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Abstract— Despite the development of numerous trajectory
planners based on computationally fast algorithms targeting
accurate motion of robots, the nowadays robotic applications
requiring compliance for interaction with environment demand
more comprehensive schemes to cope with unforeseen situa-
tions. This paper discusses the problem of online Cartesian
trajectory planning, targeting a final state in a desired time
interval, in such a way that the generated trajectories comply
with the tracking abnormalities due to considerable motion
disturbances. We propose a planning scheme based on Model
Predictive Control. It utilises a novel strategy to monitor the
tracking performance via state feedback and consequently
update the trajectory. Also, it ensures the continuity of the gen-
erated reference while accounting for realistic implementation
constraints, particularly due to computational capacity limits.
To validate the efficacy of the proposed scheme, we examine a
practical robotic manipulation scenario in which a given task
is executed via a Cartesian impedance controller, while an
external interaction interrupts the motion. The performance
of the proposed strategy as compared to that of a state-of-
the-art study is demonstrated in simulation. Finally, a set of
experiments verified the effectiveness of the proposed scheme
in practice.

I. INTRODUCTION

From industrial manipulators performing pick-and-place
actions to humanoids interacting with environment, it is
fundamental to feed the robot controllers with affordable
and smooth reference trajectories, respecting the limitations
imposed by the operative context. The problem of finding
the best possible trajectory can be formulated as an optimi-
sation problem, aiming at minimising a cost function subject
to constraints [1]. Trajectory generation algorithms can be
divided into two main categories: the first aims to enforce
that the end-effector exactly follows a desired geometric path
(see e.g. [2]–[4]); the second, point-to-point (PTP) planning,
is geared to reach a final state regardless of the path, which
is discussed in this paper.

Point-to-point trajectory planning is often based on op-
timally reaching the target state while respecting a set
of constraints [5]. Although such methods do not include
explicit path constraints resulting in a parameterisation of
the equations of motion, it is still possible to define a
map of via-points to be respected [6]. For applications
characterised by repetitive actions in a pre-defined fixed
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environment, e.g. industrial non-collaborative manipulators,
the trajectory planning problem can be solved offline, so that
the stabilisation around the obtained reference trajectory is
left to the controller [7]. On the contrary, it is a common
requirement in collaborative and/or legged robots to generate
reference trajectories online using the robot state, to adapt to
unforeseen and/or changing scenarios. In [8], a sensor fusion
algorithm is used to merge data from sensors to generate and
modify reference trajectories in real time in a Human-Robot
Collaboration (HRC) scenario, maximising the productivity
while respecting safety constraints.

To solve the optimal trajectory planning problem online at
a suitable rate, the optimisation algorithm needs to respect
computational limits. Motion planners based on the dynamic
model of the system allow to simultaneously find the op-
timum path and trajectory, and deliver higher performance.
However, the computational capacity of robotic platforms,
especially mobile robots, is often limited, and requires the
optimisation problem to be divided into two independent
sub-optimisations: one for path generation and another for
association of time instants to the points along the path
(speed profile).

In the last twenty years, Model Predictive Control (MPC)
[9] has been representing one of the most suitable techniques
for multivariable planning and control, due to its capability
of providing online optimal solutions while respecting con-
straints. Although this approach was initially utilised only
in the chemical and petrochemical process industry charac-
terised by a slow dynamics, due to the lower computational
power of early processors, nowadays MPC is exploited in
a wide range of applications, from autonomous vehicles
to robotics and motors control [10]–[14]. Despite notable
technological improvement in the computer industry, the
computational burden still embodies the main drawback of
this approach, thus requiring the above-said problem division
(into path optimisation and speed profile optimisation) when
the system model is fairly complex e.g. robotic manipulators.

