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Abstract— The presence of task constraints imposes a sig-
nificant challenge to motion planning. Despite all recent ad-
vancements, existing algorithms are still computationally ex-
pensive for most planning problems. In this paper, we present
Constrained Motion Planning Networks (CoMPNet), the first
neural planner for multimodal kinematic constraints. Our
approach comprises the following components: i) constraint and
environment perception encoders; ii) neural robot configuration
generator that outputs configurations on/near the constraint
manifold(s), and iii) a bidirectional planning algorithm that
takes the generated configurations to create a feasible robot
motion trajectory. We show that CoMPNet solves practical
motion planning tasks involving both unconstrained and con-
strained problems. Furthermore, it generalizes to new unseen
locations of the objects, i.e., not seen during training, in the
given environments with high success rates. When compared
to the state-of-the-art constrained motion planning algorithms,
CoMPNet outperforms by order of magnitude improvement in
computational speed with a significantly lower variance.

I. INTRODUCTION

Efficient and scalable manipulation planning is of
paramount importance in robotics and automation to solve
real-world tasks. However, in most cases, manipulation of
objects imposes hard kinematic constraints on the robot
that limit its allowable range of motion. Examples of such
instances include moving an object from one place to an-
other that might also contain orientation constraints [1],
maintaining contact with the environment such as in robot
surgery [2], and performing bi-manual manipulation [3]. In
all of these cases, kinematic constraints form one or more
low-dimensional manifolds of a set of robot configurations
embedded in a high-dimensional ambient space, and are
often known as manifold constraints [4].

Sampling-based Motion Planning (SMP) algorithms have
emerged as a standard tool in robotics that find collision-
free paths between the given states by randomly sampling
the robot configuration space [5]. However, incorporating
various kinematic constraints into the SMP algorithms is
challenging as the underlying constraint manifold is usually
of zero-measure. Therefore, the probability of generating
samples on the constraint manifold by randomly sampling
robot joint-values/configurations is not just low but zero
[4]. Recently, SMP methods have been extended to plan
under manifold constraints on various challenging problems
[4]. However, despite these advancements, the existing tech-
niques are computationally inefficient and therefore, fre-
quently impractical for real-world manipulation tasks.
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Fig. 1: CoMPNet applied to a real 7DOF Baxter robot
manipulator in the bartender environment. The task is to
place the bottles and cans to the trash, and carefully move
(without tilting) the mug and pitcher to the tray. The top and
bottom rows show the start and goal states at the beginning
and end of this table cleaning task.

Recent developments also lead to imitation-based plan-
ners that learn to plan by imitating an oracle planner
[6][7][8][9][10]. These planners are known for their ex-
tremely fast computational speed during online planning.
Motion Planning Networks (MPNet) [10][11] is one of
the learning-based planners that can generate end-to-end
collision-free paths and is also combined with SMPs for
worst-case theoretical guarantees. MPNet is a deep neural
networks-based bidirectional iterative planning algorithm and
it is shown to demonstrate consistently better performance
than state-of-the-art SMP methods, e.g., [12], in challenging
motion planning problems. However, MPNet, along with
extensions to it, only consider unconstrained planning prob-
lems.

In this paper, we propose Constrained Motion Planning
Networks (CoMPNet)1 that extends MPNet to plan under
multimodal kinematic and task-specific constraints. Our pro-
posed framework is a full-stack, computationally-efficient
planner that solves motion planning problems for both reach
and manipulation tasks, i.e., reaching to grasp arbitrary object
and manipulating the grasped objects under various kine-
matic constraints. To the best of our knowledge, CoMPNet is
the first learning-based planning algorithm that finds feasible
paths under multiple hard kinematic constraints. CoMPNet
comprises the observation (environment perception) and task
(constraint) encoders whose outputs are given to the neural
planning network that, together with the bidirectional plan-
ning algorithm, generates a feasible path on the constraint
manifolds between the given start and goal configurations.

1Supplementary material and video demonstrations are available at
https://sites.google.com/view/constrainedmpnet/home
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We evaluate our method on challenging tasks that include
both simulations and a real-robot setup (Fig. 1). Our results
show that CoMPNet outperforms existing methods in terms
of computation speed and generalizes to new planning prob-
lems outside its training demonstrations with high success
rates.

