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Abstract— While Lidar beams are often represented as rays,
they actually have finite beam width and this width impacts
the measured shape and size of objects in the scene. Here we
investigate the effects of beam width on measurements of thin
objects such as vertical poles. We propose a model for beam
divergence and show how this can explain both object dilation
and erosion. We develop a calibration method to estimate beam
divergence angle. This calibration method uses one or more
vertical poles observed from a Lidar on a moving platform.
In addition, we derive an incremental method for using the
calibrated beam angle to obtain accurate estimates of thin
object diameters, observed from a Lidar on a moving platform.
Our method achieves significantly more accurate diameter
estimates than is obtained when beam divergence is ignored.

I. INTRODUCTION

Lidar [1], [2] is a widely used active sensor for 3D
measurement. Unlike a camera, its measurements are robust
to lighting variations including complete darkness. For au-
tomated vehicles, Lidar accurately acquires surrounding 3D
environments for object detection, recognition and tracking,
laying the groundwork for safe autonomous driving in the
future. Given its utility and accuracy, it is worth probing
the validity of the underlying models used in incorporating
Lidar. In particular, Lidar beams are typically approximated
as ideal light rays with no width from which 3D point clouds
are obtained. Yet in reality, Lidar beams have a finite and
diverging width which will impact 3D measurements. This
paper investigates these impacts and shows how improved
shape accuracy can be obtained by accounting for beam
width.

One class of objects impacted by beam divergence are
thin rods. Common instances of these are street lamp poles,
traffic sign poles, electricity power poles as well as tree
trunks. In addition to location, accurate size estimates of such
objects are an important part of local scene understanding
and contribute towards safe maneuvering. For instance, if
an autonomous vehicle needs to navigate through the gap
between two poles, precisely sensing both the position and
size of the poles may be necessary to safely plan a path
between them. Apart from height, the width, i.e. the diameter
of a cylinder, determines the size of a thin rod. However,
the Lidar is typically not good at accurately measuring such
width for two reasons: (1) sparse sampling in azimuth leads
to information loss between the samples, and (2) beam
divergence may result in sensed Lidar points that extend
beyond actual edges (namely width dilation). Such errors
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distort the measured width of thin objects. For accurate
mapping, it would be useful to precisely obtain the width of
thin poles from Lidar frames acquired during normal driving.
In this paper we show how modeling and estimating beam
width is useful for accurate estimation of pole diameters.

When a Lidar beam grazes the edge of an object, whether
or not a hit is reported depends not only the spatial energy
distribution and the beam’s overlap of the object, but also on
the internal processing and thresholding mechanism within
the Lidar sensor [3]. Rather than selecting our own threshold
on beam spread, we prefer to use the Lidar itself to do this
based on a series of measurements of pre-defined targets. We
call this process Lidar beam calibration, which is introduced
in Section IV-C. This motivates us to propose the essential
beam (EB) as a beam spread model that incorporates both
actual energy spread and also internal sensor processing and
thresholding of the reflected beam. The EB divergence angle,
in conjunction with the azimuth sampling, can be used to
make predictions on the number of Lidar samples on thin
objects. In turn, these predictions enable us to make precise
inferences on the size dimensions of these objects.

The three primary contributions of this paper are:
1) We propose the EB divergence angle to characterize

the impact of Lidar beam spread on object boundaries
and provide a method to estimate it.

2) Using the EB divergence angle, we determine lower
and upper bounds on the number of Lidar samples
across the diameter of thin objects.

3) Using the EB divergence angle and number of hits,
we estimate lower and upper bounds of thin object
diameters. We show that combining these bounds from
scans at multiple ranges leads to more accurate diam-
eter estimates than averaging raw measurements.

The consequence of our modeling is that we are able to make
more definitive inferences from a Lidar, especially regarding
thin objects in a scene.

