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Abstract— Existing autonomous robot navigation systems
allow robots to move from one point to another in a collision-
free manner. However, when facing new environments, these
systems generally require re-tuning by expert roboticists with
a good understanding of the inner workings of the navigation
system. In contrast, even users who are unversed in the
details of robot navigation algorithms can generate desirable
navigation behavior in new environments via teleoperation. In
this paper, we introduce APPLD, Adaptive Planner Parameter
Learning from Demonstration, that allows existing navigation
systems to be successfully applied to new complex environments,
given only a human-teleoperated demonstration of desirable
navigation. APPLD is verified on two robots running different
navigation systems in different environments. Experimental
results show that APPLD can outperform navigation systems
with the default and expert-tuned parameters, and even the
human demonstrator themselves.

I. INTRODUCTION

Designing autonomous robot navigation systems has been
a topic of interest to the research community for decades.
Indeed, several widely-used systems have been developed
and deployed that allow a robot to move from one point
to another [1], [2], often with verifiable guarantees that the
robot will not collide with obstacles while moving.

However, while current navigation systems indeed allow
robots to autonomously navigate in known environments,
they often still require a great deal of tuning before they can
be successfully deployed in new environments. Adjusting the
high-level parameters, or hyper-parameters, of the navigation
systems can produce completely different navigation behav-
iors. For example, wide open spaces and densely populated
areas may require completely different sets of parameters
such as inflation radius, sampling rate, planner optimization
coefficients, etc. Re-tuning these parameters requires an
expert who has a good understanding of the inner workings
of the navigation system. Even Zheng’s widely-used full-
stack navigation tuning guide [3] asserts that fine-tuning
such systems is not as simple as it looks for users who
are “sophomoric” about the concepts and reasoning of the
system. Moreover, tuning a single set of parameters assumes
the same set will work well on average in different regions
of a complex environment, which is often not the case.

In contrast, it is relatively easy for humans—even those
with little to no knowledge of navigation systems—to gen-

∗Equally contributing authors
1Xuesu Xiao, Bo Liu, and Peter Stone are with Department of Computer

Science, University of Texas at Austin, Austin, TX 78712 {xiao, bliu,
pstone}@cs.utexas.edu

2Garrett Warnell and Jonathan Fink are with the Compu-
tational and Information Sciences Directorate, Army Research
Laboratory, Adelphi, MD 20783 {garrett.a.warnell.civ,
jonathan.r.fink3.civ}@mail.mil

Behavior Cloning

context (open)

context 
(obstacle)

context
(curve)

change points

context
(corridor)

Human
Demonstration

Demonstration
Segmentation

Context
Predictor

Fig. 1. Overview of APPLD: human demonstration is segmented into
different contexts, for each of which, a set of parameters θ∗k is learned
via Behavior Cloning. During deployment, proper parameters are selected
by an online context predictor. Supplementary Video Available at https:
//www.youtube.com/watch?v=J9AWQWVrjJU

erate desirable navigation behavior in new environments via
teleoperation, e.g., by using a steering wheel or joystick. It
is also intuitive for them to adapt their specific navigation
strategy to different environmental characteristics, e.g., going
fast in straight lines while slowing down for turns.

In this paper, we investigate methods for achieving au-
tonomous robot navigation that are adaptive to complex
environments without the need for a human with expert-level
knowledge in robotics. In particular, we hypothesize that
existing autonomous navigation systems can be successfully
applied to complex environments given (1) access to a human
teleoperated demonstration of competent navigation, and (2)
an appropriate high-level control strategy that dynamically
adjusts the existing system’s parameters.

To this end, we introduce a novel technique called
Adaptive Planner Parameter Learning from Demonstration
(APPLD) and hypothesize that it can outperform default or
even expert-tuned navigation systems on multiple robots
across a range of environments. Specifically, we evaluate
it on two different robots, each in a different environment,
and each using a different underlying navigation system.
Provided with as little as a single teleoperated demonstration
of the robot navigating competently in its environment,
APPLD segments the demonstration into contexts based on
sensor data and demonstrator behavior and uses machine
learning both to find appropriate system parameters for each
context and to recognize particular contexts from sensor data
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alone (Fig. 1). During deployment, APPLD provides a simple
control scheme for autonomously recognizing context and
dynamically switching the underlying navigation system’s
parameters accordingly. Experimental results confirm our
hypothesis: APPLD can outperform the underlying system
using default parameters and parameters tuned by human
experts, and even the performance of the demonstrator.

