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Abstract— The human hand is Nature’s most versatile and
dexterous end-effector and it has been a source of inspiration for
roboticists for over 50 years. Recently, significant industrial and
research effort has been put into the development of dexterous
robot hands and grippers. Such end-effectors offer robust
grasping and dexterous, in-hand manipulation capabilities that
increase the efficiency, precision, and adaptability of the overall
robotic platform. This work focuses on the development of
modular, sensorized objects that can facilitate benchmarking
of the dexterity and performance of hands and grippers.
The proposed objects aim to offer; a minimal, sufficiently
diverse solution, efficient pose tracking, and accessibility. The
object manufacturing instructions, 3D models, and assembly
information are made publicly available through the creation
of a corresponding repository.

I. INTRODUCTION

With the ever increasing presence of robotic agents in
factory and home environments, significant industrial and
research effort has been put into the development of dex-
terous robot hands and grippers. Such end-effectors offer
robust grasping and dexterous, in-hand manipulation capabil-
ities that increase the efficiency, precision, and adaptability
of the system to different task requirements. Even though
equivalent dexterity from an object-centric viewpoint could
possibly be achieved by a dexterous robot arm paired with
a simple gripper, a dexterous end-effector is often more
appropriate [1]. Good examples are tasks that require in-hand
tool re-orientation (without re-grasping) or tasks in cluttered
environments where arm motion is heavily constrained.

Currently, many dexterous end-effector variants are avail-
able to a robot system designer, ranging from anthropo-
morphic hands [2]–[4], to more task-oriented grippers [5],
[6]. Even though each design is generally accompanied
by a range of tests and experiments highlighting selected
performance aspects, it remains challenging to assess which
hand is most appropriate for a specific application. This is
particularly relevant for tasks that require a certain degree of
in-hand manipulation capability, where a unified performance
evaluation standard is yet to be adopted. Defining meaningful
benchmarking methods for in-hand manipulation is difficult
because the protocols are closely linked to the objects used in
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Fig. 1. The proposed sensorized object set consists of primitive shapes in
three sizes that can be reassembled in various combinations. The surface
friction and stiffness can be selected by employing different molding
materials. Object halves contain cavities enabling the adjustment of weight
and weight distribution in objects. The object set has been designed to
be compatible with a variety of motion capture sensing options such
as the magnetic motion capture micro-sensors of the Polhemus Liberty,
retroreflective markers for tracking with an optical motion capture system
(e.g., Vicon), ArUco markers that can be tracked with a camera, or an
inertial measurement unit (IMU).

the tests. Manipulation tasks generally involve complex phys-
ical phenomena that can not be appropriately evaluated in a
simulated environment, so challenging and time-consuming
real experiments are required to obtain reliable results.

When defining a benchmark it is important to choose an
appropriate object set that has the following characteristics:

1) Allow for Efficient Pose Tracking: Unlike grasping,
in-hand manipulation performance can rarely rely on
discrete success metrics, so precise object motion
tracking is of paramount importance for the creation
of useful benchmarks. The object set should therefore
be able to accommodate some form of motion capture
technology, which is absent in most existing sets.

2) Provide a Minimal, Sufficiently Diverse Solution:
The object set needs to be diverse enough to cover the
broad range of applications and compact enough to
permit fast and effortless testing and experimentation.
A minimal set will also allow for easy storage.

3) Provide Accessibility: A condition for widespread
adoption of unified benchmarking frameworks is that
the object set used should be easily accessible to users
and research groups anywhere in the world.
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This work presents a modular, sensorized object set for
assessing the grasping and dexterous, in-hand manipulation
capabilities of grippers and hands. To facilitate object motion
tracking, the set is equipped with modules that can accom-
modate various motion capture markers or sensors. These
removable sensor mounts are designed to have a negligible
effect on the objects’ inertia and to minimally obstruct their
motion. The size vs diversity trade-off is solved through
a modular design, allowing the user to mix and match
object parts and obtain a large selection of different shapes
from a small number of initial components (minimal set).
The objects contain cavities that can be utilized to adjust
their weight and its distribution, if required. The objects
come in rigid and soft surface variants, allowing the user
to assess performance with different contact conditions. The
set solves the accessibility issue by employing common rapid
prototyping methods in its fabrication process and making
use of easily accessible materials. The object design and
manufacturing instructions are made available in an open
source manner.