II. RELATED WORK

Lidar is a time-of-flight sensor, acquiring ranges by
emitting laser rays and measuring the time light takes to
travel to and from objects [2]. To improve measurement
performance and explore its limitations, researchers have
been studying how the interaction between Lidar beams
and environment influences accuracy. Range error models
were established [1], [4], taking into account various mea-
surement parameters including range and incidence angle.
Additionally, the performance of Lidar has also been tested
under different weather and lighting including rain [5], snow,
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fog [6], smoke and sunlight [7], [8], which may pose a
threat to the safety of self-driving cars. Moreover, researchers
have also investigated the impact of object properties on
measurement, i.e. shape [8], [2], material [7] and albedo [4].
Lidar is even used to scan specular surface or glass [9]
with algorithms developed to reduce undesirable reflections
from those surfaces. This paper continues this investigation
into Lidar characteristics, but focuses on how the width of
diverging laser beams and sparsity of the sampling impact
the measurements of width of thin poles, and how to model
them to improve accuracy.

The sparse nature of Lidar has been the subject of sig-
nificant research. Automotive Lidars typically have sparser
sampling than cameras, resulting in coarse shape estimates
for small or long-range objects. To improve resolution with-
out upgrading to more costly hardware, researchers have de-
veloped methods to register multiple frames [10] or combine
a Lidar frames with camera images to achieve superresolu-
tion [11], [12]. Although missing points between sampling
gaps on smooth surfaces can be successfully restored, it
remains challenging to precisely recover object boundaries,
which is critical for accurate width estimation. Instead of
recovering detailed shape of objects, this paper focuses on
measuring width of thin poles.

The adverse influence of beam width (namely multi-path
effect [13]), often captures people’s attention in the most
widely-used imaging sensor, the digital camera. It is known
that every pixel corresponds to a light ray, whose cross-
section area increases with range. A pixel suffers most when
its beam region covers high-contrasting surfaces [14]. As a
result, the pixel blends intensities. Similar to a camera pixel,
a Lidar point corresponds to a laser beam. The range error
caused by beam width is widely studied. This error can be
large at shape discontinuities such as an object edge when
the footprint of a Lidar ray covers both a foreground and a
background object before blending the two [1], [4]. It also
occurs on surfaces with high-contrasting textures if a ray
covers contrasting albedo. A variety of methods have been
proposed to identify and remove wrong 3D points due to
multi-path effects [15]. However, they focus on beam width’s
effect on range measurement and this paper highlights its
impact on width measurement, which is seldom mentioned in
literature. These effects include object dilation and erosion.

The most common model of a Lidar beam width is a
cone that linearly diverges with range [1]. The Velodyne 16
Puck Lidar uses such a model with separate horizontal and
vertical divergence angles. As the energy of beam spreads
out, its boundary may be hard to determine, and the energy
of beam cross-section can be modeled as a 2D Gaussian
function. Features such as 6σ or full width at half maximum
(FWHM) can be used to replace the diameter and compute
beam divergence. One way to obtain the the beam divergence
angle is to use infrared images of the beam projected on a
plane [7] at a known range. However, the precise impact of
this beam spread estimate on target hits (i.e. how it decides
whether a Lidar point on object boundaries is reflected) is not
clear as this depends in addition on internal Lidar processing.

𝒓
𝜽

Lidar

Essential Beam

Fig. 1. Our Lidar EB model has a divergence angle, θ, determining a disk
with radius, r, which will generate a return if it overlaps an object.

Thus, these models cannot be directly used for accurate width
estimation. In contrast to these approaches, our model of
beam spread is based on whether a Lidar point is reflected
in the real world, and incorporates not only the emitter, but
also the Lidar receiver and processor.

To the best of our knowledge, there are no existing
methods in the literature specially designed for estimating the
width of thin objects using a Lidar. Conventional methods
directly estimate horizontal width from the distance of edge
points. As we show, this suffers from significant error due to
factors such as sparse sampling and finite beam width, which
motivates us to propose the EB model which considers these
factors. Using this model, we can compensate for beam width
and greatly improve measurement accuracy by using multiple
Lidar frames collected at different ranges.

III. LIDAR BEAM MODEL

Lidar beams diverge with a varying intensity cross section.
While various intensity thresholds could determine the width
of the beam, here we propose using the Essential Beam (EB)
model.

