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Abstract— This article introduces a novel 7 Degree Of Free-
dom (DOF) cable-driven haptic device based on the concept
of a configurable cable platform. In the proposed concept, a
1-DOF pinch grasping capability is provided via a network
of ten passive cables kept in tension. The coordinated action
on the cable platform of eight active cables driven from the
base, fully controls the position, orientation, and grasping
configuration of the device. This constitutes the first 7-DOF
cable-driven robot that is made of a network of cables instead
of a pure parallel architecture. Original static and kinematic
models were developed to address the particularities of the
proposed architecture. They are detailed in this manuscript
and used to define the workspace and the control algorithm of
the design. A working prototype illustrating an implementation
of the theory is presented.

I. INTRODUCTION

To provide realistic force feedback, impedance controlled
haptic devices need to be lightweight, such that the inertia
of the devices themselves does not disturb the rendered
forces. Further, they need to be stiff, such that the device
can mechanically present high-frequency content forces. To
improve the realism of force feedback in haptic devices, an
increasing number of haptic devices are nowadays based on
parallel robotic architectures. In a parallel haptic interface,
the forces are transmitted from the base-located motors to
the haptic end-effector, usually in the shape of a knob,
using parallel closed-loop chains made of mechanical links
and passive joints. Such architectures usually offer higher
stiffness and lower inertia than their serial counterparts.

Cable-driven robots [1] are parallel robots in which cables
connect the end-effector to motorised reels located on a base
frame. They are generally lighter and with larger workspace
than rigid parallel robots, which makes them good candidates
for haptic devices, either in 3D planar [2], [3], 3D spatial
[4], or in 5-DOF [5] and 6-DOF [6] workspace. Cable-
driven haptic devices, however, generally do not provide
grasping capabilities, which prevents natural interactions.
It is indeed sometimes desirable to provide grasping force
feedback via multiple contact points to allow the operator
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Fig. 1. Structure of the 7-DOF cable-driven robotic haptic device with a
configurable cable platform. The operator interacts with the device using
the palm of the hand on H , and the index and thumb fingers on F1 and
F2. Eight actuated cables Qi, attached on six points, Ci, on the platform
control its position, orientation and grasping configuration.

to feel the shape and stiffness of the manipulated objects.
Limited research has been conducted on cable-driven robots
that provide additional grasping. Either an external gripper
is mounted at the top of an existing cable robot [7], [8]
or a rigid platform is used to provide grasping [9], [10]. A
planar cable platform was proposed in [11]. In this article, we
propose a novel general purpose, lightweight haptic device
based on a cable-driven robotic architecture that provides 1-
DOF grasping in addition to full 6-DOF manipulation, using
a configurable cable platform. The proposed device enables
pinch grasping without using any mounted grasping motor
or linkage made of rigid links and bearings. This is possible
thanks to a configurable platform [12] made of passive cables
kept in tension with which the operator interacts via the
palm of the hand and the index and thumb fingers. The
coordinated action of eight active cables fully controls the
platform’s position, orientation and grasping configuration
while keeping all cables in tension. This article presents the
first-ever spatial cable-driven robot made of a network of
cables in tension, which required a design in which less
independent static equations are present than the number of
active and passive cables. The developed procedure could
be easily generalised to more complex cable platforms with
more internal DOFs. The next section describes the proposed
architecture, while Sec. III presents the kinematic model that
needed to be developed for the control of the device. Section
IV presents the kinematic design and key properties of the
resulting workspace while Sec. V shows the implementation
of a working prototype that serves as concept validation.

II. ARCHITECTURE DESCRIPTION AND
ANALYSIS

This section introduces the main components of the pro-
posed cable-driven haptic device and the notation used in
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this article, as well as a formal analysis of the mobility of
the configurable platform. This platform constitutes the main
innovation of this device and is made of ten passive cables
kept in tension. It allows the operator to use the palm of the
hand as well as the index and thumb finger to interact in
7-DOF with the device, including via pinch grasping.

A. Structure and Notation

The structure of the device is presented in Fig. 1. The
operator interacts with the device using the palm of their
hand on rigid body H , and the index and thumb fingers on
F1 and F2. H , F1 and F2 are connected by a network of ten
passive cables kept in tension by eight independent parallel
active cables Qi.

Assuming that all passive cables are kept in tension, the
cable platform can be considered as an open polyhedron
made of six rigid triangular faces, with one open boundary
formed by the cables connecting vertices C3, C4, C5, and C6.
The lengths of the passive cables are such that the platform
is symmetric with respect to its local plane YpZp (illustrated
in Fig. 1), which includes the long axis Sh =

←−→
C1C2 of

handle (H) and the point at mid-distance between F1 and
F2. The handle H is connected to four active cables via
the connection points C1 and C2, while the four remaining
attachment points are connected to one active cable each,
for a total of eight active cables. The distance between F1

and F2 can vary to change the configuration of the platform,
providing the grasping capability.

