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Abstract— We present a novel algorithm (DeepMNavigate)
for global multi-agent navigation in dense scenarios using deep
reinforcement learning (DRL). Our approach uses local and
global information for each robot from motion information
maps. We use a three-layer CNN that takes these maps as input
to generate a suitable action to drive each robot to its goal posi-
tion. Our approach is general, learns an optimal policy using a
multi-scenario, multi-state training algorithm, and can directly
handle raw sensor measurements for local observations. We
demonstrate the performance on dense, complex benchmarks
with narrow passages and environments with tens of agents. We
highlight the algorithm’s benefits over prior learning methods
and geometric decentralized algorithms in complex scenarios.

I. INTRODUCTION

Multi-robot systems are increasingly being used for dif-
ferent applications, including surveillance, quality control
systems, autonomous guided vehicles, warehouses, cleaning
machines, etc. A key challenge is to develop efficient al-
gorithms for navigating such robots in complex scenarios
while avoiding collisions with each other and the obstacles
in the environment. As larger numbers of robots are used,
more efficient methods are needed that can handle dense and
complex scenarios.

Multi-agent navigation has been studied extensively in
robotics, AI, and computer animation. At a broad level, pre-
vious approaches can be classified into centralized [1], [2],
[3], [4], [5], [6] or decentralized planners [7], [8], [9], [10].
One benefit of decentralized methods is that they can scale
to a large number of agents, though it is difficult to provide
any global guarantees on the resulting trajectories [11] or
to handle challenging scenarios with narrow passages (see
Figures 1 or 2).

Recently, there has been considerable work on developing
new, learning-based planning algorithms [12], [13], [14],
[15], [16], [17] for navigating one or more robots through
dense scenarios. Most of these learning methods tend to
learn an optimal policy using a multi-scenario, multi-stage
training algorithm. However, current learning-based methods
are limited to using only the local information and do not
exploit any global information. Therefore, it is difficult to
use them in dense environments or narrow passages.
Main Results: We present a novel, multi-robot navigation
algorithm (DeepMNavigate) based on reinforcement learning
that exploits a combination of local and global information.
We use a multi-stage training scheme that uses various
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Fig. 1: Circle Crossing: Simulated trajectories of 90 robots in
circle crossing scenarios generated by our algorithm that uses global
information. The yellow points are the initial positions of the robots
and the red points are the diametrically opposite goals of the robot.
Our DeepMNavigate algorithm can handle such scenarios without
collisions along the trajectories, and all the robots reach their goals.
Prior learning methods that only use local methods [16], [12], [14]
cannot handle such scenarios, as the robots tend to get stuck.

multi-robot simulation scenarios with global information.
In terms of training, we represent the global information
using a motion information map that includes the location
of each agent or robot. We place the robot information in
the corresponding position to generate a bit-map and use
the resulting map as an input to a three-layer CNN. Our
CNN considers this global information along with local
observations in the scene to generate a suitable action to drive
each robot to the goal without collisions. We have evaluated
our algorithm in dense environments with many tens of
robots (e.g., 90 robots) navigating in tight scenarios with
narrow passages. As compared to prior multi-robot methods,
our approach offers the following benefits:

1) We use global knowledge in terms of motion informa-
tion maps in our network to improve the performance
of DRL. This also results in higher reward value.

2) Our approach scales with the number of robots and is
able to compute collision-free and smooth trajectories.
Running our trained system takes many tens of seconds
on a PC with a 32-core CPU and one NVIDIA RTX
2080 Ti on multi-robot systems with 10− 90 robots.

3) We can easily handle challenging multi-robot scenarios
like inter-changing robot positions or multiple narrow
corridors, which are difficult for prior geometric de-
centralized or local learning methods. In particular,
we highlight the performance on five difficult envi-
ronments that are very different from our training
scenarios and have more agents. This demonstrates the
generalizability of our method.
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II. RELATED WORK

A. Geometric Multi-Robot Navigation Algorithms

Most prior algorithms are based on geometric techniques
such as sampling-based methods, geometric optimization,
or complete motion planning algorithms. The centralized
methods assume that each robot has access to complete
information about the state of the other robots based on some
global data structure or communication system [19], [20],
[21], [22] and compute a safe, optimal, and complete solution
for navigation. However, they do not scale to large multi-
robot systems with tens of robots. Many pratical geometric
decentralized methods for multi-agent systems are based on
reciprocal velocity obstacles [7] or its variants [23]. These
synthetic methods can be used during the training phase of
learning algorithms.