Our model for a Lidar EB is a cone, illustrated in Fig. 1
with divergence angle θ and linearly growing radius r. Dif-
fering from the full diverging beam, the EB is the “essential”
portion that specifies at what radial distance from an object
being grazed, the Lidar point will be reflected. That is, the
EB radius specifies a disk which, if it overlaps the edge of
an object, will generate a return. There is a critical condition
when the EB exactly touches the exterior boundary of the
object, as shown in Fig. 2 top. In such a scenario, we assume
two possible outcomes: the Lidar point is either reflected
or not. For brevity, all beams, radius and beam divergence
angles mentioned for the rest of this paper refer to EB, EB
radius and EB divergence angle, respectively. Note that the
cross section of EB needs not be circular, and could be
modeled with separate horizontal and vertical EB divergence
angle measures, although in this paper we focus purely on
the horizontal divergence angle, as this is most relevant to
vertical objects.

We assume that horizontal EB radius r increases with
range R and the EB divergence angle is expressed as θ =
2arctan(r/R). Since θ is small, we approximate it as

θ =
2r

R
. (1)

IV. OBJECT MEASUREMENT MODEL

In this section we explore the measurement consequences
of assuming a diverging beam being emitted at discrete
azimuth samples by a scanning Lidar
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Fig. 2. Diagram of dilation and erosion. The solid rectangle represents a
front view of a thin rod with true width WT . The circles represent cross-
sections of EBs and dots at the circle centers are Lidar ray centers, where
solid dots indicate reflected Lidar rays while empty dots at the center of
dashed circles are Lidar rays not being reflected. At the top of the figure, we
plot two reflected Lidar rays whose EBs exactly touch the exterior boundary
of the object. This situation corresponds to the maximum possible dilation,
and the maximum dilated object is represented by vertical dashed lines.
Thus, the maximum raw width of an object is equal to its true width plus
twice the EB radius, r. Below this are two rows of Lidar points with different
horizontal positions relative to the object: the middle Lidar row illustrates
object dilation, and the bottom row illustrates object erosion.

(a) (b) (c) (d)

Fig. 3. Examples of object erosion in (a) perspective and (b) front view,
and the object dilation in (c) perspective and (d) front view. Both of these
effects are explained by our model (shown in Fig. 2) taking into account
both azimuth sampling and beam divergence. Each sub-figure shows a row
of real Lidar points reflected by a thin rod (shown in Fig. 6(a)). A cylinder
with the rod’s actual diameter is plotted behind the points for visualization
of erosion and dilation.

A. Object dilation and erosion

Erosion and dilation are two types of width measurement
consequences of the traditional method. This method esti-
mates horizontal width by finding the distance between the
furthest two points reflected by the object along on a row.
Given N reflected Lidar points, the estimated width is

Ŵ = (N − 1)LS , (2)

where LS is the sampling length between points. Under the
assumption of a thin object, the sampling is uniform and
LS = αR, where α is the azimuth sampling angle of the
Lidar and R is the average range of points on the row on
the object.

We call the width estimated by this traditional method
the raw width, expressed as WR. Dilation and erosion are
defined by comparing WR with true width WT : (1) dilation
is when WR > WT , and (2) erosion is when WR < WT .
These are illustrated in Figs. 2 and 3.

Dilation depends on a finite beam width. The center row
of Fig. 2 shows an essential beam overlapping the edge of

𝑾𝐦𝐚𝐱 𝒓𝒓

𝑾𝐦𝐢𝐧

𝑳𝐒

𝒓 𝒓

Fig. 4. Given three hits in cross section, N = 3, we show two cases: the
minimum possible width of the object and the maximum possible width.
These are the bounds we derive in Eqs. (4) and (6).

an object and producing a return. Since the center of the
beams are outside the objects, the raw width will be larger
than the true width. The maximum dilation on either side of
an object is exactly, r, the radius of the EB by definition.
This is shown in the top row of Fig. 2.

Erosion is caused by azimuth sampling. The bottom row
in Fig. 2 shows erosion since the outermost Lidar points that
hit the object are inside the actual boundaries of the object.
This results in a smaller raw width than the actual width.

