
developed sensor consists of four mechanical parts and
one signal processing board. ANN model is implemented
to overcome the F/T offsets resulting from the attached
tool. Finally, the performance of the proposed sensor
is verified through experiments using training data and
untrained test data sets. The experiments involve using
‘UR10’ manipulator and a dummy tool. The result shows
that a maximum of 0.8 of %FSO of F/T offsets is
occurred in estimating the F/T offsets resulting from
the attached dummy tool. In the untrained test data,
it shows the F/T offsets resulting from the dummy tool
is maximally 1.1 of %FSO which indicates the sensor
can autonomously compensate the F/T offsets itself.
In this research, we focused to compensate F/T offsets
based on static analysis. Thus, quasi-static motion is
not considered in this letter, the reason is that the work

using 6-axis F/T sensors is mostly purposed for high
accuracy of human-robot collaboration rather than fast
speed. Also, in this study, we focused to embed the AWC
method inside of the sensor to resolve the F/T offsets
from the attached tools. For the future work, quasi-static
relation will be considered to update in AWC method to
compensate the F/T offset completely.
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