This work introduces a PTP trajectory planning scheme
acting in the Cartesian space, using the robot state feedback
to adapt online to motion disturbances resulting in large
tracking errors of the controller. While it is essential in a
majority of robotic applications to carry out a given PTP
motion in a given time, a large number of MPC-based
solutions adopt a fixed-length receding horizon, thereby
preventing from setting a target time. The approach presented
in [15] addresses this shortfall by using linear time-invariant
MPC with fixed terminal time to obtain a shrinking horizon
covering the whole motion time and sequentially refining
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the planned trajectory. Nevertheless, it relies on feedforward
simulation for the system state, rather than the actual robot
state. It therefore does not allow the planner to adapt to
unforeseen interactions and interruptions that may lead to
dangerous behaviours.

To tackle this problem, we propound a planning scheme
that supervises the task execution and guarantees compliance
with motion and safety constraints. In particular, the output
reference trajectory - which may not be precisely tracked
due to a desired/required compliant behaviour rendered by
the controller - and the eventual extension of the trajectory
duration are determined and updated online, according to
a feedback-based decision-making process. Moreover, in
contrast to the majority of the state-of-the-art studies e.g. [15]
requiring the implementation of the entire algorithm to gener-
ate a real-time responsive performance, the proposed scheme
splits into real-time and non-real-time parts. This is to
account for realistic implementation constraints, particularly
due to computational capacity limits. The computational time
of the non-real-time part is then estimated and compensated
to improve performance. To foster a homogeneous transition
between the generated trajectories and to allow for running
MPC at a lower rate than the controller, we propose a
novel target selector that runs in real time and selects a
suitable reference at every time instant, while monitoring
the controller performance.

We validate the effectiveness of the proposed scheme by
applying it to a practical robotic manipulation scenario, in
which a PTP task is given to the planner and the corre-
sponding trajectories are executed by a Cartesian impedance
controller, while an external interaction prevents the end-
effector from following the reference trajectory. The perfor-
mance of the proposed strategy is compared to that of a
state-of-the-art study in simulation, to underline its ability
to account for unforeseen interactions/interruptions, as the
main contribution of this work. Finally, a set of experiments
on a real robot were carried out not only to demonstrate
the effectiveness of the scheme in handling unforeseen
interactions, but also to validate its online applicability and
suitability for relaxation of the real-time layer, by leaving
out of this layer the computationally burdensome part of the
algorithm.

The rest of this paper is organised as follows. An overview
of the proposed planning logic is presented in Sec. II, intro-
ducing the key features of each element of the scheme. The
MPC structure developed in [15], used as a starting point
to our work, is presented in Sec. III. In Sec. IV, a detailed
mathematical formulation of the proposed planning scheme
is provided, analysing the different scenarios influencing
the algorithm. A set of simulations and experiments on a
humanoid robot arm is reported in Sec. V to validate the
approach, followed by comments on the obtained results.
Finally, the conclusions of this work and potential future
studies are presented in Sec. VI.

Fig. 1. Planning scheme.

II. PROPOSED PLANNING LOGIC DESCRIPTION

In contrast to approaches using the problem division (into
path and speed profile optimisation) to reduce the com-
putational burden at the expense of obtaining sub-optimal
solutions, we choose the MPC formulation introduced in
[15] as the base of the proposed planning scheme, to render
optimal solutions to the PTP fixed-time trajectory planning
problem. It should be noted that, the base planner can be
substituted with any other MPC planner provided that it per-
mits to enforce the generated trajectories, i.e. solutions to the
predictive horizons, to reach the target state at a given target
time. This versatility is guaranteed by the proposed planning
architecture, whose design focuses on the online adaptation
of the generated trajectories to unforeseen interruptions and
interactions with environment.

The proposed trajectory planning scheme is depicted in
Fig. 1. It relies upon two main entities which are separated
and run at different rates, namely an MPC planner and
an innovative target selector with performance monitoring
capabilities. The scope of the MPC planner is to generate
optimal trajectories allowing the robot end-effector to reach
a target state in a target time. The target selector runs in
real time and receives the generated trajectories as inputs. It
monitors the tracking performance, and chooses the reference
to be fed to the controller at each time instant. In addition, a
computational time estimator is employed to predict the time
delay introduced at each MPC execution so that the planner
can account for it, as described in Sec. IV.