B. Learning-Based Navigation Methods

Learning-based collision avoidance techniques usually try
to optimize a parameterized policy using the data collected
from different tasks. Many navigation algorithms adopt a
supervised learning paradigm to train collision avoidance
policies. Muller et al. [24] present a vision-based static
obstacle avoidance system using a 6-layer CNN to map
input images to steering angles. Zhang et al. [25] describe
a successor-feature-based deep reinforcement learning algo-
rithm for robot navigation tasks based on raw sensory data.
Barreto et al. [26] apply transfer learning to deploy a policy
for new problem instances. Sergeant et al. [27] propose
an approach based on multimodal deep autoencoders that
enables a robot to learn how to navigate by observing a
dataset of sensor inputs and motor commands collected while
being tele-operated by a human. Ross et al. [28] adapt an
imitation learning technique to train reactive heading policies
based on the knowledge of a human pilot. Pfeiffer et al. [29]
map the laser scan and goal positions to motion commands
using expert demonstrations. To be effective, these methods
need to collect training data in different environments, and
the performance is limited by the quality of the training sets.

To overcome the limitations of supervised-learning, Tai et
al. [30] present a mapless motion planner trained end-to-end
without any manually designed features or prior demonstra-
tions. Kahn et al. [31] propose an uncertainty-aware model-
based learning algorithm that estimates the probability of
collision, then uses that information to minimize the colli-
sions at training time. To extend learning-based methods to
highly dynamic environments, some decentralized techniques
have been proposed. Godoy et al. [32] propose a Bayesian
inference approach that computes a plan that minimizes the
number of collisions while driving the robot to its goal. Chen
et al. [14], [33] and Everett et al. [15] present multi-robot
collision avoidance policies based on deep reinforcement
learning, requiring the deployment of multiple sensors to es-
timate the state of nearby agents and moving obstacles. Yoon
et al. [34] extend the framework of centralized training with
decentralized execution to perform additional optimization
for inter-agent communication. Fan et al. [12] and Long et

al. [16], [17] describe a decentralized multi-robot collision
avoidance framework where each robot makes navigation
decisions independently without any communication with
other agents. It has been extended in terms of multiple
sensors and explicit pedestrian motion prediction [35]. Other
methods account for social constraints [15]. However, all
these methods do not utilize global information about the
robot or the environment, which could be used to improve
the optimality of the resulting paths or handle challenging
narrow scenarios.

(a) Our algorithm is able to compute
collision-free trajectories for 20 robots.

(b) We highlight some of the computed
trajectories with temporal information

computed using our algorithm.

(c) Trajectories by local learning method [16].
All agents do not reach the goal position.

(d) Selected trajectories by [16] with
temporal information. The agents get stuck.

Fig. 2: Narrow Corridor: We compute the trajectories computed
by DeepMNavigate and [16] for two groups of robots (20 total)
exchanging their positions through narrow corridors. In (a) and
(c), the yellow points correspond to the initial positions and the
red points correspond the final positions. (b) and (d), highlight
the temporal information along the trajectories using color and
transparency. Prior local planning methods [16] can only handle
these scenarios with up to 12 agents and the geometric decentralized
methods [7] cannot handle such cases. This benchmark is quite
different from training datasets.

III. MULTI-ROBOT NAVIGATION

A. Problem Formulation and Notation

We consider the multi-robot navigation problem for non-
holonomic differential drive robots. Our goal is to design a
scheme that avoids collisions with obstacles and other robots
and works well in dense and general environments. We
describe the approach for 2D, but it can be extended to 3D
workspaces and to robots with other dynamics constraints.