Even though the main application of the proposed object
set is gripper and hand performance assessment, it is also
suitable for a wide range of alternative use cases. Beyond
providing quantitative measures for hand capability and dex-
terity comparisons, the objects can be of great use in human
arm or hand rehabilitation and clinical assessment. The
patient’s level of recovery can be effectively monitored and
used as a basis for designing case-specific training sessions
that focus on weakened muscle groups. As the objects are
compatible with several types of motion capture systems,
they allow for efficient comparison of tracking performance.

The rest of this work is organized as follows: Section II
introduces the related work, Section III presents the design
of the objects, Sections IV demonstrates how the proposed
objects can be used, while Section V concludes the work and
discusses some possible future directions.

II. RELATED WORK

For dexterous robotic hands, the majority of object set
resources focuses on grasping and manipulation that largely
depend on robot arm dexterity. Although some of the previ-
ously proposed objects are equipped with motion tracking
capabilities and tactile sensors, there are no examples of
easily accessible, modular, sensorized solutions. Moreover,
most of the object sets proposed are mainly used to evaluate
the grasping capabilities of both grippers and hands and not
their efficiency in executing dexterous manipulation tasks.

Even though object sets are necessary for reliable evalua-
tion of a robot’s manipulation performance in the real world,
only a few are clearly defined and available to the research
community. The YCB object set [7] is a set of 75 objects
and their corresponding 2D image and 3D model data. The
set is aimed at benchmarking the capabilities of robot end-
effectors for a wide range of tasks and consists of everyday
life objects, objects used in assembly tasks during medical
rehabilitation, and objects for industrial robotic applications.
It is currently the most well known and complete object set

available that focuses mainly on quantifying a robot arm-
hand system’s ability to grasp and manipulate objects. The
set can also be augmented with visual markers for in-hand
manipulation [8], although this is not the collection’s primary
purpose. The YCB object set is readily available upon
request. Another list of physical objects was presented within
the frame of the Amazon Picking Challenge [9], where the
picking task was perception oriented and object models were
not provided. Building on the former, the ACRV Picking
Benchmark [10] defines a set of 42 common objects and their
labeled images for an extended shelf picking benchmark.

Although they are not part of a standard set, some in-
stances of individual sensorized objects for assessing grasp-
ing and manipulation capabilities of human and robot hands
have been developed. In [11], two instrumented objects
for investigating human grasp properties were presented.
The objects were designed to assess only three-finger grasp
configurations, focusing on contact force measurements. In
[12], the authors presented an object equipped with tactile
and motion tracking sensors, which was in [13] utilized to
evaluate human grasp quality. These are not readily available
to the research community and their manufacturing proce-
dures are not trivial, making widespread adoption difficult.

An object collection that was not explicitly defined, but is
perhaps the closest to this proposal, was employed within a
standard defined by NIST [14], which was further explored
in [15]. The standard presents the foundations for robot
hand performance benchmarking and among others includes
protocols for quantifying in-hand manipulation and object
pose estimation. Although the benchmark recognises the
importance of object shapes and properties on dexterous
manipulation performance, it does not define a standard set to
be used in the experiments. It does, however, advise that the
tests should be conducted across a range of diverse objects.
Their examples include a cube, sphere, and cylinder that have
been retrofitted with reflective markers for tracking with a
visual motion capture system. The external marker mount is
quite large compared to the objects, affecting their inertial
properties and possibly hindering the execution of certain
in-hand manipulation motions. To address those issues, the
objects proposed in this work are equipped with motion
capture sensors in a way that preserves the object shape and
inertia characteristics.

A number of data sets that consist of object scans, images,
and models have also been proposed. These are appropriate
for experiments and planning in simulation, or as training
sets for various machine learning algorithms. BigBIRD [16],
for instance, features a data set providing high quality image
and 3D point cloud data for each of its 125 objects. Another
example is the KIT object models database [17], which is
targeted at applications in service robotics. It consists of
3D point cloud data, aligned with 2D images for over a
hundred typical household items. A large scale endeavor
aimed mainly at grasp planning is the Columbia Grasp
Database [18], which provides 3D models of roughly 8000
objects, along with successful grasp labels for many robot
hands.



Fig. 2. The proposed construction of the modular, sensorized soft cube is
depicted in subfigure a). Starting from the left of the figure, the sensorized
object consists of a urethane based retroreflective marker mount, a plastic
screw, one object half, the object weights, the other object half, and another
urethane based retroreflective marker mount. The urethane mount houses
four retroreflective marker sockets that are configured asymmetrically, to
allow reliable 6 DOF (degrees of freedom) pose tracking with an optical
motion capture system (e.g., Vicon). To minimise occlusion issues, the
mounts are placed on opposing object faces. Subfigure b) shows the
exploded view of a mold for a soft cube.