II. RELATED WORK
This section summarizes related work on parameter tuning,

machine learning for robot navigation, and task demonstra-
tion segmentation, also known as changepoint detection.

A. Parameter Tuning
Broadly speaking, APPLD seeks to tune the high-level pa-

rameters of existing robot navigation systems. For this task,
Zheng’s guide [3] describes the current common practice of
manual parameter tuning, which involves robotics experts
using intuition, experience, or trial-and-error to arrive at a
reasonable set of parameters. As a result, some researchers
have considered the problem of automated parameter tuning
for navigation systems, e.g., dynamically finding trajectory
optimization weights [4] for a Dynamic Window Approach
(DWA) planner [1], optimizing two different sets of DWA
parameters for straight-line and U-turn scenarios [5], or
designing novel systems that can leverage gradient descent to
match expert demonstrations [6]. While such approaches do
successfully perform automatic navigation tuning, they are
thus far tightly coupled to the specific system or scenario
for which they are designed and typically require hand-
engineered features. In contrast, the proposed automatic
parameter tuning work is more broadly applicable: APPLD
treats the navigation system as a black box, and it does not
require hand-engineering of features.

B. Machine Learning for Navigation
Researchers have also considered using machine learning,

especially Learning from Demonstration [7] or Imitation
Learning [8], more generally in robot navigation, i.e., beyond
tuning the parameters of existing systems. One such approach
is that of using inverse reinforcement learning to estimate
costs over driving styles [9], social awareness [10]–[12],
and semantic terrain labels [13] from human demonstrations,
which can then be used to drive classical planning systems.
Other work has taken a more end-to-end approach, perform-
ing navigation by learning functions that map directly from
sensory inputs to robot actions [14], [15]. In particular, recent
work in this space from Kahn et al. [16] used a neural
network to directly assign costs to sampled action sequences
using camera images. Because these types of approaches
seek to replace more classical approaches to navigation,
they also forgo the robustness, reliability, and generality
of those systems. For example, Kahn et al. reported the
possibility of catastrophic failure (e.g., flipping over) during
training. In contrast, the work we present here builds upon
traditional robot navigation approaches and uses machine
learning to improve them only through parameter tuning,
which preserves critical system properties such as safety.

C. Temporal Segmentation of Demonstrations

APPLD leverages potentially lengthy human demonstra-
tions of robotic navigation. In order to effectively process
such demonstrations, it is necessary to first segment these
demonstrations into smaller, cohesive components. This
problem is referred to as changepoint detection [17], and
several researchers concerned with processing task demon-
strations have proposed their own solutions [18]–[22]. Our
work leverages these solutions in the context of learning from
human demonstrations of navigation behavior. Moreover,
unlike [20], we use the discovered segments to then train
a robot for—and deploy it in—a target environment.

III. APPROACH

To improve upon existing navigation systems, the problem
considered here is that of determining a parameter-selection
strategy that allows a robot to move quickly and smoothly to
its goal.

We approach this problem as one of learning from human
demonstration. Namely, we assume that a human can provide
a teleoperated demonstration of desirable navigation behavior
in the deployment environment and we seek to find a set of
planner parameters that can provide a good approximation
of this behavior. As we will show in Section IV, when faced
with a complex environment, a human demonstrator natu-
rally drives differently in each regions of the environment
such that no single set of planner parameters can closely
approximate the demonstration in all states. To overcome
this problem, the human demonstration is divided into pieces
that include consistent sensory observations and navigation
commands. By segmenting the demonstration in this way,
each piece—which we call a context—corresponds to a rel-
atively cohesive navigation behavior. Therefore, it becomes
more feasible to find a single set of planner parameters that
imitates the demonstration well for each context.