II. RELATED WORK

In this section, we present a brief overview on existing
non-sampling- and sampling-based approaches specifically
addressing constraint motion planning (CMP), which repre-
sent a very challenging subset of planning problems with
wide applications to robotics.

In non-sampling-based planning methods, one of the
prominent tools is Trajectory Optimization (TrajOpt)
[13][14]. TrajOpt relaxes the hard constraints into soft con-
straints by defining them as penalty functions and optimiz-
ing them over the entire trajectory to find a motion plan.
Due to this relaxation, TrajOpt methods weakly satisfy the
given constraints and do poorly on long-horizon problems.
Bonalli et al. [15] extends TrajOpt to implicitly-defined con-
straint manifolds. However, their performance in challenging
robotics problems is yet to be explored and analyzed.

In sampling-based planning approaches, the multi-query
Probabilistic Road Maps (PRMs) [16] and single-query
Rapidly-exploring Random Trees (RRTs) [17] and their
variants [18] are widely known. These methods were ini-
tially devised for unconstrained problems such as collision
avoidance, and incorporating kinematic constraints into them
is challenging due to zero probability of sampling constraint
satisfying configurations [4]. To address this challenge, there
exist projection- and continuation-based strategies that gen-
erate samples on the constraint manifolds for SMP methods.

The projection-based methods project the given config-
urations to the constraint manifolds using the constraint
equations. Typically, projections are performed using Inverse
Kinematics (IK)-based iterative solvers that employ Jacobian
(pseudo-) inverses of the robot model. These projection-
based approaches have been used for special cases such as
closed-chain kinematic constraints [19] as well as for general
end-effector constraints [20]. In a similar vein, Berenson.
et al. [21] proposed CBiRRT, a bidirectional RRT planner
that uses general constraint representation known as Task
Space Regions (TSRs) together with a Jacobian pseudo-
inverse projection operator for CMP.

The continuation-based methods compute a tangent space
from a known constraint-satisfying configuration to locally
parametrize the underlying constraint manifold. The new
constraint-satisfying configurations and local motions are
generated by projecting the configurations sampled from
the computed tangent space. In [20], the idea of contin-
uation has been used to sample the neighborhood of a
constraint-satisfying configuration, and then project them to
the constraint manifold. Recent advancements also led to
bidirectional RRT-based algorithms called Atlas-RRT [22]
and Tangent Bundle (TB)-RRT [23] that compose tangent
spaces into an atlas instead of discarding them to represent

the constraint manifold. Atlas-RRT computes half-spaces to
separate tangent spaces into tangent polytypes for uniform
coverage. In contrast, TB-RRT lazily evaluates configura-
tions for constraint adherence and does not separate tangent
spaces, leading to overlap and sometimes invalid states.

A very recent work called Implicit MAnifold Configu-
ration Space (IMACS) [24] decouples constraint adherence
methods like projection and continuation from the choice
of underlying motion planning algorithms. Although their
approach allows a broad range of SMP algorithms to operate
under kinematic constraints, ultimately, a classic bidirec-
tional RRT is preferred due to the poor computational speed
of advance methods like RRT* [18] and its variants [12],
[25], [26] in CMP.

In contrast to the methods mentioned above, CoMPNet
leverages past planning experiences for learning a deep neu-
ral model and generates samples on the implicit manifolds
during execution to quickly find a path solution for both con-
strained and unconstrained planning problems. Furthermore,
our approach can also be combined with existing sampling-
based CMP methods for worst-case theoretical guarantees
while still retaining the computational benefits.

III. PROBLEM DEFINITION

Let C ∈ Rd be a d-dimensional configuration space
(C-space) where c ∈ C represents a robot’s configuration
such as joint angles. Since the robot surroundings usually
contain obstacles, the C-space comprises obstacle (Cobs) and
obstacle-free (Cfree = C\Cobs) spaces. In general, the aim
of motion planning is to find a continuous path σ ⊂ Cfree
that lies in obstacle-free space and connects the given start
(cinit) and goal (cgoal) configurations of the robot. In CMP,
the challenge is not just to avoid collisions but also to find
a path that satisfies the given constraint function F (c : C 7→
Rk), where k is the number constraints to be imposed.
A configuration c is said to satisfy the given constraint
function if F (c) = 0. Therefore, the constraint function
defines a (d− k)-dimensional manifold within C-space, i.e.,
M = {c ∈ C|F (c) = 0}. Hence, the goal of CMP is to find
a continuous feasible path σ ⊂Mfree connecting the given
start and goal configurations, where Mfree =M∩ Cfree.

