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Abstract— Predicting whether a particular grasp will succeed
is critical to performing stable grasping and manipulating
tasks. Robots need to combine vision and touch as humans
do to accomplish this prediction. The primary problem to be
solved in this process is how to learn effective visual-tactile
fusion features. In this paper, we propose a novel Visual-Tactile
Fusion learning method based on the Self-Attention mechanism
(VTFSA) to address this problem. We compare the proposed
method with the traditional methods on two public multimodal
grasping datasets, and the experimental results show that the
VTFSA model outperforms traditional methods by a margin of
5+% and 7+%. Furthermore, visualization analysis indicates
that the VTFSA model can further capture some position-
related visual-tactile fusion features that are beneficial to this
task and is more robust than traditional methods.

I. INTRODUCTION

The study of dexterous grasping and manipulation skills
of robots has attracted increasing attention in the robot
community [1], [2]. Predicting grasp outcomes before lifting
is critical to achieving a stable grasp [3], which can help
the robots formulate re-grasping strategies. [4]. Many studies
have proposed various methods to accomplish this task [5],
[6], [7]. Early studies focus on physical modeling of the
grasping objects, grippers, and environment, while recent
studies are more inclined to build predictive models in a data-
driven and supervised manner, typically using visual or depth
observations [8], [9]. Some more recent studies indicate that
the addition of tactile information can significantly improve
the prediction accuracy of this task [4], [5].

Humans make extensive use of multi-modal perception
when grasping, including visual, tactile, and other modalities
sensing [10]. Robots also need to perceive both visual
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Fig. 1: A scenario framework for predicting grasp outcomes
using visual-tactile fusion perception.

and tactile modalities to evaluate the results of the current
grasp. Intuitively, vision provides the grasp poses, and touch
perceives the detailed contact information, both of which
are helpful in determining whether the grasp will succeed.
Some previous studies [5] has tried to tackle this problem
by Visual-Tactile Fusion Perception (VTFP). These studies
demonstrate that VTFP achieves better performance than
single modal perception. In this paper, we focus on predicting
grasp outcomes using VTFP, as shown in Fig. 1.

VTFP has long been used for a variety of tasks, such
as surface classification [11], object recognition [12], object
3D shape perception [13]. Especially for robotic grasping
and manipulating tasks, tactile perception can provide direct
contact information, which can be used to evaluate grasping
state and make timely adjustments. However, the most exist-
ing VTFP methods concatenate features from visual modality
and tactile modality directly (e.g. [14], [4]), which we called
Direct-Fusion method (DF). Unfortunately, this method may
not deeply explore the modeling work of the information
interaction of visual and tactile modality [15].

In this study, we focus on how to learn effective Visual-
Tactile Fusion (VTF) features in the task of predicting grasp
outcomes. Inspired by the remarkable success of the Self-
Attention mechanism (SA) in the machine translation task
[16], we propose a VTF representation learning method
based on SA mechanism (VTFSA) to accomplish this task.
Additionally, we validate the performance of different visual-
tactile fusion method on two public grasping datasets.
The experimental results indicate that the proposed method
achieves better performance than traditional methods, and it
can also address tactile signals captured by different tactile
sensors, which extends its application scenarios.

Our primary contributions are three-fold:
• A novel visual-tactile fusion learning method is pro-

posed to achieve better performance of the grasp out-
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comes prediction task.
• The experimental results demonstrate that the proposed

model has better performance than the traditional meth-
ods in the grasp outcomes prediction task and can
address different forms of tactile signals.

• Visualization analysis indicates that the VTFSA model
can further capture some position-related visual-tactile
fusion features that are beneficial to this task and is
more robust compared to traditional methods.

