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Abstract— The use of tactile information is one of the most
important factors for achieving stable in-grasp manipulation.
Especially with low-cost robotic hands that provide low-
precision control, robust in-grasp manipulation is challenging.
Abundant tactile information could provide the required feed-
back to achieve reliable in-grasp manipulation also in such
cases. In this research, soft distributed 3-axis skin sensors
(“uSkin”) and 6-axis F/T (force/torque) sensors were mounted
on each fingertip of an Allegro Hand to provide rich tactile
information. These sensors yielded 78 measurements for each
fingertip (72 measurements from the uSkin and 6 measurements
from the 6-axis F/T sensor). However, such high-dimensional
tactile information can be difficult to process because of the
complex contact states between the grasped object and the
fingertips. Therefore, a convolutional neural network (CNN)
was employed to process the tactile information. In this paper,
we explored the importance of the different sensors for achiev-
ing in-grasp manipulation. Successful in-grasp manipulation
with untrained daily objects was achieved when both 3-axis
uSkin and 6-axis F/T information was provided and when the
information was processed using a CNN.

I. INTRODUCTION

While multi-DOF robot hands already can accomplish
various tasks that otherwise only humans can perform, the
in-hand manipulation of everyday objects with such hands is
still one of the most difficult challenges for the development
of service and co-working robots. Specifically, manipulation
with two fingers requires accurate control to avoid detaching
the fingers from the grasped object, which would lead to
dropping the object, and can include complicated contact
states (e.g., rolling contact or slip). The current paper there-
fore focuses on subset of in-hand manipulation: 2-fingered
in-grasp manipulation, in which the contacts between the
object and the fingers are never broken.

Visual information is sometimes unreliable in determining
contact states because of the occlusions caused by the hands.
Therefore, tactile sensing can play an important role to as-
certain the conditions between an object and fingers directly.
For example, when the fingertips have an anthropomorphic
shape and are covered with soft skin, the soft skin makes it
easier to manipulate the object without dropping it, because
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Fig. 1: Schematic of the proposed motion-generating method.
CNNs process the uSkin tactile information from each
fingertip. Fully-connected layers receive inputs from the
joints, six-axis F/T sensors, and the features of uSkin tactile
information. The outputs are the same as the inputs predicted
for the next timestep, but only joint angles are used for robot
hand control.

it can deform along with the object, but controlling the
hands can be difficult owing to the complex shape of the
fingertips, in particular it can be difficult to achieve the
desired goal configuration of the hand without applying
too high forces. However, such in-grasp manipulation was
achieved with abundant tactile information processed by deep
neural networks [1].

In our previous research on in-hand manipulation, we used
the TWENDY-ONE Hand [1]. While it could demonstrate
stable manipulation skills, the use of such a hand in industrial
applications is limited by its high cost, caused by its highly
sophisticated actuators and sensors. Moreover, maintaining
such an elaborate robot is also challenging. Similarly, the
multi-fingered Shadow Dexterous Hand can accomplish com-
plex tasks [2], but costs about $100,000 and the tendon-
driven actuators make the maintenance difficult. However,
some more cost-effective hands are capable of achieving
some simple in-hand manipulation tasks [3]. In the current
study, we focus on the Allegro Hand, which is relatively
low-cost ($15,000) among multi-fingered robot hands which
have multiple actuators for each finger.

Low-priced hands such as the Allegro hand do not typi-
cally provide precise position or force control. To compen-
sated for this and to achieve stable in-grasp manipulation
similar to the capabilities of more expensive and elaborate
hands, in the current paper, we focused on richer tactile
feedback compared to our previous work in [1]. In particular,
while the TWENDY-ONE hand has distributed 1-axis skin
sensors (in addition to 6-axis F/T sensors in each fingertip),
the current paper uses uSkin sensors [4][5], which provide
distributed 3-axis measurements, yet are relatively cheap to
produce. Like the sensors in [1], the uSkin sensors are soft.