IV. NEURAL MANIPULATION PLANNING

In this section, we formally present our novel constraint
motion planning framework called CoMPNet that comprises
the following components:

A. Task Encoder

The task encoder takes the task specification as the input
for encoding. The task specification in our case is a text
description, such as “carefully move mug to the tray”,
“open the cabinet”, etc., that encapsulates the underlying
constraints. For instance, the word “carefully” in the task
specification “carefully move mug to the tray” implies both
stability and collision-avoidance constraints. The output of
the task encoder is a fixed size latent space encoding Zc ∈



Fig. 2: CoMPNet generating configurations for the door opening task. Our neural planner takes task encoding Zc, observation
encoding Zo, start configuration c0 (purple) and goal cT (green) configuration as input, and incrementally generates
intermediate configurations ct+i for the path planning.

Algorithm 1: CoMPNet(Zc, Zo, cinit, cgoal)

1 Ta ← cinit; ct ← cinit
2 Tb ← cgoal; cT ← cgoal
3 for i← 0 to n do
4 cat+1 ← NeuralConfig(Zc, Zo, ct, cT )
5 canear ← NearestNode(cat+1, Ta)
6 canew ← TransverseManifold(cat+1, c

a
near, Ta)

7 cbnear ← NearestNode(canew, Tb)
8 cbnew ← TransverseManifold(canew, c

b
near, Tb)

9 if Reached(canew, c
b
new) then

10 return ExtractPath(Ta, c
a
new, c

b
new, Tb)

11 else
12 ct ← canew; cT ← cbnew
13 Swap(Ta, Tb)
14 Swap(ct, cT )

15 return ∅

Rd1 with dimensionality d1. In our task encoder, we ob-
tain the task specification representations using a pretrained
recurrent-neural network-based model called InferSent [27].
We further process these representations by a feed-forward
neural network, which is trained with other CoMPNet mod-
ules, to get an embedding of size d1.

B. Observation Encoder

The observation encoder takes the environment percep-
tion information as an input to embed them into a latent
space Zo ∈ Rd2 of dimension d2. In our settings, we
obtain environment perception as a 3D point-cloud depth
data, which is quantized as a voxel grid via voxelization.
Ideally, 3D convolutional neural networks (CNNs) are used
to process voxel-grids. However, in practice, 3D-CNNs are

Algorithm 2: TransverseManifold(ctarget, cnear, T )

1 c0 ← cnear
2 c1 ← cnear
3 i = 0
4 while ‖ci − ctarget‖2 > ε do
5 ci+1 ← Proj(ci + ∆s(ctarget − ci))
6 if CollisionFree(ci, ci+1) then
7 T.InsertNode(ci+1)
8 T.InsertEdge(ci, ci+1)
9 i = i+ 1

10 else
11 return ci

computationally expensive and impractical for large point-
cloud data as their representations are inherently cubic and
contain empty volume. Therefore, we convert the voxel grid
of dimension L × W × H × C, where C is a number of
channels, to voxel image with voxel patches of dimension
L × W × (HC) and use 2D-CNNs to process them (for
more details, refer to [28]).

C. Planning Network

It is a stochastic feed-forward neural network that drives
its stochasticity from Dropout [29] during execution. The
planning network (PNet) takes the observation encoding Zo,
task encoding Zc, robot current ct, and goal cT configura-
tions as input and learns to generate the next configuration
ct+1 that will bring the robot closer to the goal configuration
on the constraint manifold. Since PNet predicts one step at
a time, the path is formed incrementally (Fig. 2).



D. Training Objective

We train the task encoder’s feed-forward neural network,
observation encoder network, and planning network end-
to-end through supervised imitation learning. An oracle
planner is used to generate demonstration trajectories for a
given set of constrained planning problems. A demonstration
trajectory comprises waypoints σ = {c∗0, · · · , c∗T }, where c∗0
and c∗T correspond to given start and goal configurations,
respectively. Our training objective is to optimize the mean-
square error between the predicted configurations and the
actual configurations from the training data, i.e.,

1

NB

N∑
i=0

Ti−1∑
j=0

||ci,j+1 − c∗i,j+1||2, (1)

where Ti is the length of each given path, N ∈ N is the
number of paths in the training batch, and NB is an averaging
term. To train all modules together, we backpropagate the
gradient of the loss function (Eqn. 1) from the planning
network to the task and observation encoders.