II. RELATED WORK

A. Learning to Grasp

With the rapid development of representation learning
methods, the data-driven approach [2], [17] has gradually
replaced the traditional grasping strategies based on physical
properties such as object shape, surface material, environ-
ment, and gripper characteristics [18]. Saxena et al. [9]
present a learning algorithm for identifying grasp locations
from an image, which is trained via supervised learning.
Pinto et al. [7] train a Convolutional Neural Network (CNN)
for predicting grasp locations without severe overfitting
by collecting a large dataset. Levine et al. [2] propose a
learning-based approach to hand-eye coordination for robotic
grasping from monocular images. They train a CNN to
predict that will the gripper’s task-space motion result in
successful grasps. Aktas et al. [19] provide a complete
solution for deep dexterous grasping of novel objects from
a single view. Most of the above studies only perceive
visual and depth information while ignoring tactile sensing.
Therefore, these methods may have a limited ability to reason
about the details of the contact location.

H. Dang et al. [20] use tactile feedback to predict the
stability of a robotic grasp without visual or geometric
information about the grasped object. Murali et al. [21]
propose a tactile-sensing based approach to grasp novel
objects without prior knowledge of their location or physical
properties. However, this study focus on object localization
by tactile sensing.

B. VTFP in Grasping and Manipulation

Calandra et al. [4] investigate whether touch sensing aids
in predicting grasp outcomes within a multimodal sensing
framework that combines vision and touch. The experimental
results indicate that incorporating tactile readings improves
grasping performance significantly. They also propose an
end-to-end action-conditional model that learns re-grasp poli-
cies from visual-tactile data [5]. This method has been proved
by experiments to be able to obtain useful and interpretable
re-grasp behaviors. Li et al. [22] propose a new method based
on a deep neural network to detect slip. The visual features
and tactile features are extracted by Pretrain CNNs, then
are combined directly into fusion features, and finally fed
into an LSTM network. Cui et al. [23] propose a 3D CNNs
based visual-tactile fusion network to assess grasp states of
deformable objects.

Fazli et al. [24] propose a method to emulate hierarchical
reasoning and multi-sensory fusion in a robot that learns to

play Jenga, a complex game that requires physical interaction
to be played expertly. This model captures latent descriptive
structures, and the robot learns probabilistic models of these
relationships in force and visual domains through a short
exploration phase. Lee et al. [25] use self-supervision to learn
a compact and multimodal representation of many sensory
inputs, which can be used to improve the sample efficiency
of policy learning.

These amazing studies illustrate the importance of VTFP
in grasping and complex manipulation tasks. Unfortunately,
most of the existing deep-learning-based VTFP methods
combine the feature of visual and tactile modalities directly
and then perform subsequent classification or regression
tasks. However, this Direct-Fusion (DF) may not be able
to capture effective fusion features because of the simple
structure.

C. Self-attention Mechanism
Attention mechanism has recently proven to be a powerful

technique in deep-learning models and has been widely used
in various tasks such as natural language processing [26].
Self-attention [16] is proposed to attend a word to all other
words for learning relations in the input sequence. It sig-
nificantly improves the performance of machine translation.
Furthermore, it has also been introduced in videos to capture
long-term dependencies across temporal frames among vi-
sual, text, audio modalities [27]. We deeply absorb the idea of
global attention and propose a Self-Attention-based Visual-
Tactile Fusion learning method (VTFSA), which transforms
the temporal context correlation in the original sequence
tasks to the relationship reasoning between different modal-
ities and spatial positions in VTFP tasks.

III. PROBLEM STATEMENT

Our goal is to learn effective VTF features for a grasp
outcomes prediction task. Given the visual (XV ) and tactile
(XT ) signals, we first extract visual (MV ) and tactile (MT )
features by visual (EV ) and tactile (ET ) encoder functions.

MV = Ev(XV )

MT = Et(XT )
(1)

Secondly, the VTF feature MV,T is learned from the visual
and tactile features by a fusion function (FF ).

MV,T = FF(MV , MT ) (2)

Finally, MV,T is input into a classification function FC to
predict the current grasping results y.

y = FC(MV,T ) (3)

where y ∈ 0 or 1, and 0 denotes the grasp result is failed,
while 1 means successful. Thus, the grasping results predic-
tion task is defined as a two-categories classification problem.