Let the number of robots be Nrob. We represent each robot
as a disc with radius R. At each timestep t, the i-th robot
(1 ≤ i ≤ Nrob) has access to an observation ot

i and then
computes an action ati that drives the i-th robot towards its
goal gt

i from the current position pt
i. The observation of
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each robot includes four parts: ot = [ot
z,o

t
g,o

t
v,o

t
M ], where

ot
z denotes the sensor measurement (e.g., laser sensor) of

its surrounding environment, ot
g stands for its relative goal

position, ot
v refers to its current velocity, and ot

M is the
robot motion information, which includes the global state
of the system, discussed in Section IV. In this paper, we
focus on analyzing and incorporating motion information
in the navigation system. Meanwhile, there are Nobs static
obstacles in the environment. We use Bk to denote the area
occupied by a static k-th obstacle. The computed action at

drives the robot to its goal while avoiding collisions with
other robots and obstacles within the timestep ∆t until the
next observation ot+1 is received.

Let L be the set of trajectories for all robots, subject to
the robot’s kinematic constraints, i.e.:
L = {li, i = 1, ..., Nrob|vti ∼ πθ(ati|oti),pti = pt−1

i + ∆t · vti ,
∀j ∈ [1, Nrob], j 6= i,

∥∥pti − ptj
∥∥ > 2R ∧ ∀k ∈ [1, Nobs],

∀q ∈ Bk,
∥∥pti − q

∥∥ > R ∧
∥∥vti∥∥ ≤ vmax

i }, (1)

where p0i is the initial position of the robot and pti are the
positions at timestep t. vti is the current linear velocity on the
2D plane (i.e. vx, vy) as a result of the action ati. The agent
we are simulating is non-holonomic and can only control
the linear velocity on the X axis and the angular velocity on
the Z axis (which is used to describe the rotation in the 2D
plane).

B. Multi-Agent Navigation Using Reinforcement Learning

Our approach builds on prior reinforcement learning ap-
proaches that use local information comprised of various
observations. Some of them only utilize three of the four
elements mentioned in III-A. The term ot

z may include the
measurements of the last three consecutive frames from a
sensor. The relative goal position ot

g in these cases is a 2D
vector representing the goal position in polar coordinates
with respect to the robot’s current position. The observed
velocity ot

v includes the current velocity of the robot. These
observations are normalized using the statistics aggregated
during training[36], [37]. This normalization can make RL
training more stable and improve its performance. The action
of a differential robot includes the translational and rotational
velocity, i.e. at = [vt, ωt], v ∈ (0, 1), ω ∈ (−1, 1). We use
the following reward function to guide a team of robots:

rti = (gr)ti + (cr)ti + (ωr)ti. (2)
When the robot gets closer or reaches its goal, it is rewarded
as

(gr)ti =

{
rarrival if

∥∥pti − gi
∥∥ < 0.1

rapproaching(
∥∥∥pt−1

i − gi

∥∥∥− ∥∥pti − gi
∥∥) otherwise.

(3)

The ‖pi − gi‖ item denotes the distance between the robot
and its goal. When there is a collision, it is penalized using
the function

(cr)ti =


rcollision if

∥∥pti − ptj
∥∥ < 2R

or
∥∥pti − q

∥∥ < R,q ∈ Bk

0 otherwise.
(4)

In addition to collision avoidance, one of our goals is
generating a smooth path. A simple technique is to im-
pose penalties whenever there are large rotational velocities.
Although it is not a standard way to obtain smooth path,

Fig. 3: We highlight the architecture of our policy network (DeepM-
Navigate), including (global and local) maps used by our approach.
The global map is based on the world coordinate system and each
local map is centered at the corresponding robot’s current location.
The red robot represents the map’s corresponding robot, black
robots represent the neighboring robots, the yellow star represents
the goal, and the blue area is an obstacle. In our implementation,
the map is discretized and assigned different values. We use a
2D convolutional neural network to handle the additional global
information input from the map and fully-connected network to
compute the action for each robot.

we found this technique can achieve a smooth trajectory
empirically. This can be expressed as

(ωr)ti =

{
rsmooth|ωti | if |ωti | > 0.7.

0 otherwise,
(5)

where rarrival, rapproaching, rcollision and rsmooth are param-
eters used to control the reward. These parameters provide
reward feedback for the agents, which makes the training
process more stable [38]. In practice, the reward parameters
can be tuned to obtain desirable behaviors (e.g., learn more
conservative behaviors without a larger collision penalty).
We do not change the reward function when we use our
approach for different environments.