Dilation and erosion are drawbacks of the conventional
method for estimating boundaries of objects. This motivates
us to propose an object boundary constraint model to com-
pensate for the measurement error.

B. Object boundary constraints

The goal of this paper is to combine weak constraints
from multiple measurements to obtain a strong or precise
constraints on W and θ. Motivated by the occurrence of
dilation and erosion, we derive a boundary constraint on θ
and the object width W . It is called a boundary constraint
because it is derived from two critical situations when
there are Lidar rays whose EB exactly touches the exterior
boundary of objects. The two situations, illustrated in Fig. 4
top and bottom, corresponds to maximum possible dilation
and maximum erosion for a given number of reflected points,
respectively.

Assuming that we use a Lidar to scan a vertical pole, of
diameter W , at range R and obtain a measurement of N
points horizontally across the width of the object, we have
the following constraint:

(N − 1)α ≤ W

R
+ θ ≤ (N + 1)α, (3)

where θ is EB divergence angle, R is the average range of
returned Lidar points (where under the assumption of thin
object, the range of all the points within a row are almost
identical), and α is the azimuth sampling angle of the Lidar.

Next, Eq. (3) is derived. Consider N adjacent reflected
points across an object, illustrated for three points in Fig. 4.
Then there are two extreme situations as follows:

(1) The EBs of two boundary points exactly touch object,
and are exactly reflected (as shown on top of Fig. 4). This
corresponds to the smallest possible width, Wmin, given N
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reflected points, and Wmin can be expressed as

Wmin = (N − 1)Ls − 2r, (4)

where Ls is azimuth sampling length and r is EB radius. Ls
can be expressed as

Ls = αR. (5)

The term (N − 1)Ls is the distance between two reflected
boundary points. Their EBs exactly touch the exterior edge
of the rod, as shown in Fig. 4 top, and the width of the rod
is (N − 1)Ls − 2r.

(2) There are two unseen beams whose EB footprints
are exactly outside the object (as shown on the bottom of
Fig. 4). This situation corresponds to the largest possible
width, Wmax, when there is N reflected horizontal points
and Wmax can be written as

Wmax = (N + 1)Ls − 2r, (6)

where (N + 1)Ls represents the distance between the two
unseen points whose EBs of radius r exactly touches the
exterior edges of the thin rod. Thus, the width of the rod is
(N + 1)Ls − 2r.

We can express the value range of object width W as

Wmin ≤W ≤Wmax. (7)

After combining Eqs. (1), (4), (5), (6) and (7) we obtain
Eq. (3).

C. Calibrating the EB divergence angle θ

Calibration is the process to estimate the EB divergence
angle, θ, using a target with known width. Specifically, we
estimate θ from multiple scans of a calibration target at
different ranges. The target used is a simple thin rod with
a uniform diameter of WT . The procedure is as follows.
(1) Place a calibration target (a thin cylinder with a diameter
WT ) vertically standing in front of a Lidar. The Lidar records
M frames of the target while moving towards or away from
the target. (2) For each frame i, count the number of Lidar
pixels Ni across the rod diameter and their average range
Ri. (3) Then for each frame calculate the bounds, Bθ,i, on
θ denoted as:

(Ni − 1)α− WT

Ri
≤ θ ≤ (Ni + 1)α− WT

Ri
. (8)

Bθ,i is obtained by replacing W with the known width WT ,
R with Ri and N with Ni in Eqs. (3). A visualization of
the upper and lower bounds of θ is shown in Fig. 5(a). Note
that in addition, for a real beam, we always have θ > 0.

Combining bounds from multiple frames will shrink the
possible range of θ:

θ ∈ Bθ,1 ∩Bθ,2 ∩ ... ∩Bθ,M . (9)

With sufficient samples from various ranges, the lower and
upper bounds are likely to converge to the true width. In
practice, due to range error and model inaccuracies, some
lower bounds may be larger than some upper bounds, making
it impossible to directly apply Eq. (9). Thus we estimate θ̂

N=1

N=1

N=2

N=2

N=3

N=3

(a)

N=1

N=1

N=2

N=2

N=3

N=3

(b)

Fig. 5. Visualization of upper bound (in blue) and lower bound (in red)
of (a) θ and (b) W , which are expressed in Eqs. (8) and (12), respectively.
The actual θ and W is shown in black. The number of points on the bounds
are plotted for range R spaced every 0.001 m between 0 and 25 m.

as the point that best separates the lower bounds from the
upper bounds, by finding the global minimum of a convex
hinge loss [16].