Arguably, a platform with the same structure made of rigid
elements instead of passive cables would lead to the same
mobility and would provide rigid connections between the
connection points Ci. However, in addition to being heavier
and generating friction, rigid connections in this structure
would present major impracticability. Specifically, the rigid
system would be constructed with rigid rods replacing the
passive cables, in which case 3-DOF spherical joints allow-
ing multiple connections at the Ci location would be needed;
this is challenging to implement in a simple or compact way.
The system could also be constructed with six rigid plates
corresponding to the six triangular faces, connected by ten
1-DOF hinges corresponding the passive cables, in which
case the plates would collide with the operator’s hand.

Cable-driven parallel robots require at least one more cable
than the number of DOFs to keep all cables in tension
without the help of an external force. We will now show
that the platform possess indeed 1 configurable DOF in
addition to the 6-DOF of conventional cable-driven robots
and therefore operates with the minimum number of active
cables possible.

B. Mobility Analysis

Assuming all cables are kept in tension, for mathematical
purposes the configurable platform can be considered as six
triangular plates connected by seven 1-DOF revolute hinges.
As shown in Fig. 2, the topology graph results in a parallel
mechanism with three kinematic chains between plates P3

Fig. 2. Mobility analysis of the configurable platform. The numbers
denoting the cables are consistent throughout (a), (b), and (c). (a) Illustration
of the platform assuming that the ten passive cables are kept in tension. (b)
The configurable platform mobility is equivalent to a mechanism with six
triangular plates connected by seven 1-DOF revolute joints. (c) Topology
graph showing that the platform constitutes a parallel mechanism with three
kinematic chains.

and P4. If ξi is the unit twist screw of virtual revolute joint
i, the twist system of mobility of the mechanism Tm is

Tm = ξH ∩

(
15∑
i=13

ξi

)
∩

(
18∑
i=16

ξi

)
= ξH (1)

where ξH corresponds to a 1-DOF rotation around the axis
SH of the handle, Tu = Σ15

i=13ξi is the mobility of the upper
chain in Fig. 2(c) and Tl = Σ18

i=16ξi is the mobility of the
lower chain. Indeed, since both screw systems Tu and Tl
consist of a 3-DOF system with three virtual joints having
their axes of revolution intersecting on a single point on
the axis SH , they can both emulate any rotation around
their respective intersection point, including rotation ξH .
Furthermore, the three base screw vectors in both Tu and Tl
are linearly independent, meaning that no additional mobility
is included in their kinematic chain.

It can also be noted that ξH applies five independent
constraints between P3 and P4, while systems Tu and Tl
each apply three overconstraints in translation between those
virtual plates. Applying the modified Chebychev mobility
criteria [13] with n = 6 bodies, j = 7 joints and r = 6
over-constraints, the mobility M is given by

M = 6 (n− 1)− 5j + r = 30− 35 + 6 = 1 , (2)

confirming that the platform has indeed 1-DOF.
In the next section, the kinematics and statics of the device

are developed. Our analysis show how the device can provide
a range of force-feedback in any given configuration within
the workspace, while ensuring all cables are kept in tension.

III. KINEMATICS AND STATICS

For a conventional 6-DOF cable-driven device with m
active cables, the inverse position kinematics is easily de-
termined from the distance between the cable attachment
points on the platform and the base, and its statics is based
on a structural matrix AT of dimension 6×m, where each
column is formed by the wrench screw vector of an active
cable. In the proposed architecture, due to the presence of
the configurable cable platform with its network of cables



and multiple bodies, additional steps are needed to calculate
the inverse position kinematics and statics.

First, we define the position of the end-effectors p and
actuators q with vectors of dimension 7, and 8, respectively:

p =
[
x y z θx θy θz ρ

]T
(3)

q =
[
q1 q2 q3 q4 q5 q6 q7 q8

]T
, (4)

where x, y, and z correspond to the position at the centre
of the handle while θx, θy , and θz are the axial components
of rotation vector θ around the centre position. Variable ρ
corresponds to the half of the angle that is formed between
finger 1 (F1), the handle (H), and finger 2 (F2). The length
of actuated cable i, with i = 1, . . . , 8 is represented by qi.