IV. DEEPMNAVIGATE: TRAJECTORY COMPUTATION
USING GLOBAL INFORMATION

In this section, we present our novel, learning-based,
multi-agent navigation algorithm that uses positional infor-
mation of other agents. Our formulation is based on motion
information maps and uses a 3-layer CNN to generate a
suitable action for each agent.

A. Motion Information Maps

Prior rule-based decentralized methods such as [7] use
information corresponding to the position and velocity of
each agent to compute a locally-optimal and collision-free
trajectory. Our goal is to compute similar state information
to design better learning-based navigation algorithms. Such
state information can be either gathered based on some
communication with nearby robots or computed using a deep
network that uses raw sensor data. In our formulation, we
use maps that consist of each agent’s location as input. In
particular, we use two different map representations: one
corresponds to all the robots based on the world coordinate
system and is called the global-map; the other map is
centered at each robot’s current location and uses the relative
coordinate system and is called the local-map.

We use the following method to compute the global-map
and the local-map. During each timestep t, we specify the
i-th robot’s position in the world frame as xt

i ∈ R2. We
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also use the goal positions gi,∀1 ≤ i ≤ Nrob, obstacle
information Bk,∀1 ≤ k ≤ Nobs, to build the map M t

i ∈
Rh×w for the i-th robot. Assume the size of the simulated
robot scenario is H×W , where H represents the height, W
represents the width, and the origin of the world frame is
located at (H

2 ,
W
2 ). Each pixel of the map (M t

i (p, q),∀1 ≤
p ≤ h, 1 ≤ q ≤ w) indicates which kind of object
lies in the small area Apq =

(
(p−1)H

h − H
2 ,

pH
h − H

2

]
×(

(q−1)W
w − W

2 , qW
w − W

2

]
in the world frame. Assuming

each object’s radius is ri, then M t
i (p, q) corresponds to:

M t
i (p, q) =



1, {y|‖y − xti‖ ≤ R}
⋃
Apq 6= ∅

2 ∃1 ≤ j ≤ Nrob, j 6= i,
s.t. {y|‖y − xtj‖ ≤ R}

⋃
Apq 6= ∅

3, {y|‖y − gi‖ ≤ R}
⋃
Apq 6= ∅

4, ∃1 ≤ k ≤ Nobs, s.t. Bk

⋃
Apq 6= ∅

0, otherwise,

. (6)

where “1” represents the corresponding robot, “2” represents
the neighboring robots, “3” represents the robot’s goal,
“4” represents the obstacles and “0” represents the empty
background (i.e. free space). This is highlighted in Fig. 3.

In some scenarios, there could be a restriction on the
robot’s movement in terms of static obstacles or regions that
are not accessible. Our global-map computation takes this
into account in terms of representing M t

i (p, q). However,
these maps may not capture scenes with no clear boundaries
or very large environments spread over a large area. If we
use a global-map with the world coordinate representation
for all the agents, the resulting map would be extremely
large and would involve a high computational cost and
memory overhead. In these cases, we use the local-map for
each agent, instead of considering the whole scenario, which
whold have a size H ×W These local maps only account
for information in a relatively small neighborhood with a
fixed size Hl × Wl. The size of the local neighborhood
(Hl, Wl) can be tuned to find a better performance for
different applications. In addition to the position information,
these maps may contain other state information of the robot,
including velocity, orientation, or dynamics constraints as
additional channels.

B. Proximal Policy Optimization

We use proximal policy optimization [39] to optimize the
overall system. This training algorithm has the stability and
reliability of trust-region methods: i.e., it tries to compute
an update at each step that minimizes the cost function
while ensuring that the deviation from the previous policy
is relatively small. The resulting proximal policy algorithm
updates the network using all the steps after several contin-
uous simulations (i.e. after each robot in the entire system
reaches its goal or stops running due to collisions) instead
of using only one step to ensure the stability of network
optimization. In these cases, if we store the robot positions
or motion information as dense matrices corresponding to the
formulation in Eq. 6, it would require a significant amount of
memory and also increase the overall training time. Instead,
we use a sparse matrix representation for M i

t . We compute

the non-zero entries ofM i
t based on the current position of

each robot, the goal positions and obstacle information using
Eq. 6. To feed the input to our neural network, we generate
dense representations using temporary sparse storage. This
design choice allows us to train the system using trajectories
from 58 agents performing 450 actions using only 2.5GB
memory. More details on the training step are given in
Sec. V.