However, dealing with higher-dimensional tactile informa-
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tion (in our case from distributed 3-axis sensors) provides a
challenge in itself and the processing of high-dimensional
tactile information has been less investigated than vision in
particular. Nevertheless, some devices employ state-of-the
art technology in the form of convolutional neural networks
(CNNs) for tactile-based tasks such as hardness estimation
from Gelsight videos [6], grasp success probability predic-
tion from Gelsight images [7], or work by our own group
with uSkin sensors on object recognition [8]. CNNs are well
suited to extract features from spatially distributed sensors
(from distributed tactile sensors in this case). Considering
that the uSkin sensors provide more information than the
ones in [1], for the current paper we also employed CNNs
for each fingertip (Fig. 1) as one of our contributions. To the
best of our knowledge, this is the first time that CNNs are
used to process 3-axis tactile data and produce joint angles
in an end-to-end fashion. Since, in our previous work, we
already compared position control without tactile information
to machine learning methods [1][9], in the current paper, we
focus on the comparison only among different neural net-
work architectures. In particular, in this paper the following
aspects are studied

• Comparison between tactile sensors regarding their im-
portance for successful in-grasp manipulation, i.e. either
3-axis or 1-axis tactile information from the uSkin
sensors and/or 6-axis data from the F/T sensor is used
as input for the neural network

• Analysis on how the CNN sees tactile information from
the uSkin sensors.

• Generalization to untrained daily objects using a CNN
and the uSkin and six-axis F/T sensors.

In previous work, our lab already showed that the triaxial
tactile information provided by uSkin can be beneficial for
object recognition tasks [8][10]. The contribution of the
current paper is to investigate the usefulness of 3-axis skin
sensor information and CNNs for processing abundant tactile
information to achieve challenging in-grasp manipulation
with a relatively low-cost (and low-precision control) robotic
multi-DOF hand.

II. RELATED WORK

A. Sensors for In-Hand Manipulation

Various sensors have been used to aid in-hand manipula-
tion. Visual sensors, such as commodity-level cameras, are
a practical option. Some studies have incorporated visual
information by using markers on grasped objects to capture
the state and orientation of an object during manipula-
tion [11][12]. However, putting markers on all manipulated
objects is difficult to implement in practical situations.
Furthermore, occlusions can occur. To avoid occlusions, a
complicated experimental setting with a high number of
cameras has to be used [2].

By contrast, tactile sensors can detect the contact states
between objects and hands directly and are therefore also
widely used. However, some tactile sensors cost more than
the rest of the hands for which they are used [1][13].

Using such high-cost sensors would be prohibitive for low-
cost systems. Some inexpensive optical sensors have been
developed by 3D-printing [14][15] and can be used for per-
forming stable in-grasp manipulation. However, a lot of space
is required to accommodate such sensors with a camera,
and therefore they cannot be used to cover multi-segment
fingers, which would be beneficial for more dexterous in-
hand manipulation.

For achieving more dexterous in-grasp manipulation tasks,
soft skin and anthropomorphic curved fingertips can be
beneficial [16]. Thus, our lab developed “uSkin” - distributed
soft 3-axis tactile sensors that can be mounted on the surface
of flat phalanges [4] as well as curved fingertips [5]. The
distributed 3-axis information that the sensors provide could
be beneficial, given that shear forces are important for stable
in-grasp manipulation and in the detection of certain condi-
tions such as slip. The detection of slip [17][18] or friction
[19][20] has been used successfully for in-hand manipulation
in previous work.