Similarly, two additional vectors are used to describe the
static forces in the end-effector and actuator domains:

f =
[
fx fy fz τx τy τz τρ

]T
(5)

ta =
[
t1 t2 t3 t4 t5 t6 t7 t8

]T
, (6)

where fx, fy , fz are the three components of the force, and
τx, τy , τz are the three components of the moment applied on
the end-effector. Variable τρ represents the moment applied
between the two fingers (F1) and (F2) around the axis Sh of
the handle (H). This is the force counterpart of the angular
variable ρ, such that τρ×ρ corresponds to the grasping power
delivered to the system. Finally, vector t contains the tensions
of the eight actuated cables. Since we used the rotation vector
convention for the orientation we can easily calculate the
power transmitted to the device as f · ṗ = τa · q̇i. As the five
rigid components of the platform are lightweight and speed
is generally slow in haptic applications, all elements are
considered mass-less and infinitely stiff. Therefore dynamic
effects are not considered critical in this instance for the
impedance control of the robot, but are still relevant from a
design point of view in particular with the frequency content
of the force feedback.

A. Inverse Position Kinematics

This section establishes the non-linear mapping from the
end-effector position, p, onto the length of the actuated ca-
bles, q. The challenge is primarily found in the determination
of the 3D location of the six cable attachment points, i.e. Ci
on the platform, since the length of an actuated cable simply
corresponds to the distance between its attachment points on
the base and platform. The ten passive cables forming the
configurable cable platform do not change in length, and their
position/orientation in space can also be fully defined from
the six attachment points. Since the grasping configuration
of the 1-DOF platform is fully defined by the grasping
value ρ, the first step is to express the position of the platform
attachment points in the local frame of the platform, which
has its origin located at the middle of the handle (H), as a
function of ρ. The first two attachment points, cp1 and cp2,
are fixed on the handle and are therefore independent of ρ.
Contrary, cp3 and cp4 are directly located on the fingertip

effectors and their position in the local frame is dependent
on ρ. We have

cp1 =
[
0 0 h

]T
cp2 =

[
0 0 −h

]T
cp3 =

m sin (ρ)
m cos (ρ)
g − h

 cp4 =

−m sin (ρ)
m cos (ρ)
g − h


(7)

where h is half the length of the handle H , g =(
l217 + (2h)

2 − l214
)
/ (4h) is the Zp-component of the vec-

tor from cp2 to cp3 or cp4, and m =
√
l217 − g2 is the

shortest distance between cp3 or cp4 and the handle H ,
with l17 = l18 and l14 = l15 being the lengths of the
cables connecting the fingers to the handle. Because of the
platform symmetry in its local YpZp plane, attachment points
cp5 and cp6 lie on it. Specifically, they are located at the
intersection of a circle in the YpZp plane that is centred
on the corresponding handle attachment point, and a sphere
centred on a finger effector attachment point. Therefore, their
closure equations, i.e. the conditions needed to close the
mechanical loops, can be expressed as:∣∣∣∣∣∣cp − lh [0 cos(φ) sin(φ)

]T ∣∣∣∣∣∣2 = l2f . (8)

Depending whether the position of C5 or C6 is computed,
φ is the angle between the Yp axis and either cable 13
or 16. Further, cp corresponds to either (cp3 − cp1) or
(cp3 − cp2), lh is either l13 or l16, and lf is either l10 or
l11. Due to the symmetry of the platform, identical results
would be obtained by using cp5 instead of cp3. Developing
(8), we obtain

cpy cos (φ) + cpz sin (φ) =
|cp|2 + l2h − l2f

2lf
. (9)

Finally, using the tangent half-angle substitution in (9), φ is

φ = 2tan−1

cpz ±
√
c2pz + c2py − w2

w + cpy

 , (10)

where w =
(
|cp|2 + l2h − l2f

)
/2lh. The ± represents the two

solutions in a sphere-circle intersection; the positive sign
must be selected for φ13, while the negative sign is used
for φ16. The remaining platform attachment points are

cp5 = cp1 + l13
[
0 cos(φ13) sin(φ13)

]T
(11)

cp6 = cp1 + l16
[
0 cos(φ16) sin(φ16)

]T
. (12)

With the positions of the platform attachment points cpi
in the platform reference (Xp, Yp, Zp) frame known, their
position ci in the global reference frame is calculated as

ci = R (θ) cpi +
[
x y z

]T
, (13)

where the rotation matrix R (θ) is computed from the
rotation vector θ =

[
θx θy θz

]T
.

Using the positions ci of the six platform attachment
points Ci and the position of the eight actuators Qj on the



base frame, the length and direction of all cables can be
calculated, which is the inverse position kinematics.