C. Network

To analyze a large matrix and produce a low-dimensional
feature for input M t

i , we use a convolutional neural network
(CNN) because such network structures are useful for han-
dling an image-like input (or our map representation). Our
network has three convolutional layers with architecture, as
shown in Fig. 3. Our network extracts the related locations
of different objects in the environment and could guide the
overall planner to avoid other agents and obstacles to reach
the goal.

Our approach to handling raw sensor data (e.g., 2D laser
scanner data) uses the same structure as local methods[16],
i.e. a two-layer, 1D convolutional network. Overall, we use
a two-layer, fully-connected network that takes as input the
observation features, including the feature generated by the
1D & 2D CNNs, related goal position, and observed velocity.
This generates the action output and local path for each robot.
We highlight the whole pipeline of the network for local and
global information in Fig. 3 and Algorithm 1.

Algorithm 1 Policy Making for DeepMNavigate

1: for timestep t = 1, 2, ... do
2: // Each robot runs individually in parallel
3: for robot i = 1, 2, ...N do
4: Collect observation ot

i = [ot
z,o

t
g,o

t
v,o

t
M ]

5: Run policy πθ represented by the network, get action ati
6: Update the robot position pti according to action ati
7: end for
8: end for

Layer Convolutional Filter Stride Padding Activation Fuction Output Size

Input - - - - 250× 250× 1

Conv 1 7× 7× 1× 8 1× 1 ‘SAME’ ReLU 250× 250× 8

Max Pooling 1 3× 3 2× 2 ‘SAME’ - 125× 125× 8

Conv 2 7× 7× 8× 12 1× 1 ‘SAME’ ReLU 125× 125× 12

Max Pooling 2 3× 3 2× 2 ‘SAME’ - 63× 63× 12

Conv 3 7× 7× 12× 20 1× 1 ‘SAME’ ReLU 63× 63× 20

Max Pooling 3 3× 3 2× 2 ‘SAME’ - 32× 32× 20

Flatten - - - - 20480

Fully connected 20480× 128 - - ReLU 384

Fully connected 128× 64 - - ReLU 256

TABLE I: Architecture and hyper-parameters of a convolutional
neural network that considers the global information.

D. Network Training

Our training strategy extends the method used by learning
algorithms based on local information [16], [14]. To acceler-
ate the training process, we divide the overall training com-
putation into two stages. In the first stage, we use k robots
(e.g. k=20) with random initial positions and random goals
in a fully-free environment. In the second stage, we include
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Fig. 4: We highlight the reward as a function of the number of
iterations during the second stage of the overall training algorithm.
We compare the performance of a reinforcement learning algorithm
that only uses local information [16] to our method, which uses
local and global information. Our method obtains a higher reward
than [16] due to the global information.

a more challenging environments, such as a narrow passage,
random obstacles, etc. We show the training scenarios in Fig.
5 in [40]. These varying training environments and the large
number of robots in the system can result in a good overall
policy. Moreover, the use of global information results in
much larger network parameters. We use a 20480× 128 FC
layer, which is more difficult to train than a relatively small,
simple network that only accounts for local information.
To accelerate the training process and generate accurate
results, we do not train the entire network from scratch and
instead include pre-training. During the first stage, we retrain
the network with additional structures corresponding to the
global information (i.e. the global-map) using the pre-trained
local information network part. This pre-training stage uses
the parameters proposed in [16]. We highlight the reward as
a function of the iterations during the second stage of the
training and compare the overall reward computation with
that described in the local method [16] in Fig. 4. Notice that,
since we use a 2D convolutional neural network, our overall
training algorithm needs more time during each iteration of
the training (ours around 1200s vs [16] around 400s). As
a result, we do not perform the same number of training
iterations as[16], as shown in Fig. 4. The total training time
is around 40 hours.

V. IMPLEMENTATION AND PERFORMANCE

In this section, we discuss the performance of our multi-
agent navigation algorithm (DeepMNavigate) on complex
scenarios and highlight the benefits over prior reinforcement
learning methods that only use local information [16].