B. Control Architecture

When the tactile information increases, a control strategy
that makes efficient use of such tactile information needs to
be used. Contact modeling with external forces for in-hand
object manipulation can be achieved [21][22]. Modeling is
used for motion exploration based on tactile information
[11][23], but this approach is applied to only elongated ob-
jects and requires complex object-specific modeling analysis.
FEM is also used to handle soft objects [24], but not for
dynamic in-grasp manipulation like changing an objects’ ori-
entation. A combination of modeling and machine learning
methods has been used for in-hand manipulation [25][26],
but the generation of intricate manipulation is difficult to
achieve because simple primitive motions are used. Overall,
most studies focused on relatively simple in-hand manip-
ulation or used conditions which made the task execution
easier. This was necessary due to the difficulty of modeling
grasping states with tactile information. Few robot hands
are equipped with abundant tactile sensors and rich tactile
information is also difficult to process using existing methods
for in-grasp manipulation. Therefore, effective processing is
a critical aspect of in-grasp manipulation and is still an open
issue.

Currently, CNNs are used to process images obtained
from cameras and to compress visual data to generate joint
trajectories for robots [2]. For tactile sensors, CNNs are
also used for recognition [7][27], and they utilize the results
of the recognition for manipulation by modeling control
[27]. CNNs are also used for predicting tactile force and
directionality [28][29] for improving the robustness of in-
hand manipulation. Therefore, CNNs could also be useful for
processing tactile information for in-hand manipulation. To
the best of our knowledge, the use of CNNs for processing 3-
axis tactile information and directly generating joint angles in
a robot hand for in-grasp manipulation as end-to-end learning
has not yet been investigated.
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III. PROPOSED METHOD

A. Allegro Hand with Tactile Sensors

An Allegro Hand made by Wonik Robotics was used in
this research because it is a low-cost multi-DOF robotic
hand. Each finger has 4 DOFs (16 DOFs in total). The
uSkin distributed tactile sensors, which can provide triaxial
force measurements are mounted on the phalanges [4] and
fingertips [5] of the Allegro Hand. Considering that this
research focuses on in-grasp manipulation with fingertips,
only the sensor information from the fingertips is described
in Fig. 2. In addition to the 24 tri-axial uSkin sensors,
each fingertip is instrumented with a six-axis F/T sensor.
In this paper, we study 2-fingered in-grasp manipulation, and
therefore the following measurements are used: 2 fingers * 4
joint angles + 2 fingertips * 6-axis F/T sensors + 2 fingertips
* 24 uSkin sensor chips * 3 axes = 164 measurements.

B. Convolutional Neural Network for Tactile Mapping

In this study, CNNs were used because a large amount
of tactile information was provided, and such information
could be difficult to process for basic MLPs or other machine
learning methods. CNNs have demonstrated effectiveness
in the areas of image recognition and tactile recognition
[6][7][27] because they can extract features from spatially
distributed sensors. They also use inputs with three channels
for “RGB” because each pixel in an image has “RGB”
information. Inputs from the uSkin were also entered into
the CNNs in the same manner because each fingertip taxel
provided “xyz” information (Fig. 3-(b)). The number of
sensors on each fingertip was 24. According to the positions
of the sensors, the shape of input maps for the fingertips was
6 * 5, and the red numbers “0” in Fig. 3 were entered for
positions where sensors were not mounted on each fingertip,
thus resulting in the construction of rectangular input maps
for convoluting input maps by 2 * 2 (or larger sized) filters
for the CNNs.

Fig. 4 shows the schematic of the proposed CNN, and
Section IV-B and Table I list the detailed parameters. As

Fig. 2: Allegro Hand with tactile sensors. Each fingertip is
covered with uSkin, and six-axis F/T sensors are mounted
inside the fingertip. uSkin has 24 sensor points placed in a
6 * 5 configuration and each point has x-, y-, and z-axis
tactile information. It is important to note that the six-axis
F/T sensors were installed in accordance with the concept
described in [1]. Z-axis represents normal force. X- and y-
axis represent shear forces along with the shape of fingertips

Fig. 3: (a) Top row: mounted uSkin on a fingertip, black dots
as positions of sensors, and simple input maps for the CNNs.
Zero is colored in red and represents the position that lacks a
sensor on the actual uSkin (the other numbers are arbitrary).
(b) Bottom row: the input maps have three channels (x-, y-,
and z-axes) associated with the CNN.