In this paper, the visual encoder EV , tactile encoder
ET , fusion function FF , and classification function FC are
implemented by neural networks with different structures and
parameters, respectively. The detailed network architecture of
these networks are described in Sec. IV.
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Fig. 2: An overview of our prediction model. The proposed model consists of three components including a feature extraction
module, a VTFSA module, and a classification module. The network takes visual and tactile signals as inputs and encodes
them into visual and tactile features. The final VTF feature is extracted through the VTFSA module. Finally, the final VTF
feature is fed into the classification module to obtain the final prediction. AP means average-pooling operation.

IV. METHODS

The overall architecture of our prediction model is shown
in Fig. 2. The proposed model consists of three components
including a feature extraction module, a visual-tactile fusion
self-attention module, and a classification module. Given an
image Xv captured by a side camera and a tactile signal
Xt (e.g. tactile image, time serial, etc.), the output of our
proposed model is whether the current grasp will succeed
(y).

A. The Feature Extraction Module

The visual feature MV is generally extracted by CNNs.
While for different tactile sensors, we will use different
neural networks to extract tactile feature MT . For example,
for the tactile images acquired by the vision-based tactile
sensor (e.g. GelSight sensor [28]), we also use CNNs to
extract features, but for six-axis force/torque sensors, causal
convolutions [29] may be more suitable.

B. The VTFSA Module

The primary goal of the VTFSA module is to learn an
effective VTF representation based on the given visual and
tactile features. Most of the existing methods adopt direct
concatenation of features from two different modalities,
which we called Direct-Fusion (DF) method, as shown in
Fig. 3. However, the DF method still stays in the junior stage
of multimodal learning [15].

Different from the DF method, VTFSA extracts the fusion
features in two steps. Firstly, the early VTF feature is
obtained by the “slice-concatenation” of the visual and tactile
features. Secondly, a self-attention module is performed on
the early VTF feature to obtain the final VTF feature.

1) The early VTF feature: Given the visual MV and tactile
features MT , the early VTF feature ME

V,T is constructed based
on them.

ME
V,T = MV ]MT

MV ∈ RHV×WV×CV , MT ∈ RHT×WT×CT
(4)

FC
Layers

Feature Extraction Direct Fusion Classification

Encode

Encode

Fig. 3: The network architecture of DF model.

where HV , WV and CV are the height, width and feature
channel dimensions of MV , respectively. These notations are
similar for the tactile feature MT . ] operation indicates the
“slice-concatenation”, which is described below.

Let p be a spatial location in the feature map MV ,
p ∈ {1,2, ...,HV ×WV}. vp is used to denote the “slice-
vector” of the visual feature map at the spatial location p.
Similarly, the spatial position and “slice-vector” of the tactile
modality are represented by q ∈ {1,2, ...,HT ×WT} and tq,
respectively. Thus we can define the early VTF feature vector
fp,q corresponding to the location p and q in visual and tactile
feature map as follows

fpq = Concate(vp, tq) (5)

where Concate() operation denotes the concatenation of
the two “slice-vectors”. The fusion feature vector encodes the
combination of a specific location p in the visual feature map
and a specific location q in the tactile feature map with a total
dimension of (Cv+Ct). As a result, the early VTF feature is
expressed as ME

V,T = { fp,q : ∀p,∀q}. The dimension of ME
V,T

is (HV ×HT )× (WV ×WT )× (CV +CT ). An illustration of
this construction process is shown in Fig. 4.

In this way, the early VTF feature ensures cross-modal
interaction of visual and tactile features at each spatial
location by combining slice vectors at each position of the



Fig. 4: Illustration of the construction process of the early
VTF feature.

T

SM

Fig. 5: Detailed schematic of SA mechanism in VTFSA. The
⊗ denotes matrix multiplication and ⊕ means element-wise
addition. SM indicates the SoftMax operation.

two original feature maps, which lays the foundation for
the subsequent self-attention module to capture the uni-
modal and cross-modal information between arbitrary spatial
positions of the visual and tactile features.

2) The self-attention mechanism: The early VTF fea-
turemap ME

V,T is quite large and may contain much redundant
information. We adopt the Self-Attention (SA) mechanism to
further streamline and extract VTF features that are beneficial
to the task. It achieves the effect of attention by adding
different weights to different positions of the original feature
map, which is motivated by our followed observation.