Fig. 5: Room with Obstacles: We highlight the trajectories of 20
robots in a room with multiple obstacles. We highlight the initial
position of the agent (yellow) and the final position (red) along
with multiple obstacles. Prior learning methods that only use local
methods [16], [14] will take more time and may not be able to
handle such scenarios when the number of obstacles or the number
of agents increases.

Fig. 6: Random Start and Goal Positions: Simulated trajectories
of 20 robots from and to random positions in a scene with obstacles.
The yellow points are the initial positions and the red points are the
final positions. The blue areas are obstacles with random locations
and orientations.

A. Parameters

During simulation, the radius is set as R = 0.12m. In
the current implementation, we set H = W = 500m for
the global-map and Hl = Wl = 250m for each local-
map. In both situations, we set w = h = 250. Although
a larger map (e.g., w = h = 500) could include more
details from the system, it would significantly increase the
network size and the final running time. For instance, the
memory requirement of CNN increases quadratically with
the input size. In current implementation, we use a PC with
32-core CPU, 32GB memory and one NVIDIA RTX 2080 Ti.
To include the additional global information, the algorithm
consumes 1.63GB CPU memory, 970MB GPU memory and
requires 0.25s for computing one time step, compared to
[16] as 1.57 GB CPU memory, 340MB GPU memory and
0.2s. The overhead is not significant. For parameters in the
reward function, we set rarrival = 15, rcollision = −15,
rapproaching = 2.5, and rsmooth = −0.1. We choose rarrival
and rcollision of the same magnitude to obtain an effective,
safe behavior, which is a key metric to evaluate robots’
trajectories; rapproaching is chosen to encourage robots to
approach their goal as fast as they can, which provides a
dense feedback to make convergence relatively faster; a small
rsmooth value should regularize the trajectory and make it
smoother.

Fig. 7: Perturbation saliency generated by method [41] in the
narrow corridor benchmark. Red point represents the current agent
and yellow points represent the surrounding agents. Yellow area is
saliency for the action policy.

B. Evaluation Metrics and Benchmarks

To evaluate the performance of our navigation algorithm,
we use the following metrics:

• Success rate: the ratio of the number of robots reaching
their goals in a certain time limit without any collisions
to the total number of robots in the environment.

• Collision or stuck rate: if the robot cannot reach the
destination within a limited time or collides, they are
considered as getting stuck or in-collisions, respectively.

• Extra time: the difference between the average travel
time of all robots and the lower bound of the robots’

6956



Metrics Methods
# of agents (cirle radius (unit:m))

30 (8) 40 (8) 50 (8) 60 (8) 70 (8) 80 (12) 90 (12)

Success Rate
[16] 1 0.975 0.96 0.95 0.929 0.7375 0.722

Ours 1 1 1 1 0.986 1 1

Stuck/Collision Rate
[16] 0/0 0/0.025 0/0.04 0/0.05 0/0.071 0.175/0.0875 0.233/0.044