III. MODULAR, SENSORIZED OBJECTS

In this work, a range of modular, sensorized objects is
created by combining a set of primitive object shapes. The
structures of the sensorized objects consist of five to thirteen
modular, 3D printed parts. In particular, the list is as follows:
a plastic screw (which holds the object parts together), two
object halves, two removable urethane marker mounts, and
eight removable object weights (these are optional com-
ponents). Such a structure is depicted in Fig. 2, subfigure
a). The proposed objects can be created with a variety of
materials that facilitate the selection of the desired object
stiffness and friction and they can be equipped with different
motion tracking markers and sensors.

A. Object Geometries

The object set consists of sphere, cube, and cylinder
object halves (the cylinder is split both axially and radially),
which can be joined together to form a combination of
diverse objects for grasping and manipulation experiments
(see Fig. 3). The different shape combinations are based
on a minimal number of parts that achieves a diverse set
of simple and complex geometries. Geometries with sharp
bends or corners (the objects of Fig. 3d) force end-effectors
to perform more complex manipulation motions like finger
gaiting [19] or to maneuver around the object geometry in
order to reach certain object surfaces. Such complex motions
give to the researchers insight into how certain hands or
grippers will behave when handling geometrically complex
objects. Additionally, three object sizes have been developed

TABLE I
THE DIMENSIONS OF THE PROPOSED SENSORIZED OBJECTS FOR

DIFFERENT OBJECT SIZES AND GEOMETRIES.

Object Geometry Dimensions [mm]

Small

Cube 50 x 50 x 50

Cylinder (Radially Split) 50 x 50

Cylinder (Axially Split) 50 x 50

Sphere 50

Medium

Cube 75 x 75 x 75

Cylinder (Radially Split) 75 x 75

Cylinder (Axially Split) 75 x 75

Sphere 75

Large

Cube 100 x 100 x 100

Cylinder (Radially Split) 100 x 100

Cylinder (Axially Split) 100 x 100

Sphere 100

to be used with a wide range of hand and gripper sizes. The
three sizes for cylindrical objects can be seen in Fig. 3e and
all object dimensions can be found in Table I.

B. Material Selection
Each object half contains four compartments, which can be

filled or left empty to generate various controllable weights
and variations of center of mass in an object. The intro-
duction of an easily tunable center of mass in the proposed
objects allows for rapid adjustment of the experimental
conditions while assessing the robustness and dexterity of
a hand, by altering a single object characteristic.

The achievable mass variations depend on the density
of the selected material. The maximum achievable weight
deviations of the proposed sensorized objects for different
materials can be found in Table II. It must be noted that when
using a magnetic motion capture system, metallic weights
must be avoided. Surface friction and hardness can be varied
in different object halves by combining different elastomer
materials molded onto the rigid part. Elastomer materials
with Shore hardness of 30A (Youngs Modulus of 1.07 MPa)
and above (like urethane rubbers, e.g. Smooth-On Vytaflex
30) are all compatible materials for producing various surface
frictions and stiffnesses.

C. Fabrication / Assembly Process
To increase accessibility, rapid prototyping methods like

hybrid deposition manufacturing (HDM) [20] and 3D print-
ing were utilized. These techniques employ a simple fabri-
cation process and allow for efficient integration of various
materials (e.g., polylactic acid (PLA), Acrylonitrile butadiene
styrene (ABS), resin, etc.). The object set can thus be made
in a short time frame while remaining affordable.



TABLE II
MAXIMUM ACHIEVABLE WEIGHT DEVIATIONS OF THE PROPOSED SENSORIZED OBJECTS. ALL OBJECTS ARE CONSIDERED TO BE SOLID

(NON-HOLLOW). DIFFERENT MATERIALS CAN BE CHOSEN FOR THE FABRICATION OF THE OBJECT SET.