E. Bidirectional Neural Planning Algorithm

Algorithm 1 outlines our bidirectional neural planning
algorithm, whereas its essential components and overall
execution are described as follows.

1) NeuralConfig: The NeuralConfig function uses the
planning network to generate neural configuration on/near
the manifold by taking the current ct and desired goal cT
configurations together with the task Zc and observation Zo

encodings as the input (Fig. 2), i.e.,

ct+1 ← PNet(Zc, Zo, ct, cT )

In NeuralConfig, the given configurations are normalized
to [−1, 1] before passing to the neural network and the
generated neural configurations are unnormalized to robot
joint-space for other path planning routines.

2) Transverse Manifold: The TransverseManifold func-
tion (Algorithm 2), also known as geodesic interpolation,
extends the given T from the node cnear towards the target
node ctarget on the constraint manifold in small adaptive
steps ∆s ∈ R. The procedure takes a linear ∆s step towards
the given target and project it to the constraint manifold using
the projection operator (Algorithm 3). A projection operator
(Proj) takes the configuration c and project it to the constraint

Algorithm 3: Proj(c)

1 for i← 0 to n do
2 ∆x← F (c)
3 if ∆x < ε then
4 return c

5 else
6 J ← GetJacobian(c)
7 J+ ← GetPseudoInverse(J)
8 ∆c← J+∆x
9 c← (c−∆c)

manifold via gradient descent using inverses or pseudo-
inverses of the Jacobian J(c) of the differentiable constraint
function F . We define F using TSRs [21] that returns
displacement ∆x in task space. The iterative projection finds,
if one exists in a given loop limit, a constraint-satisfying
configuration c such that F (c) < ε. The geodesic extension
using Proj continues until it reaches ctarget or if the collision
happens.

3) Algorithm summary: Let Ta and Tb contain the way-
points and their connecting edges from start to the goal
configuration and from goal to the start configuration, re-
spectively. The planning (Algorithm 1) begins by generating
a neural configuration cat+1 towards the goal cT followed
by finding its nearest node canear within Ta. The trans-
verse manifold extends Ta from canear towards cat+1 on the
manifold and stops before collision leading to canew. The
algorithm then proceeds by finding the nearest node cbnear
to canew within Tb. The transverse manifold function extends
Tb from cbnear towards canew and terminates before collision
occurs by producing cbnew. If canew and cbnew reach each
other, the algorithm extracts the end-to-end collision-free
path connecting given start and goal configurations on the
constraint manifold. The extracted path is further processed
via smoothing to remove any redundant states before return-
ing it as a feasible path solution. In case the canew and cbnew
do not meet, the procedure continues by updating ct with
canew and cT with cbnew followed by swapping the roles of
(Ta, ct) with (Tb, cT ) to solicit bidirectional path generation.

Note that our framework intelligently uses the trained
planning network to generate configurations bidirectionally,
i.e., from given start to goal configuration and from given
goal to start configuration. It also computes nearest neighbors
of the newly generated samples from each path to further
solicit bidirectional geodesic extension on the constraint
manifolds during each planning iteration. This is in contrast
to MPNet algorithm that extends a path from ct to ct+1 rather
than from its nearest neighbors and rely on re-planning,
making it less suitable for geodesic interpolation due to non-
euclidean geometry of implicit manifolds.

V. IMPLEMENTATION DETAILS

We train CoMPNet neural models using PyTorch and port
them to C++ via TorchScript for planning algorithm. The
environments were set up in OpenRave, and for benchmark
algorithms, we use their standard C++ implementations. The
rest of the section provides details on the data generation,
scene setup, and constraint representations. For more details,
please refer to our supplementary material.

A. Data generation

In this section, we describe the data generation pipeline
from setting scenarios to obtaining training data. Tasks
are designed to involve grasping objects and controlling
orientations on a series of sequences. Both grasped objects
and forced orientation impose constraint manifolds in the
robot configuration space that the planners must satisfy in
addition to reaching its sequence of goals.



(a) Move soda can to the trash. (b) Move green can to the trash. (c) Carefully move kettle to the tray.

Fig. 3: Bartender setup: It requires the robot to clean the tables by placing the cans and bottle to the trash, and carefully
moving the mug and kettle to the tray. Figs. (a-c) show some of the example subtasks.