In receding horizon MPC [9], only the first control action
of each predictive horizon is applied, and the problem is
shifted forward for a new execution, i.e. optimisation. In this
work, we define the problem in a way that the predicted states
of a predictive horizon define a trajectory to move the end-
effector from the current state to the desired target state in
a target time. To enable a closed-loop behaviour, we utilise
the current state of the end-effector for an online adaptation
of the trajectory and motion time. The MPC planner solves
the optimisation problem at a rate fMPC and, as soon as
a new predictive horizon is available, it is taken as planned
reference trajectory by the target selector, while the old one
is discarded. We denote with fts the rate at which the target
selector computes the current reference from the planned
reference trajectory and feeds it to the controller.

The closed-loop performance and corresponding predictive



horizon updates can be subject to challenges/disadvantages
that should be carefully addressed to assure the effectiveness
of the approach. First, it may not always be possible to find a
solution to the MPC optimisation problem, due to discretisa-
tion and approximations. Moreover, the switch between the
old and new planned trajectories needs to be homogenised for
the controller to properly track the reference. As deepened
in Sec. IV, the target selector plays a fundamental role
in generating continuous references adapting to the robot
states, thereby acting as a performance estimator and a filter
between the independent trajectories generated by the MPC
planner and the controller.

III. MPC PLANNER - PRELIMINARIES

In this section, the guidelines shown in [15] are recalled to
derive an MPC planning problem, with fixed terminal time
and final state constraints. To provide a computationally fast
solution for the optimal trajectory generation problem, that
allows to simultaneously optimise the path and trajectory
without splitting the problem into multiple sub-optimisations,
the formulation relies on a decoupled linear kinematic model
for describing the end-effector motion in the Cartesian space.
This model is extracted assuming that the system dynamics
can be cumulatively respected by properly limiting the end-
effector velocity, acceleration and jerk. A set of modifications
in the notation and formulation are introduced to make it
suited for our problem. The states described in the present
work are the end-effector Cartesian coordinates X,Y and
Z with respect to a chosen orthonormal reference frame.
Defining the state and input vectors as

x =
[
X Ẋ Ẍ Y Ẏ Ÿ Z Ż Z̈

]T
,

u =
[ ...
X

...
Y

...
Z
]T
,

respectively, it is possible to derive the discrete state-space
equations of the model, using the predictive first-order hold
method [16] with sampling period h, as

ξ(i+ 1) = Φξ(i) + (Γ +
1

h
(Φ− I)Γ1)u(i), (1)

y(i) = Cξ(i) +
1

h
CΓ1u(i), (2)

with

Φ̃ =

1 h h2

2
0 1 h
0 0 1

 , 1

h
Γ̃1


h3

24

h2

6

h
2

 , Γ̃


h3

6

h2

2

h

 ,
C = blkdiag([I3, I3, I3]), Φ = blkdiag([Φ̃, Φ̃, Φ̃]),
Γ = blkdiag([Γ̃, Γ̃, Γ̃]) and Γ1 = blkdiag([Γ̃1, Γ̃1, Γ̃1]).
The new state vector ξ is then defined as

ξ(i) := x(i) +
1

h
Γ1u(i), (3)

and the vector of controlled variables z(i) is chosen as

z(i) := x(i). (4)

Let us define the number of equally-spaced discretisation
intervals of each predictive horizon with N ∈ N, N > 1.

To clarify the notation of the model equations, adapting
them to a scenario in which multiple MPC optimisations are
performed, from now on φk,i represents the generic variable
φ(i) in discrete time for the predictive horizon k, when
k ∈ N, k ≥ 0 and i = 0, 1, ..., N . The sampling time h
of the predictive horizon k is also shown by hk.