Object Geometry
Max Internal Weight Deviation [g]

PLA ABS PETG Resins Aluminium

Small

Cube 42.56 35.70 47.36 39.47 - 42.90 92.66

Cylinder
(Radially Split) 27.97 23.46 31.13 25.94 - 28.20 60.91

Cylinder
(Axially Split) 29.07 24.38 32.35 26.96 - 29.30 63.29

Sphere 17.26 14.48 19.21 16.01 - 17.4 37.58

Medium

Cube 248.20 208.17 276.22 230.18 - 250.20 540.43

Cylinder
(Radially Split) 167.65 140.61 186.58 155.48 - 169.00 365.04

Cylinder
(Axially Split) 183.12 153.59 203.80 169.83 - 184.60 398.74

Sphere 148.40 124.47 165.16 137.63 - 149.60 323.14

Large

Cube 731.40 613.43 813.98 678.32 - 737.3 1592.57

Cylinder
(Radially Split) 517.72 434.22 576.18 480.15 - 521.90 1127.30

Cylinder
(Axially Split) 544.21 456.44 605.65 504.71 - 548.60 1184.98

Sphere 422.79 354.60 470.52 392.10 - 426.20 920.59

Fig. 3. Subfigures a) and b) present the primitive shapes of proposed rigid
and soft sensorized object variants, respectively. Subfigure c) demonstrates
examples of irregularly shaped configurations obtained by combining the
modules. Subfigure d) shows a set of objects with varying sizes that can be
used with hands of different sizes.

1) 3D Printing Components: The rigid bodies and mold-
ing components of the proposed sensorized objects are
produced through 3D printing. Object halves with rigid
outer surfaces (PLA or ABS material) are printed directly
and do not require additional molding steps. Object halves
with compliant, elastomer surfaces and alternative friction
properties require 3D printing of various molds and inner
object cores that facilitate molding. The inner object cores
are designed as object halves with a porous outer wall that
interlocks and anchors the elastomer material in place.

2) Mold Assembly: Depending of the module being fab-
ricated, the mold assembly steps can vary from preparation
of a single mold part, to the assembly of several mold
components around a soft object core (as it can be seen in
Fig. 4a) for the material deposition step.

3) Deposition: Once a mold is assembled, the selected
elastomer material is deposited into the mold cavity, as
depicted in Fig. 4b. The elastomer can be used to produce
appropriate mounts for attaching retroreflective markers or
ArUco markers, or to cover the object halves, providing
varying object surface properties.

4) Mold Disassembly: After the curing process is com-
pleted, the molded components can be removed from the
molds and assembled together with the other 3D printed parts
to produce a complete object, as shown in Fig. 4d.

The CAD and STL files of the sensorized objects, as
well as detailed fabrication and assembly instructions, can
be found at the following URL:

https://github.com/newdexterity/Sensorized-Objects



TABLE III
COMPARISON OF DIFFERENT MOTION CAPTURE SYSTEMS.

Motion Capture System
Accuracy Noise

Sampling Rate [Hz]

Translation [mm] Rotation [deg] Translation [mm] Rotation [deg]

Optical Motion
Capture 0.076 - 0.129 0.48 - 0.82 0.015 0.095 100

Magnetic Motion
Capture 0.76 0.15 0.017 0.05 240

ArUco Markers 1.90 - 2.17 0.59 - 1.12 0.77 - 5.57 0.076 - 0.26 30

IMU N/A 1.25 N/A 0.055 104

Fig. 4. Molding process for creating a soft-surface sphere half. Subfigure
a) displays the assembly of molding components for a soft sphere half.
Subfigures b) and c) present the deposition process, where elastomer
material is injected into the cavity of the mold and then sealed to achieve
the required outer surface. Subfigure d) shows the disassembly after the
elastomer material has been cured.

D. Sensing

The object set was made compatible with four motion
capture system types that allow accurate trajectory tracking.
The first is an optical motion capture system (e.g., Vicon),
which utilizes retroreflective markers for tracking the object
pose, as seen in Fig. 5a. The second is a magnetic motion
capture system (e.g., Polhemus Liberty), the micro sensor
of which can be mounted inside a properly designed plastic
screw (Fig. 5b), reaching the center of the object. The third
is based on an inertial measurement unit (IMU), along with

Fig. 5. Instances of an experiment conducted with a sensorized object and
a simple, two fingered gripper executing an equilibrium point manipulation
task. The object motion tracking is accomplished with: a) the Vicon optical
motion tracking system that utilizes reflective markers, b) the Polhemus
Liberty magnetic motion capture system that employs a micro sensor
inserted in the object core through the urethane pad, c) the ArUco marker
attached to a urethane pad tracked through a standard web camera, and d)
the IMU attached inside an object half.

a microcontroller and bluetooth module (Ardunio NANO 33
IoT), powered by a 180 mAh lithium polymer battery. These
components are fixed within the object half with dedicated
cavities, as depicted in Fig. 5d. The IMU system is accom-
panied by sample Arduino code that performs orientation
tracking using the Madgwick filter [21] and publishes the
angles through Bluetooth. Position tracking with the IMU
system was not implemented due to the high sensitivity to
acceleration error in the double integration process. In case
none of the first three systems is available to the users, a set
of marker mounts compatible with Augmented Reality (AR)
tags or ArUco markers is provided (Fig. 5c).