A. Problem Definition

We assume we are given a robot with an existing naviga-
tion planner G : X × Θ → A. Here, X is the state space
of the planner (e.g., current robot position, sensory inputs,
navigation goal, etc.), Θ is the space of free parameters for
G (e.g., sampling density, maximum velocity, etc.), and A is
the planner’s action space (e.g., linear and angular velocity).
Using G and a particular set of parameters θ, the robot
performs navigation by repeatedly estimating its state x and
applying action a = G(x; θ) = Gθ(x). Importantly, we
treat G as a black-box, e.g., we do not assume that it is
differentiable, and we need not even understand what each
component of θ does. In addition, a human demonstration
of successful navigation is recorded as time series data
D = {xDi , aDi , tDi }Ni=1, where N is the length of the series,
and xDi and aDi represent the robot state and demonstrated
action at time tDi . Given G and D, the particular problem
we consider is that of finding two functions: (1) a mapping
M : C → Θ that determines planner parameters for a
given context c, and (2) a parameterized context predictor
Bφ : X → C that predicts the context given the current state.



Given M and Bφ, our system then performs navigation by
selecting actions according to G(x;M(Bφ(x))). Note that
since the formulation presented here involves only changing
the parameters of G, the learned navigation strategy will still
possess the benefits that many existing navigation systems
can provide, such as assurance of safety.

B. Demonstration Segmentation

Provided with a demonstration, the first step of the
proposed approach is to segment the demonstration into
pieces—each of which corresponds to a single context
only—so that further learning can be applied for each specific
context. This general segmentation problem can be, in princi-
ple, solved by any changepoint detection method [17]. Given
D, a changepoint detection algorithm Asegment is applied to
automatically detect how many changepoints exist and where
those changepoints are within the demonstration. Denote
the number of changepoints found by Asegment as K − 1
and the changepoints as τ1, τ2, . . . , τK−1 with τ0 = 0 and
τK = N + 1, the demonstration D is then segmented into K
pieces {Dk = {xDi , aDi , tDi | τk−1 ≤ i < τk}}Kk=1.

C. Parameter Learning

Following demonstration segmentation, we then seek to
learn a suitable set of parameters θ∗k for each segment Dk =
{xDi , aDi , tDi | τk−1 ≤ i < τk}. To find this θ∗k, we employ
behavioral cloning (BC) [23], i.e., we seek to minimize the
difference between the demonstrated actions and the actions
that Gθk would produce on {xDi }. More specifically,

θ∗k = argmin
θ

∑
(x,a)∈Dk

||a−Gθ(x))||H , (1)

where ||v||H = vTHv is the induced norm by a diagonal
matrix H with positive real entries, which is used for weight-
ing each dimension of the action. A black-box optimization
method Ablack-box is then applied to solve Equation 1. Having
found each θ∗k, the mapping M is simply M(k) = θ∗k.

D. Online Context Prediction

At this point, we have a library of learned parameters and
the mapping M that is responsible for mapping a specific
context to its corresponding parameters. All that remains
is a scheme to dynamically infer which context the robot
is in during execution. To do so, we form a supervised
dataset {xDi , ci}Ni=1, where ci = k if xDi ∈ Dk. Then,
a parameterized function fφ(x) is learned via supervised
learning to classify which segment xDi comes from, i.e.,

φ∗ = argmax
φ

N∑
i=1

log
exp

(
fφ(xDi )[ci]

)∑K
c=1 exp

(
fφ(xDi )[c]

) . (2)

Given fφ, we define our context predictor B according to

Bφ(xt) = mode
{

argmax
c

fφ(xi)[c], t− p < i ≤ t
}
. (3)

In other words, Bφ acts as a mode filter on the context
predicted by fφ over a sliding window of length p.

Algorithm 1 APPLD

1: // Training
2: Input: the demonstration D = {xDi , aDi , tDi }Ni=1, space of

possible parameters Θ, and the navigation stack G.
3: Call Asegment on D to detect changepoints τ1, . . . , τK−1 with
τ0 = 0 and τK = N + 1.

4: Segment D into {Dk = {xDi , aDi , tDi | τk−1 ≤ i < τk}}Kk=1.
5: Train a classifier fφ on {xDi , ci}Ni=1, where ci = k if xDi ∈ Dk.

6: for k = 1 : K do
7: Call Ablack-box with objective defined in Equation 1 on Dk to

find parameters θ∗k for context k.
8: end for
9: Form the map M(k) = θ∗k, ∀1 ≤ k ≤ K.