described in Fig. 3, the input maps have a size of 6 * 5 *
3 from uSkin. The uSkin measurements pass through four
convolutional layers, which are subsequently compressed by
fully connected layers (FC layers “(uSkin)”) so that the
processed and compressed uSkin data has a dimensionality
similar to the number of inputs from the other modalities
(joint angles and six-axis F/T sensors). The compression of
a high dimensional input modality before it is joined with
other, lower dimensional sensor information, is a common
technique. The joint angles and the six-axis F/T sensors are
entered into the network in the first FC layer “(all)”. Given
that this research focused on geometric tactile information
and on the manner in which it is processed, recurrent neural
networks, including LSTMs, were not used, even though
they are useful for processing time-series information for
performing certain tasks, including in-hand manipulation.

Overall, the CNN uses as input the sensor readings
from the current timestep and generates output for the next
timestep. The size of the output is the same as that of the
input (i.e. the measurements from joint angles, six-axis F/T
sensors and uSkin sensors). The output is used for position
control of the joints in each finger. This process is repeated
resulting in generating in-grasp manipulation motion.

IV. EXPERIMENT DESIGN

A. Training Data

A data glove for controlling the TWENDY-ONE Hand
was used in our previous work [1] to collect training data
and to allow a teleoperator to control a robot hand with
natural motion and human precision. However, such gloves
are relatively expensive, and the parameters of the glove need
to be calibrated for each person because of the differences
between the hands of different people. Moreover, the Allegro
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Fig. 4: The architecture of proposed network model. Tactile information from uSkin is input to a convolutional layer with
the size of 6 * 5 * 3. Joint angles and 6-axis F/T sensors are input to a fully-connected layer because they do not have
geometrical configuration unlike to uSkin. Although, outputs from the network include joint angles, 6-axis F/T sensors and
uSkin measurements (all of them for the next time step respective to the input), only the joint angles are used to generate
motions on the hand.

Hand used in this paper had a different joint configuration
compared with that of human hands. Specifically, the Allegro
Hand does not have abduction/adduction for all fingers,
thus necessitating that increasing the distance between two
fingertips in two dimensions, which commonly occurs in
human motion, requires more than just the rotating of a
joint in the Allegro hand. This condition makes precise
teleoperation impossible in many cases. As a simple but
powerful alternative method for obtaining training data, the
experiments in this study employed posture interpolation
control [30] because this method can generate in-grasp
manipulation of multi-DOF hands easily [9]. The detailed
formula of posture interpolation control is presented in [9].
The desired joint position could be achieved stably by
posture interpolation control. In our previous work, we also
discussed the limitations of interpolation control, namely
that the start and end joint angles have to be defined for
each object, that the manipulation is sensitive to the initial
position of the object within the hand (if the objects are
initially placed too far out of the center of the fingertips,
the object can be dropped during the manipulation), and that
high interaction forces can sometimes occur. For the selected
training objects, we predefined the start and goal posture
and the interpolation control could provide good motions
of the desired in-grasp manipulation, and could be used for
generating training data.

The target objects included a 40 mm diameter sphere and
a 40 mm cylinder (Fig. 5-[a]). The objects used in this
research are not deformable. The initial grasping positions
of an object were determined by the teleoperator randomly
to collect training data with as many initial grasping positions
as possible so that the neural networks could be effectively
trained with diverse motions. Fig. 5-(b) shows the target
motions in our experiments: (b)-1 is a twisting motion with
the object being rolled from the tip to the side of the

index fingertip. The thumb is placed below the object in
the beginning of the motion, but gradually moves to the
side of the object, so that both the thumb and index finger
are perpendicular to gravity. (b)-2 is a translating motion;
both fingertips are perpendicular to gravity during the whole
motion. Those motions were chosen because they are some
of the more difficult in-grasp manipulation motions. They
require a rolling contact and a change in the contact areas
between the fingertips and the object during the motion.
Therefore, those motions can be appropriate target motions
for evaluating distributed tactile sensors and CNNs as they
make spatial tactile changes during the motions. Moreover,
the target motions are specific to anthropomorphic fingertips,
and flat grippers, such as grippers in open-hand projects are
not able to achieve these motions.