Different spatial positions in single-modality and feature
combinations at different positions across modalities have
different importance for the determination of the current
grasp result. For example, the contact position between the
object and the gripper in the visual image is obviously
more useful than other positions. However, ME

V,T contains
sufficient uni-modal and cross-modal features while it does
not distinguish between different spatial positions and their
combinations, which poses a considerable challenge for
subsequent classifiers. Therefore, we adopt the SA mecha-
nism to achieve further position-related cross-modal feature
extraction.

The detailed architecture of the SA mechanism in VTFSA
is shown in Fig. 5. It takes ME

V,T as input, and generates a
weighted feature map WSA to distinguish the importance of
different spatial positions. WSA is added to ME

V,T by residual

connection [30]. Note that ME
V,T and WSA have the same size

and can be connected directly by element-wise addition.
The core function of SA module is to generate a position-

sensitive weight feature map based on the input feature
map, which is implemented by building three feature spaces,
including Key, Query, and Value, as shown in Fig. 5. Given
the early VTF feature ME

V,T ∈ RHF×WF×CF , where HF =
HV ×HT , WF = WV ×WT , and CF = CV +CT represent the
height, width, and channel of ME

V,T respectively, the SA
module first produces a set of feature maps MK , MQ, and
MV by 1×1 convolutions.

MK = FK(ME
V,T ) =Conv(ME

V,T ) (MK ∈ RHF×WF×C̃F )

MQ = FQ(ME
V,T ) =Conv(ME

V,T ) (MQ ∈ RHF×WF×C̃F )

MV = FV (ME
V,T ) =Conv(ME

V,T ) (MV ∈ RHF×WF×CF )

(6)

where Conv denotes 1×1 convolution operation. C̃F indicates
the number of channels of MQ and MK , which is set to reduce
the amount of calculation. C̃ f is set as

√
C f in this paper.

MK and MQ are used to capture the interdependence between
each position and all other positions in the input feature map,
and MV is adopted to generate specific weight values for each
position.

Next, the correlation between each “slice vector” of the
input feature map and other “slice vectors” is calculated by
matrix multiplication of MK and MQ.

ai, j =
exp(si, j)

∑
j=N
j=1 exp(si, j)

si, j = MT
K j

MQi , N = HF ×WF

(7)

where ai, j indicates the attention coefficient between the
vector of MK at the ith location and the vector of MQ
at jth location. Then, the final attention weight of each
position WSA,i is obtained by multiplying the weights of other
positions by the correlation coefficients and summing them.

WSA,i =
j=N

∑
j=0

ai, jMVi (8)

where MVi indicates the vector of MV at the ith location.
Finally, the final VTF feature MV,T as the output of the

VTFSA module is obtained by

MV,T = γWSA +ME
V,T (9)

where γ is a scale parameter to adjust the attention mech-
anism effect on the early VTF feature and is initialized as
0.

In this way, the whole process can be regarded as param-
eter weighting at each position and channel of ME

V,T without
changing its shape. Furthermore, the residual connection
allows the insertion of VTFSA module into the backbone
network without breaking its behavior and ensure the effec-
tiveness of gradient back-propagation [30].



C. The Classification Module

The final part of the proposed model is a classification
module, which classifies the extracted final VTF feature
(MV,T ) and outputs the result (y). The final representation
for this task is obtained by average-pooling over all position
(HF ×WF ), which can be summarized as:

fm = avg-pooln(MV,T ) =
∑

N
n=1 fV,T,m,n

N
M̂V,T = { fm : ∀m}, M̂V,T ∈ R1×1×CF

(10)

where m and n denote the channel and position index on
MV,T , respectively. fV,T,m,n indicates the value of nth position,
mth channel of MV,T . As a result, we use M̂V,T as the input
of the classification layers.

Finally, M̂V,T is fed into a two-layer Fully Connection (FC)
layers to predict whether the current grasp will succeed, and
the number of nodes in the two FC layers are set to CF/4
and 2, respectively.