Fig. 5(a) is a visualization of Eq. 8, where θ, α and WT are
set to 0.2 degree, 0.4 degree, and 4 inches, respectively. At a
range Ri, we compute a possible Ni. Typically, there are two
possible values of Ni, i.e. bWT+2r

αRi
c or bWT+2r

αRi
c+1. In rare

cases under critical conditions shown in Fig. 4, there are three
possible Ni, i.e. WT+2r

αRi
− 1, WT+2r

αRi
and WT+2r

αRi
+1, where

WT + 2r is divisible by αRi. As mentioned in Section III,
the two boundary points whose EBs exactly touch object
edge can either be reflected or not. For example, in Fig. 4
top, the possible reflected points can be 1, 2 or 3. At each
range, a Ni is randomly selected from all possible values and
corresponding upper and lower bounds are plotted according
to Eq. (8). It can be seen when N is fixed, the bounds are
inversely proportional to range R with a negative sign and
some offset. It can also be seen that the upper bounds for
N and lower bounds for N + 2 are on the same curve and
they join at the truth. For example, in Fig. 5(a), the upper
bound of N = 1 connects with the lower bound of N = 3
at the true θ. By inserting N = 1 and N = 3 into right and
left part of Eq. (8), respectively, we can express the upper
bound of N = 1 and lower bound of N = 3 as the same
function of R, i.e.

f(R) = 2α− WT

R
. (10)

It is only under the critical condition shown in Fig. 4 (top)
that both N = 1 and N = 3 can be observed for the same
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R. Under the critical condition, i.e. EBs of two boundary
points exactly touching the object, we have

WT + 2r

αR
= 2. (11)

Thus, by combining Eqs. (10), (11) and R = RC , where
RC is the range that satisfies the critical condition, we can
find that the two bounds are identical at (RC , f(RC)) where
f(RC) =

2r
RC

= θ.

D. Estimating pole width accounting for divergence angle θ̂

As mentioned in Section IV-A, the conventional method
computes the width of an object as the distance between
two boundary points on an object. This estimate may be
significantly biased by erosion or dilation. In our method,
using θ̂, we can measure the width of a thin object with
high precision. The measurement procedure is the same as
that in Section IV-C. With known θ = θ̂ and unknown W ,
we can derive bounds for W , i.e. BW,i, from Eqs. (3) as[

(Ni − 1)α− θ̂
]
Ri ≤W ≤

[
(Ni + 1)α− θ̂

]
Ri. (12)

The visualization of the lower and upper bounds in Eq. (12)
is shown in Fig. 5(b). Thus, theoretically, the value of
W falls in the overlap region of all the bounds computed
from different measurement samples, i.e. Ni and Ri for
i = 1, 2, ...,M , which as expressed as

W ∈ BW,1 ∩BW,2 ∩ ... ∩BW,M . (13)

Similar to Section IV-C, in practice, the estimated width, Ŵ ,
is computed by minimizing a hinge loss [16] to find the point
that best separates the lower bounds from upper bounds.

If a pole width varies over its height, then separate bounds
should be calculated at different heights. In the unusual case
where width varies with viewing direction, then the bounds
can only be combined for measurements from the same
viewing directions, such as when directly approaching a pole.

Fig. 5(b) is a plot of the bounds of W at different ranges
when θ̂ is set 0.2 deg. Similar to Fig. 5(a), at each range,
we randomly pick a possible Ni and plot upper and lower
bounds based on Eq. (12). It can be seen when N is fixed, the
bounds of W are proportional to R. Similarly, some bounds
intersect the truth under critical conditions.