10:
11: // Deployment
12: Input: the navigation stack G, the mapping M from context

to parameters, and the context predictor Bφ.
13: for t = 1 : T do
14: Identify the context ct = Bφ(xt) according to Equation 3.
15: Navigate with G(xt;M(ct)).
16: end for

Taken together, the above steps constitute our proposed
APPLD approach. During training, the above three stages are
applied sequentially to learn a library of parameters {θ∗k}Kk=1

(hence the mapping M ) and a context predictor Bφ. During
execution, Equation 3 is applied online to pick the right set
of parameters for navigation. Algorithm 1 summarizes the
entire pipeline from offline training to online execution.

IV. EXPERIMENTS

In this section, APPLD is implemented to experimentally
validate our hypothesis that existing autonomous navigation
systems can be successfully applied to complex environments
given (1) access to a human demonstration from teleopera-
tion, and (2) an appropriate high-level control strategy that
dynamically adjusts the existing system’s parameters based
on context. To perform this validation, APPLD is applied
on two different robots—a Jackal and a BWIBot—that each
operate in a different environment with different underlying
navigation methods. The results of APPLD are compared with
those obtained by the underlying navigation system using (a)
its default parameters (DEFAULT) from the robot platform
manufacturer, and (b) parameters we found using behavior
cloning but without context (APPLD (NO CONTEXT)). We
also compare to the navigation system as tuned by robotics
experts in the second experiment. In all cases, we find that
APPLD outperforms the alternatives.

A. Jackal Maze Navigation

In the first experiment, a four-wheeled, differential-drive,
unmanned ground vehicle—specifically a Clearpath Jackal—
is tasked to move through a custom-built maze (Fig. 1). The
Jackal is a small and agile platform with a top speed of
2.0m/s. To leverage this agility, the complex maze consists
of four qualitatively different areas: (i) a pathway with curvy
walls (curve), (ii) an obstacle field (obstacle), (iii) a narrow
corridor (corridor), and (iv) an open space (open) (Fig. 1).
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Fig. 2. Jackal Trajectory in Environment Shown in Fig. 1: heatmap visualization of the LiDAR inputs over time is displayed at the top and used for
segmentation by CHAMP. For each region divided by CHAMP changepoints, CMA-ES finds a set of parameters that best imitates the human demonstration.
Velocity and angular velocity profiles from DEFAULT (red), APPLD (NO CONTEXT) (orange), and APPLD (green) parameters, along with the human
demonstration (black), are displayed with respect to time. Plots are scaled to best demonstrate performance differences between different parameters.

A Velodyne LiDAR provides 3D point cloud data, which is
transformed into 2D laser scan for 2D navigation. The Jackal
runs Robot Operating System (ROS) onboard, and APPLD is
applied to the local planner, DWA [1], in the commonly-used
move base navigation stack. Other parts of the navigation
stack, e.g. global planning with Dijkstra’s algorithm, remain
intact.

Teleoperation commands are captured via an Xbox con-
troller from one of the authors with previous experience with
video games, who is unfamiliar with the inner workings of
the DWA planner and attempts to operate the platform to
quickly traverse the maze in a safe manner. The teleoperator
follows the robot and controls the robot from a third person
view. This viewpoint, different from the robot’s first person
view, may provide the human demonstrator with different
contextual information, but our experiments will show that
the robot’s limited onboard LiDAR input suffices for online
context identification. The 52s demonstration is recorded
using rosbag configured to record all joystick commands
and all inputs to the move base node.

For changepoint detection (Algorithm 1, line 3), we use
CHAMP as Asegment, a state-of-the-art Bayesian segmentation
algorithm [18]. The recorded LiDAR range data statistics
(mean and standard deviation) from XD

i and the recorded
demonstrated actions aDi = (vDi , w

D
i ) are provided as input

to CHAMP. CHAMP outputs a sequence of changepoints
τ1, τ2, . . . , τK−1 that segment the demonstration into K
segments, each with uniform context (line 4). As expected,
CHAMP determines K = 4 segments in the demonstration,
each corresponding to a different context (line 5). fφ trained
for online context prediction (line 14) is modeled as a two-