Each motion was executed 30 times successfully for
each of the two objects, and 120 successful motions were
recorded in total. Each of the 120 trials had 890 time steps
(i.e., the elapsed time during the execution of the target
motion was 8,900 milliseconds, and the sampling rate was
10 milliseconds).

Furthermore, the motion (b)-1 was the same as the one in
[1], therefore the goal for the current proposed method could
be set as the same success rate of in-grasp manipulation as
in [1], even with a low-cost hand.

The neural networks were trained separately for each
motion. 43,254 out of the 53,400 (890x30x2) available time
steps were randomly chosen for training each network. Out
of the remaining time steps, 4,806 were chosen randomly as
the test set during optimizing the hyperparameters shown
in Table I. Furthermore, the parameters in Table I were
heuristically chosen on the basis of several (about 30 to 40)
trials of in-grasp manipulations. Normalization was used to
convert the values of all sensor measurements into values
between -1 and 1 for inputting them into the neural networks.
The CNNs for the two fingertips were trained separately
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(without weight sharing).
Information about the training data for the experiment with

untrained objects is summarized in Section V-E.

B. Neural Network Settings

There are five architectures of neural networks (Table I)
for the evaluation experiments described in Section V. Each
input is abbreviated as follows; U3D is uSkin’s 3-axis data,
U1D is uSkin’s z-axis data, 6F/T is 6-axis F/T data and JA
is joint angles. The initializing method for weights in each
neural network is He initialization because Relu was used as
the activation function. Dropout was used in the 2nd Conv.,
3rd Conv., 1st FC (uSkin), 2nd FC (uSkin), and 1st FC (all)
with a rate of 0.5.

As mentioned in Section III-B, architecture I was used
as our proposed network model for evaluating the effect of
3-axis tactile information and the CNN. As described in
Section III-A, several zero measurements are added to the
uSkin’s inputs to achieve a rectangular input matrix for the
1st Conv. layer. As a result, the size of inputs for uSkin
tactile information was 30 (24 [the number of sensor chips
for one fingertip] + 6 [the number of “number 0”s for one
fingertip]) * 3(forces axes) * 2 (number of fingertips) = 180
([6 * 5 matrix] * 3 * 2). For the convolution layers, the filter
size was 3 * 3, the stride was one, and the activation function
was Relu. The size of outputs from the 4th Conv. layer was
substantially larger than the number of inputs from the joint
angles and the six-axis F/T sensors. Therefore, three fully
connected layers (FC layer [uSkin]) were used to compress
the outputs of the 4th Conv. layer. In the 1st FC layer (all),
the outputs of the 3rd FC layer (uSkin), joint angles, and
the six-axis F/T sensors were concatenated, thus resulting
in a dimensionality of 40. The 3rd FC layer (all) provided
outputs with a size of 164, in particular the next time step of
the joint angles, the six-axis F/T sensors and uSkin sensors,
so that the network could learn effectively. The next time
step of the joint angles was used for controlling the fingers.

On the contrary, architecture II was prepared to investigate
the effect of the 3-axis tactile information of architecture

Fig. 5: (a) shows target objects made of Styrofoam used in
the current paper. The objects are a sphere and a cylinder
with 40mm of diameter as simple objects. (b)-1 and (b)-2
show the target motions.

I. Consequently, architecture II was similar to architecture
I. The only difference was the size of the input for the
1st Conv. Layer which was 6 * 5 * 1 (only normal tactile
information [z-axis] was obtained from the uSkin because
other distributed tactile sensors usually provide normal axis
tactile measurements only).