The objective of the MPC planner, under the assumption
of proper tracking from the controller, is to generate planned
trajectories allowing the end-effector to move from an initial
state rin at time tin to a final state rf at time tf . To perform
this task, the k-th MPC optimisation problem is set to respect
the final time and terminal constraint conditions described by

tk,N = tf , (5)
zk,N = rf . (6)

It is necessary to notice that (5) will be modified in Sec. IV-
B, to manage further features and different scenarios.

It is also of interest to limit the values of Cartesian
position, velocity, acceleration and jerk along each predictive
horizon, writing linear constraints as follows

FkUk ≤ fk, (7)
GkZk ≤ gk, (8)

where Fk, Gk, fk and gk are appropriately designed ma-
trices and vectors, with ZT

k =
[
zTk,1, z

T
k,2, ..., z

T
k,N

]
and

UT
k =

[
uT
k,0,u

T
k,1, ...,u

T
k,N

]
. The constraint matrices and

vectors are built to satisfy the expressions

|uk,i| ≤ [uXmax, u
Y
max, u

Z
max]T ,

|zk,i| ≤ [(wX
max)T , (wY

max)T , (wZ
max)T ]T

0 ≤ i ≤ N − 1,

defining w
(·)
max := [s

(·)
max, v

(·)
max, a

(·)
max]T . The values of the

limits w
(·)
max and u(·)

max will be provided in Sec. V.
The cost function to be minimized for the predictive

horizon k is written as

Vk(Uk) =

N−1∑
i=1

||zk,i||2Qk,i
+

N∑
i=0

||uk,i||2Rk,i
, (9)

where || · || is the L2-norm, and Qk,i and Rk,i are the
weighting matrices. The first summation goes from i = 1
to i = N − 1 as the initial and final values of the controlled
variables vector, i.e. state variables (4), do not depend on the
optimisation.

Finally, the optimisation of the predictive horizon k can
be expressed as

minimize
Uk

Vk(Uk),

subject to (1)-(4), (6)-(8),
(10)

given the initial condition xk,0 [17]. The strategy for setting
the initial condition is developed in Sec. IV-B.



IV. PROPOSED PLANNER FORMULATION

This section details the formulation description and the
features of the planning logic introduced in Sec. II. The target
selector formulation is developed in Sec. IV-A, while its
connection with the MPC planner, together with the relative
exchange of information, are examined in Sec. IV-B.

A. Target Selector formulation

The target selector receives an optimal trajectory from the
MPC planner, expressed in discrete form. Referring to the
notation defined in Sec. III, the optimal trajectories can be
described as

tk =
[
tk,0 tk,1 tk,2 ... tk,N

]T
,

Xk =
[
xT
k,0 xT

k,1 xT
k,2 ... xT

k,N

]T
.

The increasing time sequence tk,i of the predictive horizon
k is collected in vector tk, while the corresponding state
values xk,i, describing the trajectory in terms of position,
velocity and acceleration along the three Cartesian coordi-
nates, are collected in vector Xk.

Given the current time t̄ ∈ R, and the k-th predictive
horizon being the latest one available, the reference x̄ to
be given to the controller at the time t̄ is obtained with a
piecewise linear interpolation, as

x̄ =
xk,j+1 − xk,j

tk,j+1 − tk,j
(t̄m − tk,j), tk,j ≤ t̄m < tk,j+1,

j ∈ {0, 1, ..., N − 1},
(11)

defining
t̄m := t̄. (12)

In case t̄m < tk,0 or t̄m ≥ tk,N , we will assign x̄ = xk,0

and x̄ = xk,N , respectively. The piecewise linear interpo-
lation formula for the reference extraction (11) justifies the
adoption of the predictive first-order hold method for the
discretisation of the MPC model.