B. Statics

In conventional cable-driven parallel robots, the static
matrix AT describes the linear relations between the
forces ta applied by the actuated cables and the resulting
forces/moments f on the end-effector, such that ATta = f .
This equation is used to determine how much tension to
apply on the actuated cables. However, in the case of this
7-DOF cable-driven robot, we must ensure that the passive
cables are also kept in tension. The statics relation AT in
our case is expressed as:

ATt(18×1) = AT

[
ta(8×1)
tp(10×1)

]
=

[
f(7×1)
0

]
, (14)

where tp =
[
t9 · · · t18

]T
contains the passive cable

tensions, and the zero vector 0 corresponds to the statics
equilibrium equations not directly contributing to the forces
f felt by the operator.

The linear relation is globally valid as long as the elements
in AT are updated as the device’s configuration changes.
Unlike conventional cable-driven parallel devices, our device
has five rigid bodies instead of one: the handle H and fingers
F1 and F2, which provide force-feedback to the operator, and
the upper and bottom attachment points C5 and C6, which
only serve to transmit forces between cables. The handle can
be considered as a rigid body with 6-DOF while the four
remaining bodies are point-objects with 3-DOF. Each body
is affected not only by the tensions of the actuated cables ta
and by the operator forces f , but also from the tension tp
in the passive cables of the configurable platform.

In a static configuration, the sum of forces and moments
(six equations) acting on the handle (one item) must be zero;
for point-objects (four items), only the sum of forces (three
equations) is considered. This results in 1× 6 + 4× 3 = 18
equations of force/moment equilibrium. Each set of three
equations of forces is in the form

∑
d̂iti = fj, where d̂i

corresponds to a unit vector in the direction of cable i and
oriented away from the body j on which the cable is attached
to. The tension in the cable i is ti, and the vector fj is the
sum of forces on the body j, which will be 0 in case of
body C5 and C6, and will correspond to the forces felt and
compensated by the operator for F1, F2, and H .

The handle has only two cable attachment points, C1 and
C2, located at equal distance h for its centre. Assuming that
the operator exerts moments around the central point of the
handle, the sum of moments on the handle from C1 can
be computed as

∑(
d̂i × h

)
ti, where h is a vector from

the handle attachment point C1 to the centre of the handle.
Similarly, the sum of moments on the handle from C2 can
be computed as

∑(
d̂i × (−h)

)
ti.

Combining the force and moment equations leads to a
system of 18 equations with 18 unknown tensions ti, where
eight are actively controlled while ten are passive. Together,
they are represented by the vector t =

[
ta
T tp

T
]T

. These

Fig. 3. Directed Graph representation of the network of cables with cables
numbering. Cables in red are driven by actuators, while cables in blue are
passive. For each cable i, there is a corresponding unit vector d̂i directed
along the cable. The orientation of this vector is arbitrary and is represented
by an arrow on the cable. The six cable attachment points on the platform
are denoted Ci, with C1 and C2 located on the handle H , and C3, and
C4, located on the fingers F1, and F2, respectively.

equations can be assembled into a matrix system using the
directed Graph presented in Fig. 3 to establish the attachment
points of cables. The direction of the graph edges determines
the sign of d̂i. The resulting matrix system is of the form

AT
so(18×18)t(18×1) = fbo(18×1) (15)

where

AT
so =



d̂1 d̂2 d̂3 d̂4 0 0 0 0 0 0

d̂1 × ĥ d̂2 × ĥ −d̂3 × ĥ −d̂4 × ĥ 0 0 0 0 0 0

0 0 0 0 d̂5 0 0 0 d̂9 0

0 0 0 0 0 d̂6 0 0 0 −d̂10

0 0 0 0 0 0 d̂7 0 −d̂9 d̂10

0 0 0 0 0 0 0 d̂8 0 0

· · ·

· · ·

0 0 −d̂13 −d̂14 −d̂15 −d̂16 −d̂17 −d̂18

0 0 −d̂13 × ĥ −d̂14 × ĥ −d̂15 × ĥ d̂16 × ĥ d̂17 × ĥ d̂18 × ĥ

0 −d̂12 0 d̂14 0 0 d̂17 0

d̂11 0 0 0 d̂15 0 0 d̂18

0 0 d̂13 0 0 0 0 0

−d̂11 d̂12 0 0 0 d̂16 0 0


and

fbo =
[
fH

T τTH fC3
T fC4

T fC5
T fC6

T
]T

(16)

with ĥ being a unit vector directed from the center of the
handle to C1. Each vector present in AT

so and fbo is of
dimension (3× 1). Since cables can only act in tension,
the vector t can only contain positive elements, which is
an unlikely solution for a system with the same number of
equations as unknowns, as is (15). However, since the handle
has only two attachment points, C1 and C2, the cables cannot
apply any moment around the handle central axis Sh (which
links C1 and C2). Moments around this axis can still be
provided to the operator via linear forces on the fingers F1

and F2. Since all the cables attached to the handle intersect
with Sh, no moment can be applied around this axis and
only two out of the 4, 5, 6-th rows in AT

so are independent,
making the 18 × 18 matrix AT

so of rank 17. Therefore the
solution t is not unique and a solution in which all elements
are positive is possible.