V. EXPERIMENTS: DESIGN AND SETUP

In this section, we perform some comparative experi-
ments on two public multi-modal grasping datasets [4],
[31] containing visual and tactile sensing data to verify
the performance of the proposed model. The goal of our
experimental evaluation to answer the following questions:
• Is the proposed method (VTFSA) better than traditional

methods in the grasp outcomes prediction tasks?
• Can the VTFSA model handle different forms of tactile

signals?
• If the answer to the first question is yes, why is the

VTFSA module helpful?

A. Datasets Introduction

1) D0: The visual and tactile data of the D0 dataset is
collected by a Microsoft Kinect 2 camera and two GelSight
sensors [28], respectively. The GelSight tactile sensors pro-
vide raw-pixel measurements at a resolution of 1280x960
@30Hz over an area of 24x18mm. The GelSight grasping
dataset collects 9269 grasping trials from 106 unique objects.
Besides, each routine consists of six images and its corre-
sponding grasp outcome label. These six images are taken
by the camera and the two tactile sensors during each grasp
routine.

2) D1: This dataset is built by a novel designed dexterous
robot hand and two RealSense RGB-D cameras [31]. The
most significant difference between this dataset and the
previous is that the visual data is acquired by two views
(right side and front side), and the tactile signals are time
serials. The dataset contains 2550 sets of data. Similarly, we
select the visual images (four images taken by two cameras)
before and during the grasp and the tactile time series during
grasping to train and evaluate different methods.

B. Experiment Setup

1) D0: Since the data collected in this dataset are abun-
dant, we first combine different inputs of D0 to evaluate how
different models perform for different inputs. The difference

between these inputs is whether the visual and tactile images
before grasping are subtracted from the images during grasp-
ing. The reason for this is that the tactile images’ subtraction
will make the change caused by grasping more noticeable,
while visual images may not.
• I1: The left and right tactile images during grasping are

spliced, and the visual and tactile images during grasp-
ing are respectively subtracted by the images before
grasping to obtain a visual difference image and a tactile
difference image, and these two difference images are
fed into two CNNs.

• I2: Different form I1, the visual difference image and
spliced tactile image (not subtracted) are fed into two
CNNs.

• I3: Different form I1, the visual image during grasping
(not subtracted) and the tactile difference image are fed
into two CNNs.

Based on the above different inputs, we compare our
model to some baselines:
• Original [4]: Six images are combined and sent into

three CNNs (the inputs of origin model [4], Inception-
v4).

• DF+I1: The original three CNNs of [4] are changed to
two, and change the corresponding inputs.

• DF+I2: Same as I1+DF except that the inputs are
changed to I2.

• DF+I3: Same as I1+DF except that the inputs are
changed to I3.

• VTFSA+I1: The VTFSA model with inputs I1.
• VTFSA+I2: The VTFSA model with inputs I2.
• VTFSA+I3: The VTFSA model with inputs I3.
Furthermore, we also perform ablation studies of the

proposed model on dataset D0. To figure out whether the
two modules (early concatenation and SA mechanism) of
the VTFSA module are helpful, we also evaluate the VTFSA
model without one of them.
• VTFSA noec: After being extracted, the visual and

tactile features are fed into SA modules directly and
then combined as the DF model does.

• VTFSA nosa: We only combine the visual and tactile
features by “slice concatenation” without the SA mod-
ule.

2) D1: We combine the images taken at two views of the
D1 dataset into one image as the visual input and use the
last 50 readings of the tactile time series as the tactile input.
Similarly, we also compare our model to two baselines on
the D1 dataset:
• Original [31]: The original model of [31].
• DF: The DF model with the given inputs.
• VTFSA: The VTFSA model with the given inputs.
Specifically, we use cross-entropy [32] as the loss function

and Adam optimizer [33] as the optimizer. In the training
process of the VTFSA model, we first initialize the CNNs
parameters with the weights trained on the ImageNet and
freeze them, then train the other parts of the model with three
epoch at a learning rate of 1e-3. After that, we freeze these



TABLE I: Performance comparison of different models with
different inputs on D0 dataset.