At this point in our study, we would like to provide
the target selector with a strategy to induce an adaptive
behaviour for the output reference with respect to the actual
end-effector state. Even between one MPC execution and
the following, an external disturbance, e.g. an operator stop-
ping/colliding with the robot, could cause the actual position
of the end-effector to be very far from the reference one.
When exploiting a Cartesian impedance controller, this leads
to a significant accumulation of potential energy, which is
released when the disturbance stops acting, e.g. the operator
releases the robot. To address such a risky behaviour, we
define a maximum allowed spatial distance dmax and set the
reference to stop and wait for the end-effector whenever

||x̄e − xe
actual|| ≥ dmax, (13)

where x̄e is a reduced version of vector x̄ containing only the
position values, and xe

actual = [Xactual, Yactual, Zactual]
T

is a vector containing the actual Cartesian coordinates of the
end-effector.

Supposing that the predictive horizon k is the last one
available, let us denote with tk,t̄cum the cumulative time for

which the locking condition (13) has been satisfied, i.e.
accumulation of time since the predictive horizon k is
available until the current time instant t̄. This quantity is used
to account for the lost time in which the end-effector cannot
properly track the reference between one MPC execution and
the following. Hence, the adaptive reference is obtained by
modifying (12) into

t̄m := t̄− tk,t̄cum. (14)

As soon as the new predictive horizon k+ 1 is available, the
value tk+1,t̄

cum will be used, ignoring the previous cumulative
tk,t̄cum, since the MPC planner has already accounted for tk,t̄cum

in the new optimisation problem, as discussed in Sec. IV-B.

B. Planning Strategy

A disturbance in the task execution, caused by an in-
terruption and/or interaction with environment, reduces the
remaining time to complete motion without getting closer
to the target, so that a solution to the optimisation problem
might not be found. It is therefore essential to develop a
strategy aimed at increasing the final time. As discussed
above, the target selector measures the time tk,t̄cum in which
the reference is stopped due to sufficiently large tracking
errors i.e. (13), between two consecutive predictive horizons.
In this section, we detail the proposed planning scheme
relying upon the exchange of information between the MPC
planner and the target selector introduced in the previous
subsection, as a key contribution of this work. We shall
formalise a strategy for the MPC planner to elaborate the
responses coming from the target selector.

We define as locking the condition in which (13) is
verified, i.e. the reference provided by the target selector
is in the interruption phase, waiting for the end-effector to
get closer. When a new MPC execution is run, two different
scenarios can be observed:

1) when the locking condition is inactive, the distance
between the end-effector and the reference is lower than
the threshold value dmax, thus it is not critical to use the
actual end-effector state as initial state, which can instead be
initialised from the previous predictive horizon via interpo-
lation. Nevertheless, since the time at which the predictive
horizon is available does not coincide with the time at
which it is computed, to guarantee a uniform transition
between two predictive horizons and a good initial state
estimation, it is necessary to account for the time required to
compute the new horizon. As the computational time of the
current MPC execution tkct,actual is unknown, we estimate
it using a moving average of the computational times of
previous executions, to obtain tkct. The initial state is then
estimated through a piecewise linear interpolation based on
the previous predictive horizon. Therefore, indicating with t̄k
the time at which the k-th predictive horizon is calculated,



we can set its initial condition and time as

tk,0 =t̄k + tkct, (15)

xk,0 =
xk−1,j+1 − xk−1,j

tk−1,j+1 − tk,j

(
(tk,0 − tk−1,t̄

cum )− tk−1,j

)
,

(16)

tk−1,j ≤ tk,0 − tk−1,t̄
cum < tk−1,j+1, j ∈ {0, 1, ..., N − 1},

in which the piecewise linear interpolation for the calculation
of xk,0 accounts also for the lost time tk−1,t̄

cum , i.e. the time
interval in which the reference has not proceeded. It is
then crucial to substitute (5) with the final time of the k-
th predictive horizon obtained from

tk,N = tk,N−1 + tk−1,t̄
cum , (17)

being
t0,N = tf . (18)