This is an important aspect of the design, as cable-
driven parallel robots indeed need at least one more cable



than the number of equations required to define their static
equilibrium, since cables can only act in tension and not in
compression. In order to create a system of 17 independent
equations and change the structure of AT

so according to its
rank, we first apply the rotation matrix −R (θ), correspond-
ing to the inverse of the orientation of the platform, to
rows 4 to 6 of (15). Row 6 of the resulting static matrix
now corresponds to the moments around Sh (the Z axis in
the local platform frame) and can be deleted, since all its
elements are 0, to form the new matrix AT

s and new vector
fb. Mathematically, we can multiply both sides of (15) with

Rh =

 I(3×3) 0(3×3) 0(3×12)
0(2×3) −R1|2(2×3) 0(2×12)
0(12×3) 0(12×3) I(12×12)


(17×18)

(17)

where R1|2(2×3) is the first two rows of R. We get

AT
s = RhA

T
so,

fb = Rhfbo =
[
fh
T τ1 τ2 fC3

T fC4
T fC5

T fC6
T
]T (18)

in which τ1 and τ2 are moments around the Xp and Yp axes
attached to local handle coordinate frame. Finally:

AT
s (17×18)t(18×1) = fb(17×1) (19)

In this static analysis, fb represents the forces on the five
bodies of the platform. To apply the desired force-feedback
to the operator, we are only interested in the 7-DOF forces
forming f in (5), which constitutes the input of the static
problem. As explained above, the finger end-effectors F1

and F2 are used not only to provide grasping force-feedback
when they generate forces in opposite directions, but also
moment around the handle axis SH when they generate
forces in the same direction. To isolate the finger forces that
contribute to the forces felt by the operator from the other
forces distributed to the platform, we create a local reference
frame for each finger Fi, formed by three perpendicular unit
vectors gij, where gi3 is a vector from Fi to the closest
point on the handle axis Sh and perpendicular to it, gi2 has
the same direction as the handle axis, and gi1 = gi3 × gi2

corresponds to the mobility of Fi relative to the handle.
With m being the constant distance between the handle

axis Sh and either F1 or F2, we have the following relations:

m
(
gT
11fC3 + gT

21fC4

)
= τ3 m

(
gT
21fC4 − gT

11fC3

)
= τρ

(20)

where τ3 is the moment around the Z axis of the handle and
τρ is the grasping moment. Both τ3 and τp are exclusively
provided by forces on F1 and F2. The remaining forces on
F1 and F2 in static equilibrium must be 0. Therefore

gT
12fC3 = gT

13fC3 = gT
22fC4 = gT

23fC4 = 0 . (21)

Now that the relation between fh, τ1, τ2, τ3,τρ and the
tension in the 18 cables t is known, (19) can be written
as:

ATt = RτHAT
s t(18×1) = RτHfb =

[
f(7×1)
0(10×1)

]
(22)

with

H =



I(5×5) 0(5×6) 0(5×6)

0(6×5)

mĝT
11 mĝT

21

mĝT
11 −mĝT

21

ĝT
12 0(1×3)

ĝT
13 0(1×3)

0(1×3) ĝT
22

0(1×3) ĝT
23

0(6×6)

0(6×5) 0(6×6) I(6×6)


(23)

and

Rτ =

 I(3×3) 0(3×3) 0(3×11)
0(3×3) R−1(3×3) 0(3×11)
0(11×3) 0(11×3) I(11×11)

 (24)

(22) is the governing equation of the statics, and will be
used to find the tensions in both active and passive cables,
such that a 7-DOF force feedback f can be presented to
the operator. It was shown in this section that the finger
attachment points were selected to provide grasping and
rotation around the handle axis (2-DOF), while the handle
is used to provide the remaining 5-DOF.

It is worthwhile to mention that by selecting the forces in
(21) to be 0, we ensure that the index and thumb fingers,
being the only rigid elements connecting H with F1 and
F2, are not used to transmit forces. It would have been
indeed possible to consider the operator’s hand as a rigid
body, allowing forces to be applied on either H , F1, or F2

to increase the range of solutions for t, but this would cause
reaction forces on the fingers that could distract the operator
from the desired force-feedback.