A comparison of the supported motion capture systems
characteristics is presented in Table III. The translation
accuracy and noise (precision) for the optical motion capture
system (Vicon) were obtained from [22]. The rotation accu-
racy and noise values for the Vicon system were estimated
with respect to the retroreflective marker separation on the
sensor pad. The accuracy values for the magnetic motion
capture systems were obtained from the Polhemus Liberty
user manual [23]. The noise values for the magnetic motion
capture system were obtained from static sensor measure-
ments. The accuracy and noise characteristics for AR tag
based motion tracking were obtained experimentally, using
the ArUco class of fiducial markers [24] and a Logitech
C922 Pro Stream HD webcam with 1080p resolution at 30
frames per second. A marker of size 25 mm was attached to
a sensorized cube and tracked with the webcam. The cube
was simultaneously tracked with the Vicon system, which
was chosen as the ground truth. For this purpose, larger
Vicon markers were placed with higher separation along the
object to ensure higher tracking accuracy. The translational
accuracy was estimated by linearly offsetting the cube and
comparing the distances measured by the two systems. The
rotational accuracy was estimated by rotating the cube by
90 degrees along a fixed axis and comparing the measured
angles. The translational and rotational noise was computed
as the standard deviation of the position and angle offsets
from the mean estimated pose in a static configuration.
The accuracy and noise experiments for the ArUco markers
were performed at 20 cm and 100 cm from the camera.
The rotation accuracy and noise for the IMU system were
obtained in a similar fashion, using the Vicon system as
reference.

Depending on the manipulation task, the best suited mo-
tion capture system could change. For instance, the optical
motion capture system (Vicon) offers data with the high-
est accuracy and a low amount of noise. However, when
conducting more complex manipulation motions such as
caging manipulation, the markers may be covered by the
hand, causing occlusions and affecting the data collection
process. This effect can also be observed in the AR tags
and ArUco markers, where the tags and markers must be
visible to the camera. The magnetic motion capture system
(Polhemus Liberty) mitigates the occlusion issue of the
previous two systems, but is sensitive to the presence of large
metallic objects. The thin micro-sensor cable of the magnetic
motion capture system may impact the object dynamics if
there is tension on the cable, and may obstruct the hand’s
motion when performing certain manipulation tasks. The
IMU system does not suffer from occlusion issues and can
operate untethered, but it can not be accommodated by all
object sizes (e.g., the small rigid sphere, and the small
soft objects range) due to size limitations of the employed
electronics (i.e., microcontroller board, battery, and step-up
regulator). Another disadvantage of the IMU system is the
significant drift that affects position tracking. The distinct
disadvantages of the four examined motion capture systems

can be mitigated by taking advantage of the multi-modal
sensing capabilities of the proposed sensorized object set. By
combining different classes of motion capture approaches,
the quality and accuracy of the captured data can be signif-
icantly improved. For instance, a low-cost solution for full
object pose tracking can rely on AR tags and the IMU, fusing
the two data streams to compensate for occlusion and drift
issues of the separate systems. The proposed object set does
not incorporate force sensing modules to preserve fabrication
simplicity, object size, and overall accessibility. Furthermore,
the lack of such additional sensors allows the set to be
highly reconfigurable and maintain a low cost. Even though
measuring force values and profiles is essential for many
manipulation tasks, there are several aspects of dexterous,
in-hand manipulation that can be effectively assessed purely
through object pose tracking and object kinematics. For such
applications, the proposed object set is very well suited.

E. Object Models

The objects were designed in the SolidWorks CAD soft-
ware, and the resulting source models were made available
through the accompanying sensorized objects website and
repository. Disseminating source designs allows for fast pa-
rameter modification and extraction, facilitating community
involvement in improving and evolving the object set. The
repository also contains STL models of all objects, which
can be readily used with various rapid prototyping methods.
In addition, the models can be used as collision objects
in various planning frameworks, as well as for point cloud
registration in perception systems. Combined with the pro-
vided mass and surface material data, the object models can
also be effectively utilised in simulated environments. They
are very well suited for simulation-to-reality applications, as
their integrated tracking capability enables straightforward
comparison between simulated and real trajectories.