Architecture III was set for evaluating in-grasp manipu-
lation tasks when 6-axis F/T sensors are not used to check
the effect of uSkin. Therefore, the size of the inputs was as
follows (4 joint angles + 30 (24 [the number of sensor chips
for one fingertip] + 6 [the number of “number 0”s for one
fingertip]) * 3 (forces axes)) * 2 (number of fingertips) =
188.

Architecture IV had inputs that included only joint angles
and six-axis F/T sensors and no information from uSkin.
Therefore, the convolution layers were not necessary, and
the network was an MLP with 4 layers. The size of the
inputs was (4 joint angles + 6-axis F/T sensor) * 2 number
of fingertips = 20.

Finally, architecture V had the same types of inputs
(joint angles, six-axis F/T sensors, and uSkin) as those of
architecture I, but the network was an MLP with 4 layers.
By comparing architecture I (CNN) and V (standard MLP),
the usefulness of the CNN can be tested.

Relu was used as an activation function for all layers,
including convolution and FC layers, except for the output
layer, which had no activation function. The outputs from
the output layer had the same dimensionality as the inputs
(joint angles, six-axis F/T sensors and uSkin), which were
the predicted data for the next timestep. We assumed that
the network acquires more useful features from the training
data if it predicts the next time step of all the sensor data.
However, only the joint angles were used for generating the
robot hand’s motion. The loss function was the mean squared
error. Adam was used as the optimizer for all architectures
with a learning rate of 0.00001, step size of 0.0001, first
exponential decay rate of 0.9, second exponential decay rate
of 0.999, and small value for numerical stability of 1e-08.
The networks were trained with 43,254 samples (chosen
randomly) for up to 35,000 epochs (the training was stopped
earlier if the loss converged and if the model could already
achieve success in-grasp manipulation) and the minibatch
size was 100. All the networks are built with the TensorFlow
library for Python and trained with Geforce GTX 1080 and
RTX 2080 GPUs.

V. EVALUATION
A. Success Rate of Architectures

The usefulness of tactile sensors was investigated by
comparing the success rates of in-grasp manipulation with
architectures I to V. Success was defined as the case that the
hand did not drop the object during the in-grasp manipulation
and reached the desired grasping posture. In the beginning of
each manipulation trial, the object was randomly placed on
the fingertips. The hand was controlled by position control.
Table II shows the success rates for in-grasp manipulation
with the different architectures. For manipulation with the
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TABLE I: Settings of Neural Networks