Fig. 4: The plot shows the interquartile range, minimum and
maximum of total computation time of presented methods
to solve all manipulation problems in the bartender task.
Note that, CoMPNet’s computation time is consistent and
significantly faster than other benchmark methods.

1) Scene setup: We set up two practical scenarios, (i)
bartender task (Fig. 3) and (ii) kitchen task (Fig. 5), each
of which includes multiple sub-tasks.

The bartender task involves five manipulatable objects
comprising the soda can (red), juice can (green), fuze bottle
(purple), red mug, and kettle. The task is to place the soda
can, juice can, and fuze bottle to the trash bin, and carefully
transfer (without tilting) the red mug and kettle to the tray.
In this task, we created 30 unique environments by random
placement of trash bin and tray, reachable by the the robot’s
right arm. For each environment, we further create 60-110
unique scenarios by placing the five manipulatable objects
randomly on the table at the reacjable locations.

The kitchen task involves seven manipulatable objects that
included a soda can, juice can, fuze bottle, cabinet door,
black mug, red mug, and pitcher. The task is to place the cans
and bottle to the trash bin, open the cabinet to a given angle,
carefully move (without tilting) the black and red mugs to the
tray, and then move the pitcher into the cabinet. We create
60 unique environments by randomly placing a trash bin at
the robot’s right hand’s reachable locations on the table and
also by randomly setting the cabinet’s door starting angle
between 0 to π/3. For each environment, we further create
about 30 unique scenarios through the random placement of

the soda can, juice can, fuze bottle, tray, and pitcher at the
robot’s (right arm) reachable poses on the tables. Note that
the starting pose of the black and red mugs are fixed in all
cases, i.e., inside the cabinet, whereas their goal poses are
on the randomly placed tray.

2) Observation data: From all generated scenarios, we
get the point-cloud depth data using multiple Kinect sensors
before solving each of the given sub-tasks in the order pro-
vided by the task planner. The point-cloud data from various
sensors are stacked and converted to voxels via voxelization.
The voxel dimensions for bartender and kitchen tasks/sub-
tasks were 33× 33× 33 and 32× 32× 32, respectively.

3) Planning trajectories (training & testing): We pull
out more than 10% of the randomly generated scenarios
for testing. For the remaining scenes, we get demonstration
trajectories using CBiRRT [21] and use them for training
the CoMPNet’s neural models. In the real robot setup (Fig.
1), we replicate one of the bartender scenarios and execute
CoMPNet’s planned motion to demonstrate the transferabil-
ity of our simulation experiments to the real-robot settings.

B. Constraint & Task Representations

We represent the constraint function F using Task Space
Regions (TSRs) [21] and our task encoder takes the con-
straint information as text encoding using InferSent [27]. We
train our CoMPNet for both reach and manipulation tasks,
and their text description as follows:
i) Reach tasks: The text description is “Reach the
object name”. The object name includes “soda can”, “juice
can”, “fuze bottle”, “red mug”, “black mug”, “kettle”,
“pitcher”, and “cabinet” depending on the given setting
(bartender or kitchen) and their task plan.
ii) Manipulation tasks: In the bartender scenarios, the text
descriptions are “move the object name A to the trash”
and “carefully move the object name B to the tray”. In
the kitchen scenarios, the text description are “move the
object name A to the trash”, “open the cabinet”, “care-
fully move the object name C to the tray”, and “care-
fully move the pitcher to the cabinet”. The object name A
includes “soda can”, “juice can”, and “purple bottle”.
The object name B gets “red mug”, and “kettle”. The
object name C corresponds to “red mug”, and “black mug”.



(a) Move soda can to the trash. (b) Carefully move red mug to the tray. (c) Carefully move pitcher to the cabinet.

Fig. 5: Kitchen setup: Figs. (a-c) and Fig. 2 show some instances of the CoMPNet’s path execution in these scenarios.

Fig. 6: The plot exhibits the interquartile range, minimum
and maximum of total computation time of CoMPNet, Atlas-
RRT, TB-RRT, and CBiRRT to solve all manipulation tasks
in the kitchen setup. Note that, CoMPNet’s has significantly
narrower and lower ranges of computational time than other
benchmark algorithms.