Fig. 3. Action-Matching and Loss Metric

layer neural network with ReLU activation functions.
For the purpose of finding θ∗k for each context, the

recorded input is played to a ROS move base node using
DWA as the local planner with query parameters θ and
the resulting output navigation commands are compared to
the demonstrator’s actions. Ideally, the DWA output and the
demonstrator commands would be aligned in time, but for
practical reasons (e.g., computational delay), this is generally
not the case—the output frequency of move base is much
lower than the frequency of recorded joystick commands. To
address this discrepancy, we match each aDi with the most
recent queried output of Gθ within the past ε seconds (default
execution time per command, 0.25s for Jackal), and use it
as the augmented navigation at time tDi . If no such output
exists, augmented navigation is set to zero since the default
behavior of Jackal is to halt if no command has been received
in the past ε seconds (Fig. 3). This condition may occur due
to insufficient onboard computation to perform sampling at
the requested density. For the metric in Equation 1, we use
mean-squared error, i.e. H is the identity matrix.

Following the action-matching procedure, we find each θ∗k
using CMA-ES [24] as our black-box optimizer (Algorithm
1, line 7). The optimization runs on a single Dell XPS



laptop (Intel Core i9-9980HK) using 16 parallel threads. The
elements of θ in our experiments are: DWA’s max vel x (v),
max vel theta (w), vx samples (s), vtheta samples (t), oc-
cdist scale (o), pdist scale (p), gdist scale (g) and costmap’s
inflation radius (i). We intentionally select parameters here
that directly impact navigation behavior and exclude pa-
rameters which are robot-model-specific, e.g. physical ac-
celeration limit (acc lim x and acc lim theta), or unre-
lated to the behaviors being studied, e.g. goal tolerance
(xy goal tolerance). Note that max vel x and max vel theta
are not the physical velocity limit of the robot, but rather
the maximum velocity commands that are allowed to be ex-
ecuted. They interact with the sampling density parameters,
vx samples and vtheta samples, in a way that affects whether
finding a reasonable motion command through sampling can
be performed in real time. The parameters occdist scale,
pdist scale, and gdist scale, are optimization weights for
distance to obstacle, distance to path, and distance to goal,
respectively. The inflation radius, inflation radius, specifies
the physical safety margin to be used around obstacles.
All parameters are initialized at the midpoint between their
lower- and upper-bound. The fully parallelizable optimiza-
tion takes approximately eight hours, but this time could be
significantly reduced with more computational resources and
engineering effort.

The action profiles of using the parameters discovered by
DEFAULT, APPLD (NO CONTEXT), and APPLD are plotted in
Fig. 2, along with the single-shot demonstration segmented
into four chunks by CHAMP. Being trained separately based
on the segments discovered by CHAMP, the APPLD parame-
ters (green) perform most closely to the human demonstra-
tion (black), whereas the performance of both DEFAULT (red)
and APPLD (NO CONTEXT) (orange) significantly differs
from the demonstration in most cases (Fig. 2).

TABLE I
PARAMETERS OF JACKAL EXPERIMENTS (DWA):

max vel x (v), max vel theta (w), vx samples (s), vtheta samples (t),
occdist scale (o), pdist scale (p), gdist scale (g), inflation radius (i)

v w s t o p g i

DEF. 0.50 1.57 6 20 0.10 0.75 1.00 0.30
NO CTX. 1.55 0.98 10 3 0.01 0.87 0.99 0.46

Curve 0.80 0.73 6 42 0.04 0.98 0.94 0.19
Obstacle 0.71 0.91 16 53 0.55 0.54 0.91 0.39
Corridor 0.25 1.34 8 59 0.43 0.65 0.98 0.40
Open 1.59 0.89 18 18 0.40 0.46 0.27 0.42

The specific parameter values learned by each technique
are given in Tab. I, where we show in the bottom rows the
individual parameters learned by APPLD for each context.
The learned parameters relative to the default values are
intuitive in many ways. For example, APPLD found that
Curve requires a larger value for the parameters p and g and
a lower value for the parameter i, i.e., the platform needs to
place a high priority on sticking to the straight global path so
that it can avoid extraneous motion due to the proximity of

the curvy walls. It is similarly intuitive that APPLD found that
Obstacle Field requires higher sampling rates (s and t) and
more consideration given to obstacle avoidance (higher o) in
order to find feasible motion through the irregular obstacle
course. Corridor is extremely tight, and, accordingly, APPLD
found that a smaller linear velocity (v) was necessary in order
to compensate for the larger computational load associated
with the necessary higher angular velocity sampling rate (t)
required to find feasible paths. In Open, APPLD appropriately
learned that the maximum velocity (v) should be increased
in order to match the demonstrator’s behavior. In addition to
these intuitive properties, APPLD was also able to capture
other, more subtle, parameter interactions that are more
difficult to describe. At run time, APPLD’s trained context
classifier selects in which mode the navigation stack is to
operate and adjusts the parameters accordingly (Fig. 1).