Finally, to provide the algorithm with robustness to oc-
casional unfeasible predictive horizons, the last available
predictive horizon is kept until a new one can be calculated.
A representation of the inactive locking condition at the k-th
predictive horizon activation for the X coordinate is shown
in Fig. 2;
2) when the locking condition is active at a new MPC
execution, i.e. the distance between the end-effector and
the reference is greater than the threshold value dmax, it
is necessary to re-generate the trajectory by considering the
actual end-effector state xactual(t̄) as the predictive horizon
initial condition, namely

xk,0 = xactual(t̄). (19)

The initial time tk,0 is calculated from (15), and the new
target time tk,N , instead of (5), is obtained as

tk,N = max

(
tf − tin
||rf − x0,0||

,
η

vmax

)
||rf − xk,0||

+ tk,0.

(20)

It implies the remaining time for moving the end-effector
is proportional to the remaining gap between the actual end-
effector position and the desired final one. The proportion-
ality constant is then set to the maximum of the inverse of
the initial average velocity and the inverse of the maximum
allowed velocity vmax, adjusted by a correction factor η to
account for the system dynamics. Lastly, in case a solution to
the optimisation problem is not found, the reference position
is set to the current position of the end-effector while waiting
for new targets, since it is not possible to execute the previous
predictive horizon without provoking risky motions of the
robot. A representation of the active locking condition at the
k-th predictive horizon activation for the X coordinate is
shown in Fig. 3.

It should be noted that, while in this work the trigger
for active/inactive locking was set based on monitoring of
positional errors (with respect to the threshold dmax), it
may also be set using collision detection approaches e.g.

Fig. 2. Inactive locking at the MPC activation.

Fig. 3. Active locking at the MPC activation.

[18], [19]. This choice (positional error monitoring) allows
for less sensitivity to model parameters accuracy, thanks to
the robustness of the compliance regulation controller when
joint torque sensing is available. However, when using other
control methods (rather than an impedance controller) that do
not permit replication of a given compliance, it is essential to
exploit collision detection schemes. The fine performance of
such methods relies on the accuracy of the model parameters
and/or integration with parameter estimation/identification
methods, which may be computationally burdensome for
robots with large number of degrees of freedom e.g. hu-
manoids and quadrupeds.

C. Comments on the choice of dmax

We now present a guideline to select the value of dmax

with regard to disturbance rejection. As the force applied by
the robot is associated to its impedance and its deviation from
the reference pose, when dynamic motions are not concerned,
the margin dmax needs to be selected as a sufficiently small
value to prevent the robot from the exertion of large forces
compromising the safety of the operation. At the same time,
dmax must be large enough to allow for admissible interac-
tions and to avoid repetitive and unnecessary initialisation of
the predictive horizon with the actual state feedback. Given
the dominance of compliance set by the impedance controller
in quasi-static interactions, as the common condition in HRC,
the absolute value of the force generated by the robot can
be written as

|F | =
√
K2

Xe
2
X +K2

Y e
2
Y +K2

Ze
2
Z , (21)

where K(·) denotes the stiffness of the impedance controller
along the three Cartesian directions (·), and e(·) represents
the corresponding positional error of the end-effector with



Fig. 4. The CENTAURO robot employed for the experiments [20].

respect to the reference. Considering an identical error e′

along the three directions, as a conservative assumption, we
estimate an order of magnitude for the maximum disturbance
rejection capability of the planner, in terms of deviation from
the nominal trajectory, as

erej =
√
e2
X + e2

Y + e2
Z =
√

3e′ =

√
3Fmax√

K2
X +K2

Y +K2
Z

,

(22)

where Fmax is the maximum admissible force that guaran-
tees safety. We therefore set dmax equal to erej , to allow for
disturbances and interactions up to Fmax.