Ours 0/0 0/0 0/0 0/0 0/0.014 0/0 0/0

Extra Time
[16] 4.32333 8.20256 7.8625 11.3088 13.54 15.1238 15.3292

Ours 8.94667 8.73 9.738 10.1 12.4725 17.5525 34.1256

Average Speed
[16] 0.787272 0.661087 0.670508 0.585892 0.541638 0.54341 0.610233

Ours 0.641368 0.646987 0.621649 0.613027 0.561946 0.506294 0.412899

Metrics Methods
# of agents

8 12 16 20

Success Rate
[16] 0.875 0.75 0.5625 0.0

Ours 1 1 1 1

Stuck/Collision Rate
[16] 0/0.125 0/0.25 0.3125/0.125 1/0

Ours 0/0 0/0 0/0 0/0

Extra Time
[16] 4.8 12.5111 30.7222 -

Ours 2.7 4.075 5.33125 8.36

Average Speed
[16] 0.653784 0.410699 0.230921 -

Ours 0.742279 0.656969 0.594551 0.482519

Metrics Methods
# of agents

5 10 15 20

Success Rate
[16] 1 0.7 0.6 0.7

Ours 1 1 1 1

Stuck/Collision Rate
[16] 0/0 0.1/0.2 0.133/0.267 0.15/0.15

Ours 0/0 0/0 0/0 0/0

Extra Time
[16] 9.55894 5.13058 6.38476 9.99585

Ours 2.19487 2.55377 3.47301 7.80055

Average Speed
[16] 0.707441 0.734304 0.721682 0.508305

Ours 0.858985 0.828276 0.775802 0.582426

TABLE II: The performance of our method (DeepMNavigate) and prior methods based on local information on different benchmarks
(Top: Circle Crossing; Bottom left: Narrow Corridor; Bottom right: Room with Obstacles.), measured in terms of various metrics using
different numbers of agents. The bold entries represent the best performance. Our method can guarantee a higher success rate in dense
environments as compared to prior multi-agent navigation algorithms.

Metrics Methods
# of agents

20 30 40 50

Success Rate
[16] 1 0.867 0.825 0.76

Ours 1 1 1 1

Stuck/Collision Rate
[16] 0/0 0.033/0.1 0.05/0.125 0.2/0.04

Ours 0/0 0/0 0/0 0/0

Extra Time
[16] 4.5974 9.38872 13.8348 12.6948

Ours 3.59674 4.06355 10.4823 11.2948

Average Speed
[16] 0.601266 0.432238 0.354548 0.332425

Ours 0.674891 0.63543 0.404211 0.383049

TABLE III: The performance of our proposed method and prior
learning algorithms on the Random Starts and Goals benchmark.
Our method demonstrates better results (bold face) than prior multi-
agent navigation algorithms.

travel time. The latter is computed as the average
travel time when going straight towards the goal at the
maximum speed without checking for any collisions.

• Average speed: the average speed of all robots during
the navigation.

We have evaluated our algorithm in five challenging and
representative benchmarks:

• Circle Crossing: The robots are uniformly placed
around a circle and the goal position of each robot is
on the opposite end of the circle based on the diameter.
The scenarios are widely used in prior multi-agent
navigation algorithms [7], [16] (Fig. 1).

• Narrow Corridor: Two groups of robots exchange their
positions through a narrow corridor. This benchmark
is hard for geometric decentralized methods [7], which
cannot navigate robots through narrow passages (Fig. 2).

• Room with Obstacles: The robots cross across a room
full of obstacles, from one side to the other. Methods
only using local information [16] will spend more time
finding the path to the goal and may even fail due to
lack of global information (Fig. 5).

• Random Starts and Goals: The robots start from random
initial positions and moves to random goal positions.
Also, there are obstacles with random locations and
orientation. Global information will help find safer and
faster paths (Fig. 6).

• Room Evacuation: The robots start from random initial
positions and evacuate to the outside of the room. They
need to cross one small door while avoiding collisions
(see Fig. 8 in [40]).

C. New and Different Benchmarks

We have evaluated the performance of our method on
benchmarks that are quite different from the training data in
terms of layout and the inclusion of narrow passages. They
also use different numbers of agents. In the Circle Crossing
benchmark, we only train with 12 agents, but evaluate in
a similar scene with 90 agents. Furthermore, some of the
benchmarks like Narrow Corridor and Room Evacuation are
quite different from the training dataset. DeepMNavigate is
still able to compute collision-free and smooth trajectories
for all the agents with no collisions and each agent arrives
at its goal position. As shown in Fig. 2, the local learning
method [16] does not consider the global map information
and fails in such scenarios. In contrast, our approach enable
robots to learn a reciprocal navigation behavior according to
the global map information without any communication on
action decision.

D. Quantitative Evaluation

We have evaluated the performance of our algorithm in
terms of different evaluation metrics described above. In the
circle crossing scenario, the failure rate of [16] rises with
the increasing number or the density of robots. However,
our approach always results in a stable performance and can
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avoid the deadlock situation. At times, some of the robots
may need to take a longer path to avoid congestion and this
could reduce the robot’s efficiency. As a result, we obtain
better performance as compared to [16] or the decentralized
collision avoidance methods in high density benchmarks like
Circle Crossing.