In order to obtain the vector of eight actuated cable
tensions ta, included in t, from the desired force-feedback
f in a given position p, one must solve the system of
17 equations and 18 unknowns in (22). This problem has
an infinite number of solutions and we are interested in a
solution that would minimise the norm of the tension vector
while ensuring that all cables are kept in tension. Since the
structural matrix AT is of dimension 17× 18, its null space
is of dimension 1. If the device is in a configuration where
static equilibrium can be reached while all cables are kept
in tension, all elements of the eigenvector t0 in ATt0 = 0
will be of the same sign. As shown in [14], a particular
solution tp = AT+

f can be obtained using the Moore-
Penrose pseudoinverse and the complete set of solution is
then given by tp + λt0. Given a minimum tension tmin to
prevent cable sagging, the optimal solution is obtained as:{

t = tp + λt0

λ = max
i=1...18

tmin − tpi
t0i

(25)

This λ value ensures that one element of t is equal to tmin
while all the other elements are higher. In our prototype,
the tensions tmin is set to 0.5 N to prevent sagging and
tmax is 50 N for safety. If one element ti is higher than
an upper tension bound tmax, f must be scaled down until
tmin ≤ ti ≤ tmax for all elements i.



C. Velocity Kinematics and Direct Position Kinematics

Direct position kinematics refers to finding the position
vector p of the platform as function of the length of the eight
active cables q. This is the opposite of the problem presented
in Sec. III-A, and is needed for determination of the device’s
configuration given cable sensors located at its base. Unlike
the inverse position kinematics, direct kinematics generally
do not have analytical solutions for parallel robots [15], thus
numerical solutions are calculated.

First, we find the inverse velocity kinematics using (22)
and the principle of power conservation. Assuming no fric-
tion, the only source and sink for power in the system
come from the motors and the operator’s interaction with the
handle. Due to the presence of passive cables in the platform,
we first need to decompose matrix AT from (22) as:[

AT
11(7×8) AT

12(7×10)
AT

21(10×8) AT
22(10×10)

] [
ta
tp

]
=

[
f
0

]
(26)

from which the direct relation between ta and f is:

AT
p (7×8)ta =

(
AT

11 −AT
12A

−T
22 AT

21

)
ta = f (27)

While (27) is more compact than (22), it cannot be used
in practice for statics since it cannot ensure that the passive
cables tp are kept in tension. It can however be used to derive
the relation between forces and velocities in the actuator and
effector spaces. When power is conserved, we have:

−tTa q̇ = fT ṗ =
(
AT

p ta
)T

ṗ = tTaApṗ
q̇ = −Apṗ

(28)

The negative sign in −tTa q̇ comes from the fact that power
is given to the system when moment and velocity in a motor
are in the same direction, which is the case when the cable
lengths diminish since cables are always kept in tension. The
Moore-Penrose pseudo-inverse (+) can be used for the direct
velocity kinematic such as ṗ = − (Ap)

+
q̇. Since Ap is a

rectangular matrix, not every vector q̇ is permitted in (28). If
a not permitted input q̇ is used as input for the direct velocity
kinematics, as is the case in practice due to calibration errors,
the pseudo inverse will find the vector ṗ corresponding to
the closest permitted vector q̇.

Finally, the following Gauss-Newton algorithm is used to
solve the direct position kinematics:

qk = gIPK (pk)

∆q = qsensors − qk
∆p = − (Ap)

+
∆q

pk+1 = pk + ∆p

(29)

where gIPK corresponds to the inverse position kinematic
problem described in Sec. III-A, and pk is initially an
estimate of the device position. The process repeats un-
til the results of successive iterations change less than
the desired resolution. Although Gauss-Newton algorithm
(GNA) is sometimes complemented with gradient descent
in a Levenberg-Marquardt algorithm (LMA) for robustness,
GNA was sufficient for convergence in our case. Results not

Fig. 4. List of the 14 design parameters; (a) 8 parameters are used to define
cable attachment points (b) 6 parameters are used to define the platform
passive cable length

included for brevity showed speed advantages in using GNA
over LMA without sacrifice in accuracy.

IV. KINEMATIC DESIGN

Once the kinematics and statics have been established
for a general design, a set of design parameters can be
selected for the implementation of the actual device. The
first step is to list all the design parameters that have an
influence on the kinematic and static relations described in
the section above. Some of those parameters can be already
fixed due to practical and ergonomic considerations. For
example, the distance between the fingers and the palm of
the hand resulting from the length of some of the passive
cables can be based on the average length of fingers, and
the base frame dimensions can be based on the available
footprint and ergonomic reach of the human arm.