Architecture I II III IV V
Network CNN FNN

All Inputs
to Networks

200
U3D,
6F/T,

JA

80
U1D,
6F/T,

JA

188
U3D,

JA

20
6F/T,

JA

200
U3D,
6F/T,

JA
Inputs to
1st Conv. 180 60 180 - -

1s
t

C
on

v. In/Out 3/14 1/14 3/14 - -
Filter Size 3, 3 - -

Stride 1, 1 - -
Activation Relu - -

2n
d

C
on

v. In/Out 14/28 - -
Filter Size 3, 3 - -

Stride 1, 1 - -
Activation Relu - -

3r
d

C
on

v. In/Out 28/56 - -
Filter Size 3, 3 - -

Stride 1, 1 - -
Activation Relu - -

4t
h

C
on

v. In/Out 56/112 - -
Filter Size 3, 3 - -

Stride 1, 1 - -
Activation Relu - -

1st FC (uSkin) 2000 - -
2nd FC (uSkin) 200 - -
3rd FC (uSkin) 20 - -

1st FC (all inputs) 40 28 20 200
2nd FC (all inputs) 100
3rd FC (all inputs) 150

Output 164 68 152 20 164
Training Epochs 35000

Batch Size 100

TABLE II: Achievement of the Final Posture

Architecture
Success Rate

Twist
Success Rate

Translate
Sphere Cylinder Sphere Cylinder

I 8/10 7/10 10/10 8/10
II 4/10 0/10 0/10 0/10
III 0/10 0/10 9/10 8/10
IV 1/10 1/10 0/10 0/10
V 0/10 0/10 2/10 1/10

40 mm sphere, architecture I exhibited the highest success
rate compared to the other architectures. Architecture III and
V achieved no successful manipulation and architecture IV
achieved only one for the twisting motion. Architecture III
achieved successful translation motion, showing that 3-axis
tactile information is effective. However, successful in-grasp
manipulation with only 6-axis F/T sensors was achieved in
our previous work [9]. The work in [9] implemented 4-
fingered in-grasp manipulation, and we assume that four
fingers provide more contact areas resulting in generating
more stable manipulation while the manipulation task in the
current paper was executed by two fingers only. Nevertheless,
the six-axis F/T sensors are crucial for achieving stable in-
grasp manipulation as the result of architecture III with
twisting motion shows. The in-grasp manipulation of the
cylinder with a diameter of 40 mm also shows a similar
tendency in the results, with architecture I exhibiting the
best result among the architectures. From this result, the

Fig. 6: Top and second rows: For the in-grasp manipulation
with architecture I, the object was successfully manipulated.
Third row: For the in-grasp manipulation with architecture
II, the manipulated object was dropped on the way to the
final grasping posture. Bottom row: in-grasp manipulation
with architecture IV, the object dropped, and the final posture
was wrong. (Grasping postures start from the left side.)

TABLE III: Error of the Final Posture (Translation)

Sphere Cylinder
Pattern FP [mm] U3D FP [mm] U3D

Err Var Err x10−2 Var x10−6 Err Var Err x10−2 Var x10−6

I 11.2 0.19 4.0 4.75 11.54 2.40 2.3 0.15
II 132.7 0.58 4.7 ; 0 133.5 0.49 3.8 ; 0
III 13.4 1.14 4.4 1.2 11.31 3.07 2.8 17.3
IV 10.1 4.47 4.6 0.01 17.51 170.8 4.0 42.4
V 53.3 484 5.3 111.6 53.08 449.4 3.8 4.91

usefulness of 3-axis tactile information from uSkin for in-
grasp manipulation was shown, but six-axis F/T sensors
are also important. As a comparison with architecture I,
architecture V was also tested. However, it could perform
almost no successful manipulation, which means that the
MLP is not sufficient for processing the tactile information.

Examples of successful and unsuccessful in-grasp manip-
ulations (twist motion) with different architectures are shown
in Fig. 6.

B. Reachability of Architectures

In this section, the reached grasping postures are compared
to the target posture for the translation motion. We use a
metric from [31]. Table III shows the mean errors between
the mean of desired final postures in the training set and
the reached final postures by each architecture. Unlike in
[31], tactile information plays an important role to achieve in-
grasp manipulation in this study, and we therefore compared
also the reached and desired grasping states, in particular
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the measurements of the 3-axis tactile (U3D) sensors were
evaluated. The measurements of the tactile sensors were
normalized to a range of 0 to 1. From the training set, we
calculate for each 3-axis sensor the average length of the
resultant force vector as the goal. These values are compared
to the trials, the errors from all 3-axis sensors are summed up,
and the average over all trials is reported. For the position of
the fingertips the errors and the variances are similar except
for architecture II and V. Architecture II generated a motion
in which the fingertips moved in the opposite direction to
the desired one every time. Therefore, architecture II has
large errors in the fingertip positions. Regarding architecture
V, this shows that the FNN cannot adequately handle the
massive sensor information. It did not move the fingers to the
desired final posture. Also, for the error of tactile information
(U3D in Table III), architecture I and III produced smaller
errors than architecture II, IV and V with both the sphere and
cylinder. This result demonstrates that the proposed method
using the CNN and 3-axis tactile information is capable of
achieving more precise motions.