Different from the circle crossing scenario, the other
benchmarks incorporate some static obstacles in the environ-
ment. In this case, our method integrates the map information
into the policy network and utilizes that information to
handle such static obstacles and narrow passages. As the
experimental results shown, our approach outperforms [16]
both in terms of success rate and efficiency metric. In addi-
tion, our method behaves robustly even with the increasing
density of robots.

Another important criteria to evaluate the performance of
multi-robot systems is the stuck or collision rate, which is
a measure of the number of robots cannot reach the goals
or collide on the road. As shown in Tables II and III,
our collision rate is zero for all these benchmarks. On the
other hand, techniques based on local navigation information
result in some number of failures on different benchmarks.
Furthermore, the failure increases as the number of agents
or the density increases.

To better understand how the global information help the
navigation system, we compute perturbation saliency over
global map using method from [41] in the narrow corridor
benchmark. We show the result in Fig. 7. The most important
areas in the global map to help the decision making include:
1) agents in the front, which are blocked by other agents in
local laser scan; 2) agents from the back, which could not
be covered by local laser scan; 3) nearby obstacle. Thus, the
global information can help the agent plan in advance, and
be more alert to nearby obstacles.

E. Scalability

The running times for different numbers of robots are
shown in Fig. 8. We can observe linear time performance
with number of agents. That is because the decision process
of our method is independent, each agent can compute
their action by itself, based on the information it receives.
Compared with most traditional geometric-based methods,
a step analyzing the global environment may have super-
linear time requirements, especially for the congested or
challenging benchmarks used in this paper. For example,
some methods compute K-nearest neighbors or the roadmap
of the environment using the Voronoi diagram, which can
have super-linear complexity. In contrast, our approach does
not perform any such global computations and only leverages
the power of the neural network. Moreover, the computation
of the global map takes O(n) time.

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We present a novel, multi-agent navigation algorithm
based on deep reinforcement learning. We show that global
information about the environment can be used based on the
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Fig. 8: We show the running time with different numbers of agents
in several benchmarks. We use a CPU with 32 cores and NVIDIA
RTX 2080 Ti to generate these performance graphs. This timing
graph demonstrates that our approach is practical for many tens of
robots. We also compare the running time with a learning-based
algorithm that only uses local information [16]. The additional
overhead in the running time with the use of the global information
is rather small.

global-map and present a novel network architecture to com-
pute a collision-free trajectory for each robot. We highlight
its benefits over many challenging scenarios and show ben-
efits over geometric decentralized methods or reinforcement
learning methods that only use local information. Moreover,
our experimental results show that our DeepMNavigation al-
gorithm can offer improved performance in dense and narrow
scenarios, as compared to prior approaches. Furthermore, we
demonstrate the performance on new, different benchmarks
that are different from training scenarios. Overall, our ap-
proach demonstrates the value of global information in terms
of discretized maps for DRL-based ethod.

Our results are promising and there are many ways to
improve the performance. Our idea can be extended to 3D
environments, by replacing the global map with a 3D version
and using a 3D convolutional neural network to process
it. Current training scenarios do not include dynamic and
dense obstacles, so we may include them in the future
work. Also, we need better techniques to compute the
optimal size of the global-map and the local-map, and we
can also include other components of the state information
like velocity, orientation, or dynamics constraints. We also
need to extend the approach to handle general dynamic
scenes where no information is available about the motion
of the moving obstacles. Our approach assumes that the
global information is available and that, in many scenarios,
obtaining such information could be expensive. The use of
global information increases the complexity of the training
computation and we use a two-stage algorithm to reduce
its running time. One other possibility is to use an auto-
encoder to automatically derive the low-dimensional feature
representations and then use them as a feature extractor.
It may be possible to split the global and local navigation
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computation to combine our approach with local methods to
avoid collisions with other agents or dynamic obstacles [7],
[8]. Such a combination of local and global methods has been
used to simulate large crowds [42] and it may be useful to
develop a similar framework for learning-based algorithms.
Furthermore, DRL-based methods that use local or global
information can also be combined with global navigation
data structures (e.g., roadmaps) to further improve navigation
performance.

We have only demonstrated the application of our DRL-
method on challenging, synthetic environments. A good area
for future work is extending to real-world scenes, where
we need to use other techniques to generate the motion
information maps. It would be useful to combine our learning
methods with SLAM techniques to improve the navigation
capabilities.
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