Let’s first consider the dimensions of the base frame.
From a kinematic point of view, there is generally no
drawback in increasing the size of the base as it only results
in larger workspace, more constant Jacobian matrix, and
homogeneous performance. A larger frame also renders small
deflections from the model, for example the actual point
of contact with the pulley, negligible for the calculation
of cable lengths. From a practical point of view, the main
limitations are the footprint available and the reach of the
human arm. We therefore selected the frame to be as large
as possible within ergonomic comfort for a standing operator
as 700 × 700 mm in the horizontal plane and 640 mm in
height. The last kinematic parameter to be selected from
ergonomic considerations is the constant distance g between
the handle axis SH and the finger interfaces F1 and F2, set at
g = 70mm, which will act as a constraint on the remaining
design parameters.

The set of design parameters is presented in Fig. 4. Thanks
to the symmetry of the design in its Y Z plane, the number of
actual independent parameters can be reduced. There are two
distinct sets of parameters; the positions on the frame where
the cables are connected and reeled by a pulley system, and
the lengths of the passive cables of the platform.

As the front side of the frame must be free to let the
operator easily access to the 7-DOF haptic interface, Q1, Q3,
and Q5 are located on the right side of the frame, parallel to
the Y Z plane, while Q2, Q4, and Q6 are located on the left
side. Attachment points Q7 and Q8 are located on the back



panel. Using symmetry in the Y Z plane to reduce the number
of design parameters, we finally obtain eight parameters for
the cable attachment points Qi on the frame. For the cable
platform, using symmetry in the Y Z plane and the constraint
imposed by the distance between the handle and the fingers,
we can describe the lengths of the handle and the passive
cables with 6 independent parameters. The length of the rigid
handle (H) is calculated as:

f (P12, P14) =
√
P 2
12 − g2 +

√
P 2
14 − g2 (30)

This set of 14 kinematic parameters is used in the design
procedure to maximise the workspace. As it is generally the
case in parallel robots, the total workspace is coupled in all
dimensions, i.e that the boundaries in each dimension are de-
pendent on the position in other dimensions. For haptic appli-
cations, it is not always possible or desirable for the operator
to consider this coupling. We therefore use a sub-region of
the total workspace, designated as the useful workspace, in
which certain ranges of orientations (θx, θy, θz) and grasping
values ρ are possible at any (x, y, z).

A configuration p is interior to the full workspace if a
static equilibrium can be reached, which occurs as described
in Sec. III-B when all the elements of the null vector t0 of
matrix AT are of the same sign. If a static equilibrium can
be reached with f = 0, then a solution to the cable tension
t with all positive elements is possible for any force f .

A position (x, y, z) is considered to be inside the useful
workspace if it is inside the full workspace for all values
of orientations and grasping within certain ranges. The four
ranges used in this procedure are [−15◦, 15◦] for orientations
α, β, and γ, and [20◦, 35◦] for the half-grasping value ρ. It
is a fair assumption to consider that all configurations within
a range are inside the workspace if both its upper and lower
limits are in the workspace as well, i.e. that there is no void in
the workspace. Each position is tested for all combinations of
upper and lower limits of the four ranges, leading to 24 = 16
configurations for each position.

In this procedure, a numerical approximation of the vol-
ume of the useful workspace is used as the objective function.
Since the objective function is computed a large number of
times during the process, it is important to select a fast-
computing method and to consider what is an acceptable
approximation of the volume. The volume of the useful
workspace is calculated using the method of [16], which is
briefly summarised below.

First, we define a regular octahedron with 8 triangular
faces and 12 edges for which each of the 8 triangular faces
is then divided into a set of sub-triangles up to a desired
resolution. The vertices of these triangles form a set of points
to which directional vectors u can be drawn from the center
O of the workspace. These vectors are then multiplied by a
scalar λ to correspond to the limit of the useful workspace,
using the bisection method. Both the number of points in
each face and the stopping criteria of the bisection method
will influence the resolution of the workspace and the speed
for its calculation. Once the magnitude is fixed, each triangle

Fig. 5. (a) Translational workspace with Volume(0◦) = 1.74× 107 mm3

and useful workspace with Volume(±15◦) = 3.65 × 106 mm3 for ρ =
[20◦, 35◦] on the footprint of the robot. The center position is [0,−40,−10]
(b) 3D representation of the useful workspace

now represents a flat approximation for a region of the
boundaries of the workspace, and a pyramidal volume can
be created by connecting the three points of the triangle to
the center of the workspace. For a volume represented by L
triangles, each with three points A, B, and C, the volume
V is calculated as

V =
(uA × uB) · uC

6

L∑
λAλBλC (31)

where the scalar triple product is the volume formula for a
parallelepiped and has the same value for each triangle on
the unit octahedron surface.