Models Precision % Recall % F1 score %
Original [4] 79.97 79.36 79.65

DF+I1 81.28 79.34 80.17
DF+I2 77.70 74.44 75.63
DF+I3 81.65 78.95 80.04

VTFSA+I1 85.08 79.81 81.67
VTFSA+I2 81.29 76.94 78.84
VTFSA+I3 87.06 83.95 85.23

TABLE II: Performance comparison of different models on
D1 dataset.

Models Precision % Recall % F1 score %
Original [31] 94.60 / /

DF 95.74 91.78 93.58
VTFSA 98.55 97.37 97.93

parts and train five epochs on the two CNNs with a learning
rate of 1e-4. Finally, the model is completely unfrozen to
train 5 epochs at a learning rate of 1e-5. All models are built
by using the PyTorch-1.2 development package and trained
on an NVIDIA DGX server. The batch size is set as 64 in
this paper. For detailed parameter settings and source code
of these models, please refer to the supplementary materials
and source code at https://github.com/swchui/
VTFSA.

VI. EXPERIMENTS: RESULTS AND ANALYSIS

A. Results

1) Statistics Results: To more comprehensively and ac-
curately evaluate the performance of the proposed model,
we compare the Precision, Recall, and F1 score of different
models with different inputs.

Table I presents the comparison results on D0 dataset.
The results show that the original model [4] with six images
inputs achieves 79.97 % precision, which is nearly consistent
with the original results (77.8 %). The DF model with I3
inputs achieves 81.65 % precision, which indicates that I3
is more suitable for this grasp outcomes prediction task.
Additionally, the VTFSA model can obtain better prediction
performance than traditional methods on different input
combinations. VTFSA model with I3 inputs realizes 87.06
% precision, which is 5+% higher than the DF model
and 7+% higher than the original model. Table II gives
the performance comparison results on D1 dataset. The
VTFSA model also achieves 4+% Precision and 6+% Recall
improvement over the DF model on D1 dataset.

These results answer our first and second question. The
answers are both positive. The results show that the proposed
model not only has better performance than the traditional
methods in the grasp outcomes prediction tasks but also can
address different forms of tactile signals.

Note that the proposed VTFSA model’s network parame-
ters are 23.38 M more than the traditional DF models, which

TABLE III: Ablation studies results of VTFSA model on D0
dataset.

Models Precision % Recall % F1 score %
Original [4] 79.97 79.36 79.65

DF 81.65 78.95 80.04
VTFSA noec 82.32 79.87 80.89
VTFSA nosa 82.12 79.94 80.86

VTFSA 87.06 83.95 85.23

0 Medicine Bottle 1 Paper Box

2 Plastic Toy 3 Plush Doll 4 Toy Gourd

Fig. 6: The selected five household objects with different
sizes, shapes, and materials in the test set of D0. Please note
that these images are from dataset D0 [4].

makes the proposed model relatively inefficient. However,
compared to the feature extraction CNNs, the extra compu-
tational memory can be negligible when inference.

2) Ablation Studies: The early concatenation operation
and SA mechanism are two critical components of the
VTFSA module. According to the ablation studies results
shown in Table III, both VTFSA noce and VTFSA nosa
achieve better prediction accuracy than the traditional meth-
ods while far form the performance of VTFSA. These find-
ings indicate that both of the early concatenation operation
and the SA mechanism are critical to the proposed model.

The results of ablation studies are also consistent with
our intuition that task-related cross-modal fusion features
can be captured by constructing the fusion featuremap firstly
and then conducting the SA operation. If only the fusion
featuremap is constructed without SA operation, only the
permutations of features are changed without further feature
extraction. Similarly, if the SA operation is performed on
the uni-modal featuremap, it is equivalent to building more
complex uni-modal features extraction networks, which does
not help to extract the cross-modal fusion features.

3) Performance on specific objects: We select five house-
hold objects with different sizes, shapes, and materials in the
test-set of D0, as shown in Fig. 6. We study the applicability
of such VTFP methods to different objects by comparing the
accuracy of their evaluating results on these five objects.