V. EXPERIMENTAL RESULTS

Our experimental setup uses two roof-mounted Lidars, see
Fig. 6(a), an Ouster 64 and a Velodyne 16, to scan three
white PVC cylinders with diameters of 2, 3 and 4 inches (i.e.
5.08, 7.62 and 10.16 cm), respectively. The azimuth sampling
angle α of Ouster and Velodyne are 0.35 and 0.2 degrees,
respectively. To collect measurements, we placed one target
vertically on a flat ground and drove the vehicle slowly
towards it, starting at 30m and ending at 5m from the pole. In
each frame, all points on the objects are extracted, and from
each row we obtain one measurement i, that consists of the
number of horizontal points Ni and their average range Ri.

Lidar

Thin Rod

(a) (b) (c)

Fig. 6. (a) Our EB calibration method uses a scanning Lidar on a moving
platform approaching a vertical pole. (b) and (c) are street lamps used for
experiments with different materials.
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Fig. 7. While we do not know the ”true” value for the calibrated EB angle
θ̂, we can compare our estimated value with the EB angle that gives the
most accurate width estimate for the 3 and 4-inch poles using Eq. (12).
We plot the error over possible EB angles θ. This shows that our estimated
value is close to the optimal with a very small average diameter error.

A. Calibration of EB and width estimation

To test the validity of our model, we use all the measure-
ments from the 2-inch pole to compute the EB divergence
angle θ according to Section IV-C and apply the obtained
θ̂ to estimate target width of the 3-inch and 4-inch poles
according to Section IV-D, and finally we calculate the
average width error of both targets for each Lidar. The
estimated EB divergence, θ̂, for Ouster and Velodyne are 0.28
and 0.24 degrees, respectively. We achieve accurate target
width estimation, with average error of 0.14 cm and 0.19 cm,
both under 0.2 cm, for the Ouster and Velodyne, respectively.

To evaluate the accuracy of the θ̂ obtained via calibration,
we investigate how close θ̂ is to the optimal θ∗, the angle
that gives the most accurate width prediction via our model.
To obtain θ∗, we test a range of angles for θ between .15 and
.35 degrees, and compute the resultant width error for the 3
and 4-inch testing poles. The resulting plot of width errors
as a function of EB θ are shown in Fig. 7 for the Ouster and
Velodyne. From the figure, we can see that our estimates θ̂
are very close to the optimal θ∗ values.

B. Comparison with baseline method

To the best of our knowledge, there is no existing method
specially designed for estimating the width of thin poles via
Lidar. Thus, we adopt the conventional method mentioned
in Section IV-A as our baseline method for comparison.
It directly computes a raw width by finding the distance
between the furthest two reflected points on a row (Eq. (2)).
Another method is to accumulate Lidar points, however to
avoid smearing this requires maintaining very accurate pose
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Fig. 8. (a) As the Ouster moves towards a 4-inch rod, we record the
number of cross section points, N , at each range R. (b) Our baseline
method estimates the pole width (shown in black points) as the distance
between maximally separated points for each scan. An incremental average
of this is shown in dashed blue. (c) Using θ̂ = 0.28, our method computes
incremental upper and lower bounds. Initially there is large uncertainty in
the pole width, but at around sample 1450 the bounds converge, then the
width estimated by hinge loss further approaches the truth.

over an extended time which we do not have, and even this
estimate would still suffer from dilation.

We use data from the 4-inch pole to compare our method
with the baseline. Each Lidar row at each range contributes
a measurement sample of Ni and Ri. The baseline computes
the raw width by using Eq. (2) and find the mean over all
samples. Our method uses the calibrated EB θ̂ to estimate a
width according to Section IV-D. Measurements are accumu-
lated as the vehicle moves towards the pole, and as shown in
Figs. 8(a) and 9(a), the number of horizontal reflected points
gradually increase as the Lidar moves closer to the object.