C. Analysis on Touch States and CNN

In Fig. 7 which tactile information the architecture I
(CNN) regards as important is visualized using Grad-
CAM++ [32] which provides a heatmap of calculated
weights from the last convolution layer (4th Conv. in ar-
chitecture I) corresponding to inputs (tactile arrays in this
study). Unlike to classification problems, all the losses from
the outputs of the architecture at each timestep were con-
sidered and calculated for generating the heatmap. Fig. 7
shows that the CNN gradually changes on to which part
of the fingertip it focuses on during in-grasp manipulation.
From this result, it was confirmed that the CNN effectively
handled the tactile information from uSkin.

D. Generalization to Untrained Objects

Finally, architecture I was applied for in-grasp manipu-
lation (twist motion) of untrained daily objects. Since the

Fig. 7: The top row shows the in-grasp manipulation motion
and the bottom row shows the corresponding heatmaps of
Grad-CAM++ for the index finger as an example (the map
arrays is same as Fig. 3 (a)). As the object moves on the
fingertips, the focus of the the CNN also shifts. This shows
how the CNN handles the tactile information and contributes
to successful in-grasp manipulation.

Fig. 8: Untrained daily objects used for in-grasp manipu-
lation. They are made from Styrofoam, as are the objects
used in training dataset. Therefore, the weight of each daily
object is similar to that of the sphere and cylinder. Even
though the texture for the daily objects is different for each
object and similar to real foods (e.g., the tomato has a smooth
and the kiwi a rough surface), which could make the in-
grasp manipulation more difficult, they are all successfully
manipulated.

TABLE IV: Achievement of the Final Posture with Untrained
Objects

Objects Size Weight Success Rate
Round Potato 47 mm 9 g 8/10
Long Potato 45 mm 4 g 9/10

Croissant 51 mm 8 g 8/10
Kiwi Fruit 45 mm 6 g 10/10

Tomato 52 mm 11 g 10/10

untrained objects had a variety of diameters (from 40 to 60
mm) and shapes (similar to spherical and cylindrical shapes)
shown in Fig. 8 and Table IV, the training dataset for this
evaluation experiment included spheres and cylinders with
40, 50 and 60 mm diameter. The goal was to evaluate the
network’s generalization skill. Thirty trials were collected
for each training object and the collected data was randomly
downsampled resulting in a training dataset with the size
of 60,000 time steps for the CNN. The number of training
epochs and the hyperparameters for the CNN were the same
as the training setting of architecture I mentioned in Section
IV-B. As shown in Table IV, all the daily objects were
successfully manipulated, even better than the results in
Table II. We assume that good success rates were achieved
because the training dataset included manipulations with
diverse objects, which made the network robust in terms
of size and shape generalization. Furthermore, we assume
that the softness and silicone cover of uSkin enhances the
adaptability to different objects. The combination of human-
mimetic fingertips with soft skin, rich tactile information
and CNNs enabled successful in-grasp manipulation with a
variety of untrained objects. In particular, the success rate
for untrained everyday objects is almost the same as in our
previous study with an accurate high-cost hand [1].

VI. CONCLUSIONS

This study was undertaken to investigate a method for in-
grasp manipulation with a low-cost multi-DOF hand with 3-
axis tactile sensors as well as 6-axis F/T sensors and CNNs.
The mounted tactile sensors detected the grasping state, and
a CNN was used to effectively process the information. As
a result, even though the hand is low-cost and difficult to
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control precisely owing to its anthropomorphic shaped soft
fingertips and backlash in the joints, the proposed method
has the potential to generate successful in-grasp manipulation
with abundant tactile information (especially adding shear
forces) by employing a CNN which captures the change
of the tactile information. Moreover, successful in-grasp
manipulation with untrained daily objects was achieved.

The logical next step in our research is multi-fingered
in-grasp manipulation tasks because the uSkin sensor can
detect shear forces, which occur during multi-fingered in-
grasp manipulation (e.g. slip and grasping from different
orientations). Moreover, achieving several tasks with one
network for avoiding re-training on each task can be a next
challenge by utilizing one-hot vectors. [33].
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