The results are shown in Fig. 7, which indicates that the
performance of VTFSA on the paper box, the plastic toy, and
the plush doll is significantly better than other methods. All
three VTF models perform poorly on the toy gourd, which



Fig. 7: The performance of different models on the selected
five objects.

may be caused by the irregular shape of the gourds. For
the other four objects, the prediction results indicate that
VTFSA can achieve accuracy close to or exceeding 90%,
which provides the cornerstone for its further application
to dexterous grasping tasks. Note that these objects are not
involved in the model training process, proving that our
proposed model has a certain generalization performance.

B. Visualization Analysis

To figure out why the VTFSA module is helpful for
this task, we visualize the heatmaps of the main network
parameters of the VTFSA model at different stages of the
inference process and overlay them on the original inputs for
presentation. These heatmaps are obtained by normalizing
the strongest activated channel of different featuremaps,
which are up-sampled to match the shape of origin visual
and tactile input images.

We visualize the attention weights learned in the VTFSA
module during an inference process, and the results are
shown in Fig. 8. These heatmaps indicate that the VTFSA
module can further capture some cross-modal position-
related features that are beneficial to the task. For example,
the visual attention weights are more distributed in the object
and gripper part, and the tactile weights are more concen-
trated on contact parts (Red circled areas in Fig. 8), which
demonstrates that the cross-modal combination of these parts
is more critical for this task than other positions. Thus, we
can answer our third question: The VTFSA module can
further learn some cross-modal position-dependent features,
which may be helpful for prediction.

Furthermore, we find that the DF model often predicts
a failed grasp as a success by statistical analysis of the
predicted results, while the VTFSA model can predict cor-
rectly. We also visualize one of the results with heatmaps,
as shown in Fig. 9. The DF heatmaps show that the DF
model only focuses on the contact parts (Red circled areas
in Fig. 9) of the left GelSight image while ignores the right
GelSight image. However, the influence of the lack of solid
contact on the right side of the grasping result is decisive,
which directly leads to the failure of DF model prediction.

VTFSA (SA)

Max

Visual Image

Tactile Image

Fig. 8: Heatmaps visualization of the VTFSA module. The
attention featuremap obtained by the VTFSA module is
separated and averaged according to the modality, and then
the strongest activated channel is selected to generate these
heatmaps. Please note that these images are from dataset D0
[4].

Max

DF VTFSA (FINAL)Visual Image

Tactile Image

Fig. 9: Heatmaps visualization of the DF and VTFSA model.
The DF heatmaps are obtained by normalizing the strongest
activated channel of the uni-modal featuremaps. The upper
part of the tactile image corresponds the left GelSight image.
Please note that these images are from dataset D0 [4].

Fortunately, the VTFSA model pays more attention to the
contact part of the left GelSight image and the whole right
GelSight tactile image, and it successfully predicts this grasp
result, which proves that it has a more comprehensive and
robust prediction performance compared to DF methods.

In conclusion, visualization analysis indicates that the
VTFSA model can further capture some cross-modal
position-related features and have better robustness and not
easy to overfit, which is very helpful for improving prediction
accuracy.

VII. CONCLUSION AND DISCUSSION

This study proposes a new visual-tactile learning method
based on the Self-Attention mechanism for a grasp outcomes
prediction task. We compare our method with traditional
methods on two public multimodal grasping datasets. The



experimental results not only show that VTFSA model has
better performance than the traditional methods in this grasp
outcomes prediction task, but also turn out that it can address
different forms of tactile signals. Additionally, the proposed
model achieves an accuracy close to or exceeding 90%
on household objects with regular shapes. Ablation studies
indicate that both modules of the VTFSA module are critical
for this task. Further visualization analysis shows that the
VTFSA module can further learn some cross-modal position-
dependent features, which may be helpful for prediction.
Moreover, we find that the proposed model obtains a more
comprehensive and robust prediction performance than tra-
ditional methods.

Although we have made some improvements in visual-
tactile fusion learning, this progress is not apparent, possibly
due to the complex structure of the VTFSA module. In the
furture, we will try to simplify this model and explore more
new methods in the field of visual-tactile fusion learning.
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