This volume is used as the objective function for the 14
design parameters Pi shown in Fig. 4. The cable attachment
points i = 1, ..., 8 are constrained to remain in the limits of
the frame surfaces and the length of the platform cables i =
9, ..., 14 are kept between 30 mm and 200 mm. In practice,
since the cables are connected to a ring and only pointing at
the virtual connection point, the lower limit is used to leave
place to the rigid bodies of the platform and limit errors.
The upper limit constraints the size ratio of the platform
to the base frame. Since the objective function can present
discontinuities and has multiple local minima, a genetic
algorithm was used for the selection of those parameters.
Genetic algorithms are search methods based on the principle
of natural selection that are suitable for searching global
minima without the use of gradient information. In addition,
they generally perform well if the objective function is fast
and the number of parameters is low. Although they do not
guarantee optimal or repeatable results, they are useful in
improving performance of initial designs. Final parameters
are shown in Table I.

Using these parameters, Fig. 5(a) shows the translational
workspace and the useful workspace for half grasping
ρ = [20◦, 35◦] in regard to the footprint of the device. The
volume of the useful workspace with ±15◦ for orientations
α, β, and γ is s 3.652× 106 mm3 and its 3D representation
is shown in Fig. 5(b). This corresponds to a subset of the
full workspace for which the central boundaries are shown
in Table II.

V. PROTOTYPE IMPLEMENTATION

A working prototype of the proposed architecture is shown
in Fig. 6. An experiment was conducted with an operator



TABLE I
VALUES OF DESIGN PARAMETERS

Parameter P1 P2 P3 P4 P5 P6 P7

Value (mm) -350 320 -350 -320 0 -60 320
Parameter P8 P9 P10 P11 P12 P13 P14

Value (mm) -320 54 69 108 145 91 148

TABLE II
WORKSPACE CENTRAL BOUNDARIES

(mm or ◦) x y z θx θy θz θρ
max 188 208 148 29 23 26 68
min -188 -309 -113 -24 -23 -26 10

Fig. 6. Left: 3D printed platform for pinch grasping. Right: Prototype.

moving the device successively in each DOF, covering a large
portion of the full workspace boundaries of Table II. The
cable lengths are recorded from the motor encoders and the
direct kinematic model (29) is used to calculate the platform
position, orientation, and grasping configuration. At the same
time, the position, orientation, and grasping configuration of
the device is recorded with a NDI Aurora electromagnetic
tracker to validate the direct position kinematics. Fig. 7(a)
shows the calculated position (x, y, and z) using (29), and
its comparison with the external electromagnetic tracker. Fig.
7(b) shows the equivalent for the orientation and grasping
angles (α, β, γ, and ρ). Results show that the numerical
procedure always converges and that the average error is
1.73 mm with a standard deviation of ±1.59 mm for the
position values, while an average error of 1.45◦ with a
standard deviation of 0.95◦ is obtained for angular values.
This is comparable to the human precision for reaching
absolute positions in free air with visual feedback, which
is about 1 mm. It should be noted that the numerical
procedure for the direct kinematics involves the computation
of the inverse position and velocity kinematic, as well as the
computation of the structural matrix AT described in this
article, validating these models.

VI. CONCLUSIONS

This article presented a novel 7-DOF cable-driven haptic
device that provides pinch grasping capability using the
introduced concept of a configurable cable platform, which
is made of a network of cables in tension. This constitutes
the first spatial cable-driven robots that is made of a network
of cables instead of a pure parallel architecture. Its kinematic
model was developed and validated with a working proto-
type. The concept of configurable cable platform can also be
applied in other cable robot applications requiring grasping.

Fig. 7. Comparison of direct kinematics with ground truth from electro-
magnetic tracker for (a) position (x, y, and z), (b) orientation and grasping
angles (α, β, γ, and ρ).

REFERENCES

[1] A. Pott, Cable-driven parallel robots: theory and application.
Springer, 2018, vol. 120.

[2] C. Gosselin, R. Poulin, and D. Laurendeau, “A planar parallel 3-DOF
cable-driven haptic interface,” World Multi-Conference on Systemics,
Cybernetics and Informatics, pp. 266–271, 2008.

[3] Y. Yang and Y. Zhang, “A new cable-driven haptic device for inte-
grating kinesthetic and cutaneous display,” ASME/IFToMM Int. Conf.
Reconfigurable Mechanisms and Robots, pp. 386–391, 2009.
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