VI. RESULTS

In this section, we present the computation time compar-
ison of CoMPNet and state-of-the-art CMP methods named
CBiRRT [21], Atlas-RRT [22], and TB-RRT [23] on several
bartender and kitchen tasks. All experiments were performed
on a system with 32GB RAM, GeForce GTX 1080 GPU, and
3.40GHz×8 Intel Core i7 processor.

A. Comparative Studies

In the unconstrained planning problems, i.e., reaching-to-
the-target-object, we validate that CoMPNet’s mean compu-
tation time is about 1-2 seconds, which is similar to results
with MPNet [11], showing that performance improvements
over gold-standard unconstrained SMPs are retained.

In the constrained manipulation planning problems of the
bartender (Fig. 1 & Fig. 3) and kitchen (Fig. 5) environments,
the mean success rates of all the presented methods were
around 90%. Fig. 4 and Fig. 6 compare algorithms in both
environments using the box plots of mean accumulated
computation times in solving all the manipulation tasks.
Furthermore, Table I also provides the mean computation

time with standard deviations of manipulating each object,
grouped by their constraint types, in each setting.

Note that all test environments were randomly generated
and were not seen by the CoMPNet during training. These
environments are challenging, representing practical scenar-
ios, and often requiring a planner to find convoluted long-
horizon paths through narrow passages. For instance, Fig. 5
(b) shows a CoMPNet path solution for manipulating a red
mug in the kitchen setup. It is a non-trivial, long-horizon
plan that transverses narrow passages formed by the door
and other objects on the table.

Despite challenging planning problems, it can be seen
that CoMPNet compared to other methods exhibits i)
higher/similar success rates, ii) lower inter-quartile computa-
tional time ranges, iii) lower minimum and maximum com-
putation times, and iv) lower mean computation times with
a narrower standard-deviations. Although CoMPNet uses
constraint adherence methods like classical CMP algorithms
for traversing manifolds, its lower computation times indicate
that the generated samples are mostly on the constraint
manifold and does not rely on the constraint adherence
operator significantly. We also observed that continuation-
based operators are highly sensitive to their parameters, and
lazy evaluation heuristic of TB-RRT often leads to invalid
states causing poor performance than other methods.

B. Ablative Studies
We present an ablation study to highlight the significance

of the following components added to MPNet that led to
CoMPNet for scalable CMP: 1) A projection operator for
constraint adherence and steering on the manifold. 2) A
planning algorithm with bidirectional constrained extensions
to newly generated sample ct+1 from its nearest neighbors
{canear, cbnear} rather than its previous configuration ct. 3)
A task specification for scalability and multimodality which
could be one-hot or text-based encodings. Hence, our first
model is MPNet without re-planning phase and with a projec-
tion operator for steering. Second is the proposed CoMPNet
framework without task encodings. Third and fourth are the
proposed CoMPNet models with one-hot and text-based task
specifications, respectively.



Setup Objects
Algorithms

CoMPNet CBiRRT Atlas-RRT TB-RRT

Bartender
J/F/S 4.92 ± 2.42 54.81± 25.82 14.24± 9.331 23.48± 14.84

R/K 1.17 ± 0.93 1.940± 1.380 1.276± 0.361 1.574± 5.641

Kitchen

J/F/S 4.28 ± 2.86 32.65± 22.40 24.87± 19.82 27.55± 21.47

C 0.03 ± 0.02 00.05± 00.04 00.04± 00.03 00.05± 00.04

R/B/P 9.16 ± 3.04 49.79± 22.95 41.28± 24.02 46.61± 26.07

TABLE I: The mean computation times with standard deviations of solving manipulation problem of each object, grouped
by their constraint types, in both bartender and kitchen environments. The objects are denoted by their first letter. It can be
seen that CoMPNet computation times are lower and more consistent across different problems than other methods.

Table II presents the total mean computation times with
standard deviations and success rates of all models men-
tioned above in the bartender and kitchen environments.
Although MPNet performs well in unconstrained planning
problems, it can be seen that MPNet with only a projection
operator and no re-plannings performs poorly in terms of
success rates than other models in CMP. Similarly, the task
encoding also leads to improved success rates validating that
it is a crucial component of CoMPNet. Furthermore, task
specification such as one-hot or text-based representation
gives similar performances. However, using a sequential
embedding such as text-based constraint specification is
vital as they allow scalability to an arbitrary number of
constraint types. In contrast, other methods such as one-hot
representations would scale poorly and become very limited
in practice with a growing set of multi-task and multimodal
constraints.