Tab. II shows the results of evaluating the overall naviga-
tion system using the different parameter-selection schemes
along with the demonstrator’s performance as a point of
reference. We report both the time it takes for each system
navigate a pre-specified route and also the BC loss (Equa-
tion 1) compared to the demonstrator. We choose to study
traversal time since most suboptimal navigation behavior will
cause stop-and-go motions, induce recovery behaviors, cause
the robot to get stuck, or collide with obstacles (termination)
– each of which will result in a higher traversal time.

TABLE II
LOSS AND TIME COMPARISON OF JACKAL EXPERIMENTS (DWA)

Context BC Loss Real-world Time (s)

(a) Curve
Demonstration N/A 12.10
DEFAULT 0.1755±0.0212 30.20±3.87
APP. (NO CTX.) 0.1856±0.0030 *55.14±13.84
APPLD 0.0780±0.0002 9.39±0.73

(b) Obstacle Field
Demonstration N/A 9.00
DEFAULT 0.2061±0.0540 12.32±0.59
APP. (NO CTX.) 0.2537±0.0083 *60.00±0.00
APPLD 0.1586±0.0216 7.69±0.35

(c) Narrow Corridor
Demonstration N/A 24.06
DEFAULT 0.0953±0.0916 *49.52±19.88
APP. (NO CTX.) 0.0566±0.0419 *60.00±0.00
APPLD 0.0198±0.0010 19.11±0.82

(d) Open Space
Demonstration N/A 7.28
DEFAULT 0.8597±0.0013 15.07±0.61
APP. (NO CTX.) 0.2094±0.0013 15.08±7.42
APPLD 0.2071±0.0021 7.19±0.42

For each metric, lower is better, and we compute mean
and standard deviation over 10 independent trials. For trials
that end in failure (e.g., the robot gets stuck), we add an
asterisk (*) to the reported results and use penalty time
value of 60s. The results show that, for every context, APPLD
achieves the lowest BC loss and fastest real-world traverse
time, compared to DEFAULT and APPLD (NO CONTEXT). In
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fact, while APPLD is able to successfully navigate in every
trial, DEFAULT fails in 8/10 trials in the narrow corridor
due to collisions in recovery behaviors after getting
stuck, and APPLD (NO CONTEXT) fails in 9/10, 10/10, and
10/10 trials in curve, obstacle field, and narrow corridor,
respectively. In open space, APPLD (NO CONTEXT) is able
to navigate quickly at first, but is not able to precisely and
quickly reach the goal due to low angular sample density
(vtheta samples). Surprisingly, in all contexts, the navigation
stack with APPLD parameters even outperforms the human
demonstration in terms of time, and leads to qualitatively
smoother motion than the demonstration. Average overall
traversal time from start to goal, 43s, is also faster than
the demonstrated 52s. The superior performance achieved
by APPLD compared to DEFAULT and even the demonstrator
validates our hypothesis that given access to a teleoperated
demonstration, tuning DWA navigation parameters is possible
without a roboticist. We notice that, in some challenging
situations, even the human demonstrator suffered from sub-
optimal navigation, e.g. stop-and-go, overshoot, etc. Even
in these cases, APPLD can produce smooth, stable, and
sometimes even faster navigation due to the benefit of a
properly-parameterized autonomous planner. The fact that
APPLD outperforms APPLD (NO CONTEXT) indicates the
necessity of the high-level context switch strategy.