IV. FUNCTIONAL DEMONSTRATION

The pose tracking capability of the sensorized objects
can be used to give insight into the ranges of motion,
repeatability, and drift of the system. It can be employed
to assess and compare the performance of robot hands and
grippers, as well as human hands, as depicted in Fig. 6.
The objects can also provide pose feedback to the hand
to quickly test closed-loop control algorithms. Through the
highly accessible and customizable shapes and weights of
objects that the proposed set offers, the time needed to
prepare experimental examples can be significantly reduced.

For demonstration purposes, a performance assessment
of the NDX-A* hand [25] was conducted, as presented
in Fig. 7. The demonstration examines the robot hand’s
robustness in executing a combined rolling and translation
manipulation motion over 10 cycles with a chosen sensorized
object. The hand’s performance was assessed in terms of
drift and repeatability for the executed manipulation motion,
computed from the cycle endpoints. Drift was computed by
averaging the positional and rotational differences between
subsequent endpoints. Repeatability was calculated as the



Fig. 6. The functional demonstration shows various objects from the
sensorized object set being manipulated with different in-hand manipulation
strategies by different hands and grippers. Subfigure a) displays an NDX-A*
robot hand [25] performing fixed point and rolling manipulation motions.
Similarly, subfigure b) shows in-hand translation and rotation tasks executed
by the human hand. The T42 gripper [26] is used to perform manipulation,
as well as grasping and releasing experiments in subfigure c).

average positional and rotational difference between the
initial end point and the drift-corrected cycle endpoints.
The experiments were performed with a small rigid-surface
sphere and a soft-surface sphere without additional weights,
tracked with the Polhemus Liberty motion capture system.
Although the robot hand is composed of metallic compo-
nents, the noise can be significantly minimized by ensuring
the magnetic sensor is close to the Polhemus source and by
avoiding grasps that enclose the sensor in metal, such as
caging grasps. The results (Table IV and Fig. 7) can give
insight into whether a certain end-effector is suitable for a
chosen task based on the maximum acceptable error for that
task. Furthermore, they can be used for diagnosing slip in the
system through controlled variation of individual object and
motion characteristics, in this case the surface compliance.
For instance, the obtained drift results indicate a need for
increased finger pad friction or increased contact forces that
should be exerted on the object.

Fig. 7. Experimental data of a manipulation task executed with a soft
sphere and the NDX-A* robot hand. Ten trials of the manipulation task
have been executed. Cycle end points (highlighted in red) enable a holistic
assessment of the repeatability and drift. Such data also allows the user to
assess the performance and dexterity of the employed gripper or hand.

TABLE IV
MANIPULATION REPEATABILITY AND DRIFT FOR TWO DIFFERENT

OBJECT SURFACES FOR A SPHERICAL OBJECT.

Manipulation
Results

Rigid Surface Soft Surface

Mean Standard
Deviation Mean Standard

Deviation
R

ep
ea

ta
bi

lit
y Translation

[mm]
0.26 0.18 0.21 0.12

Rotation
[deg] 1.27 0.59 0.4 0.14

D
ri

ft

Translation
[mm]

0.33 0.14 0.22 0.11

Rotation
[deg] 2.35 0.01 0.87 0.002

A webpage presenting the object set and a video with
experiments can be found at the following URL:

http://newdexterity.org/sensorizedobjects

V. CONCLUSIONS AND FUTURE DIRECTIONS

This work focused on a modular and accessible sensorized
object set for benchmarking the grasping and dexterous, in-
hand manipulation capabilities of human and robot hands.
The object models, fabrication processes, and assembly in-
formation have been discussed and have been made publicly
available. A series of experiments involving the proposed
sensorized objects have been conducted and paradigmatic
experimental data has been presented. Regarding future di-
rections, the object set can be extended to include additional
shapes and softer surface materials. As the set is modular,
this would exponentially increase the number of possible
configurations and testing conditions. The object collection
can also be adapted to allow assessing tasks closer to real-
life applications, such as screwing, pouring, and insertion.
Implementation of a set of accompanying benchmarks and
protocols can enhance the utilization of the object set and



give researchers additional ways in which the objects can
be used. Another possible direction would be to add force
sensing capabilities to the proposed objects.
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