The baseline estimates for width are shown in Fig. 8(b)
and 9(b). The instantaneous estimates of raw width show
significant errors (both larger and smaller than the true width)
demonstrating severe dilation and erosion. One extreme case
of erosion is that when N = 1, the estimated raw width is
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Fig. 9. A repeat of the experiment in Fig. 8, but with the Velodyne
approaching a target. (a) The number of pixels in cross section at each
sample. (b) The baseline method for estimating a pole width at each sample
and its incremental average (dashed blue). (c) Our incremental estimate of
bounds as the sensor approaches the target using our calibrated θ̂ = 0.24

0. Note that as the estimation of 0 for N = 1 is clearly
wrong, we discarded them when computing incremental
average estimates. Still, the incremental average estimates are
significantly biased. The performance of the mean depends
on the overall dilation and erosion of all samples. The mean
is biased because it is impractical to collect data in a way that
makes the overall dilation exactly compensate for the overall
erosion. This shows the need for using our EB divergence
angle in estimating widths of thin poles from Lidar samples.

For the proposed method, we draw the upper and lower
bounds estimated by Eq. (12) before they converge. Note
that bounds shown are accumulated bounds of all previous
measurements, and they converge if the lower bound is equal
to or greater than the upper bound. After they converge, we
plot the width estimated with hinge loss from all obtained
bounds. As the Ouster Lidar moves towards the target, the
upper and lower bounds on width approach each other and
eventually converge close to the truth, as shown in Fig. 8(c).
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Although the upper bound goes below the ground truth be-
cause of inevitable error, the final hinge-loss-based estimate
approaches the truth with more samples. The accumulated
lower bound looks like a staircase because the bound only
updates when a new lower bound is bigger than current
accumulated bound. For example, as shown in Fig. 5(b),
when N = 1, the lower bounds is smaller than 0. Thus,
the lower bound is set to 0 until the first N = 2 appears,
with a lower bound larger than 0. Because the lower bound of
N = 2 decreases on approaching the pole, the accumulated
lower bound does not change until the first N = 3 appears.
Similar results for the Velodyne are shown in Fig. 9. For both
sensors the proposed method achieves much higher accuracy
than the baseline.

The bounds converge under the critical condition when
upper bounds and lower bounds join at the truth as shown in
Fig. 5(b). Critical condition requires specific ranges as well
as specific relative position of Lidar hits on objects as shown
in Fig. 5. Because of the randomness of relative positions of
Lidar hits on objects in the scanning process, it is uncertain
when critical condition is satisfied. Thus, the convergence
speed may vary for different driving routes and speeds.

To verify the validity of the proposed model for thin poles
with different materials, we use the Ouster to scan two street
lamps as shown in Figs. 6(b) and 6(c). The lamp pole is made
of stainless steel with a diameter of 17.8 cm and the concrete
lamp bases are cylinders with diameters of 47.8 and 60.7 cm,
respectively. The true widths are obtained manually with a
tape measure. We calibrate θ by using scans of the first lamp
and use the second lamp for width measurement.

The EB divergence angle obtained for the stainless steel
lamp pole and concrete base are 0.03 and 0.05 degrees,
respectively. This dependency of EB divergence angle on
material means that dilation and erosion also depend on the
interaction between laser beam and specific surface materials
as well as internal processing of Lidar. Absolute error of
width measurement in comparison with the baseline method
is shown in Table I. It is clear that more accurate widths
are obtained by the proposed model. This shows that to use
of the beam divergence angle, the surface properties of an
object need to be identified. We do not address that here, but
propose that a classifier could be trained on object reflectivity
to identify these properties.

TABLE I
MEASUREMENT ERROR OF THE PROPOSED METHOD AND BASELINE

Objects Proposed Baseline
Concrete Base 1.2 cm 8.3 cm

Lamp Pole 1.3 cm 4.1 cm

VI. CONCLUSION

We make the case that there are significant advantages
to modeling Lidar beams as diverging rather than as pure
rays. Using our proposed EB to characterize this, we can
model apparent dilation and erosion of objects, especially

thin poles. We provide a calibration method for estimating
the EB divergence angle that uses poles of known width
in the scene. Using this EB model, we can obtain accurate
width estimates for poles, and importantly, identify when we
have collected sufficient samples to for obtaining an accurate
estimate.

At the moment, our model for EB does not take into
account other factors including incident angle, albedo and
possible divergence variations with range. In future work,
we intend to evaluate how each of these impacts our EB
and, if necessary, extend our model to account for them. In
addition, we will calibrate a vertical angle for each Lidar.
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