B. BWIBot Hallway Navigation

Whereas we designed the Jackal experiments to specifi-
cally test all aspects of APPLD, in this section, we evaluate
APPLD’s generality to another robot in another environment
running another underlying navigation system. Specifically,
we evaluate our approach using a BWIBot (Fig. 4 left)—
a custom-built robot that navigates the GDC building at
The University of Texas at Austin every day as part of the
Building Wide Intelligence (BWI) project [25]. The BWIBot
is a nonholonomic platform built on top of a Segway RMP
mobile base, and is equipped with a Hokuyo LiDAR. A Dell
Inspiron computer performs all computation onboard. Similar
to the Jackal, the BWIBot uses the ROS architecture and
the move base navigation framework. However, unlike the
Jackal, the BWIBot uses a local planner based on the elastic
bands technique (E-BAND) [2] instead of DWA.

TABLE III
PARAMETERS AND RESULTS OF BWIBOT EXPERIMENTS (E-BAND):

max vel lin (v), max vel th (w), eband internal force gain (i),
eband external force gain (e), costmap weight (c)

v w i e c loss

DEF. 0.75 1.0 1 2 10 0.1730±0.0025
EXP. 0.5 0.5 3 2 15 0.0940±0.0095

APP. 0.65 0.35 0.52 0.04 15.36 0.0669±0.0071

As in the Jackal experiments, teleoperation is performed
using an Xbox controller from a third person view by the
same author who is unfamiliar with the inner workings
of the E-BAND planner. The demonstration lasts 17s and
consists of navigating the robot through a hallway, where
the demonstrator seeks to move the robot in smooth, straight
lines at a speed appropriate for an office environment. Unlike
the Jackal demonstration, quick traversal is not the goal of
the demonstration.

In this setting, the APPLD training procedure is identical
to that described for the Jackal experiments. In this case,
however, CHAMP did not detect any changepoints based on
the LiDAR inputs and demonstration (Fig. 4 right), indicating
the hallway environment is relatively uniform and hence one
set of parameters is sufficient.

The BC phase takes about two hours with 16 threads
on the same laptop used for the Jackal experiments.
The parameters learned for the E-BAND planner are
max vel lin (v), max vel th (w), eband internal force gain
(i), eband external force gain (e), and costmap weight (c).
The results are shown in Tab. III.

The first row of Tab. III shows the parameters of the
BWIBot planner used in the DEFAULT system. Because
CHAMP does not discover more than a single context, APPLD
and APPLD (NO CONTEXT) are equivalent for this exper-
iment. Therefore, we instead compare to a set of expert-
tuned (EXPERT) parameters that is used on the robot during
everyday deployment, shown in the second row of the table.
These parameters took a group of roboticists several days
to tune by trial-and-error to make the robot navigate in
relatively straight lines. Finally, the parameters discovered
by APPLD are shown in the third row. The last column of
the table shows the BC loss induced by DEFAULT, EXPERT,
and APPLD parameters (again averaged over 10 runs). Real-
world time is not reported since a quick traversal is not the
purpose of the demonstration in the indoor office space. The
action profiles from these three sets of parameters (queried
on the demonstration trajectory {xDi }Ni=1) are compared with
the demonstration and plotted in Fig. 4 lower right, where
the learned trajectories are the closest to the demonstration.
When tested on the real robot, the APPLD parameters achieve
qualitatively superior performance, despite the fact that the
experts were also trying to make the robot navigate in a
straight line (Fig. 4 left).

The BWIBot experiments further validate our hypothesis
that parameter tuning for existing navigation systems is



possible based on a teleoperated demonstration instead of
expert roboticist effort. More importantly, the success on the
E-BAND planner without any modifications from the method-
ology developed for DWA supports APPLDs generality.

V. SUMMARY AND FUTURE WORK

This paper presents APPLD, a novel learning from demon-
stration framework that can autonomously learn suitable
planner parameters and adaptively switch them during execu-
tion in complex environments. The first contribution of this
work is to grant non-roboticists the ability to tune navigation
parameters in new environments by simply providing a sin-
gle teleoperated demonstration. Secondly, this work allows
mobile robots to utilize existing navigation systems, but
adapt them to different contexts in complex environments
by adjusting their navigation parameters on the fly. APPLD is
validated on two robots in different environments with differ-
ent navigation algorithms. We observe superior performance
of APPLD’s parameters compared with all tested alternatives,
both on the Jackal and the BWIBot. An interesting direction
for future work is to investigate methods for speeding up
learning by clustering similar contexts together. It may also
be possible to perform parameter learning and changepoint
detection jointly for better performance.
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