VII. DISCUSSION

In this section, we present a brief discussion on CoMP-
Net’s ability to solve multimodal constraint motion planning
problems and exhibit probabilistic completeness on manifold
coverage if merged with uniform C-space sampling methods.

A. Multimodal Constraints

To the best of authors’ knowledge, CoMPNet is the
first planning algorithm capable of handling multimodal
constraints and exploring various constraint manifolds si-
multaneously. In the presented kitchen and bartender se-
tups, the problems require: i) reaching to the target end-
effector pose to grab the given object; ii) manipulating the
grabbed object under various constraints such as stability
and collision-avoidance; iii) opening the cabinet door, which
also imposes constraints inculcated by the allowable rotation
of the door’s hinge. In all of these problems, CoMPNet’s

high success rate and low computation time validate that
its planning network, conditioned on the observation and
text-based task encodings, can implicitly transition between
different constraint manifolds and can produce the constraint-
adhering configurations efficiently.

B. Stochasticity & Manifold Coverage

In this section, we highlight that CoMPNet, coupled with
an exploration-based C-space sampling strategy, covers the
constraint manifold leading to probabilistic completeness
guarantees. The probabilistic completeness guarantees are
that the planner will output a path solution, if one exists,
with a probability of one, if it is allowed to run for a large
number of iterations approaching infinity.

In CoMPNet, we apply Dropout [29] with probability of
0.5 to almost every layer of the planning network during
offline training and online planning. The Dropout randomly
skips the output of some of the neurons from its preceding
neural network’s layer according to the given probability p ∈
[0, 1]. In [30], Yarin and Zubin use Dropout for uncertainty
modeling in the neural networks. In our method, we use
Dropout-based stochasticity in the planning network to gen-
erate configuration samples on/near the constraint manifold.
The generated configuration samples that are slightly off
are projected to the constraint manifold using the gradient-
descent-based projection operator. In [21][24], it is proved
that the projection operator (Algorithm 3) combined with
uniform C-space sampling fully explores the underlying
constraint manifold with the running time approaching infin-
ity. CoMPNet can also be combined with uniform C-space
sampling techniques leading to the exploration-exploitation
approach. The exploitation phase will be to leverage CoMP-
Net’s planning network for a fixed number of iterations
to generates samples on/near the constraint manifold, po-
tentially leading to a path solution. The exploration phase

Tasks
Algorithms

MPNet (with Proj) CoMPNet (w/o task encoder) CoMPNet (with one-hot) CoMPNet

Bartender 18.80± 8.90 (75.1%) 18.84± 8.96 (82.1%) 17.00± 8.31 (87.8%) 16.52± 7.67 (88.3%)

Kitchen 44.01± 9.53 (68.6%) 41.21± 12.13 (86.2%) 41.93± 13.97 (89.7%) 38.6± 13.23 (91.1%)

TABLE II: Ablation study: The total mean computation times with standard deviations and mean success rates are presented
for CoMPNet and it’s ablated models in solving all manipulation tasks in the bartender and kitchen environments.



will be to do uniform sampling after exploitation. Hence,
the exploration-exploitation based sampling approach paired
with a projection operator will cover the constraint manifold
with probabilistic completeness, and the proof can be derived
in the same way as in [21][24].

VIII. CONCLUSIONS & FUTURE WORKS

We proposed Constrained Motion Planning Networks
(CoMPNet), a neural network-based bidirectional planning
algorithm that is shown to solve complex planning prob-
lems under multimodal kinematic constraints in seconds and
with significantly less variability than state-of-art methods
that take minutes and have high variability. CoMPNet also
encapsulates MPNet [10] as it not only solves constrained
manipulation problems but also unconstrained planning prob-
lems, i.e., reach to the given robot end-effector poses to
grasp the objects. Furthermore, we also show that, similar
to MPNet [10], CoMPNet generalizes to unseen tasks that
were not in the training examples with a high success rate
and probabilistic completeness.

In our future studies, we plan to extend CoMPNet to
integrated task and motion planning by leveraging its fast
computational speed for almost real-time motion reasoning.
In addition, we also aim to incorporate dynamical con-
straints to allow a computationally efficient kinodynamic
path planning for practical, real-world problems from the
high-dimensional observation data.
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