V. SIMULATION AND EXPERIMENTS

For the validation of the proposed scheme, we develop
a set of simulations and experiments. For experimental
evaluations, we employ the left arm of the CENTAURO robot
[20] shown in Fig. 4, while utilising six degrees of freedom.
The MPC planner runs at 5 Hz in a Non-Real-Time (NRT)
node on the Robot Operating System (ROS) [21] framework,
implemented on a PC with an AMD Ryzen 7 1700X CPU
and 32 GB RAM, while the software architecture XBotCore
[22] is adopted to guarantee the Real-Time (RT) execution
of the target selector and the Cartesian impedance controller,
which run at 320 Hz. The exclusion of the MPC planner
from the RT scheme relaxes the RT layer, and allows each
predictive horizon trajectory to reach the target and remain
available until the new one is computed.

The number of discretisation intervals of each predictive
horizon is chosen as Nk = 11. A scaling of the differential
equations is used to contrast the effects of the predictive
horizon sampling time reduction while approaching
the target. The end-effector, starting at rest from a
homing configuration, targets moving 0.2 m, −0.2 m
and 0.05 m along X , Y and Z, respectively, concluding
the trajectory with zero velocity and acceleration. The
desired time to reach the target is set to 10 s, and
the position, velocity, acceleration and jerk constraints
are equally set for all the Cartesian coordinates to
v

(·)
max = 0.2 m/s, a(·)

max = 5 m/s2 and u(·)
max = 100 m/s3,

respectively. The MPC cost function weighting matrices
are selected as Qk,i = blkdiag([Q̄k,i, Q̄k,i, Q̄k,i])
and Rk,i = blkdiag([R̄k,i, R̄k,i, R̄k,i]) with

TABLE I
SELECTED VALUES OF THE DIAGONAL CARTESIAN STIFFNESS MATRIX

X Y Z Roll Pitch Yaw[
N
m

] [
N
m

] [
N
m

] [
Nm
rad

] [
Nm
rad

] [
Nm
rad

]
900 900 900 150 150 150

Q̄k,i = blkdiag([0, 1, 1]) and R̄k,i = 0.01. The
threshold value and the safety factor are chosen as
dmax = 0.05 m and η = 1.3.

The Cartesian impedance controller used to validate the
approach is based on [23], with the diagonal Cartesian stiff-
ness matrix values selected as in Tab. I. The orientation refer-
ence for the end-effector is set constant and equal to the ini-
tial one, and the double diagonalisation method is adopted to
calculate the damping matrix, choosing the damping factors
as ξX = ξY = ξZ = ξRoll = ξPitch = ξY aw = 0.7.

It should be noted that, while the proposed scheme ac-
counts for all different active/inactive locking conditions, the
situation in which the locking is active and a solution to the
predictive horizon cannot be found did not occur within the
experiments executed, thanks to the appropriateness of the
target time update policy.

A. Simulation

To evaluate the performance of the proposed scheme as
compared to a baseline, this section presents a comparative
simulation between our approach and the algorithm proposed
in [15]. Particularly, the scenario in which the robot is
stopped for a prolonged time interval by an external inter-
vention, e.g. a human operator, is examined.

The reference and actual robot trajectories associated with
the three Cartesian coordinates are shown in Fig. 5. The end-
effector is left free to track the reference from the beginning
of the motion to a time instant equal to 2 s, when we simulate
a physical stop caused by an external intervention. As for
the reference generated by the proposed scheme, as soon
as the reference moves away from the end-effector by a
distance larger than the threshold dmax, the locking condition
is activated and the new predictive horizon is calculated using
the actual state of the end-effector as initial condition. As
discussed, the target time to complete the motion is shifted
ahead to contrast the time loss caused by the interaction.
After 8.5 s from the beginning of the interaction, we simulate
the release of the end-effector so that it can complete the
motion and reach the final state. Instead, using the algorithm
shown in [15], the planner fails around the time 9.6 s,
where the MPC optimization problem becomes unfeasible.
This happens since the time loss caused by the prolonged
interruption is not accounted for, and the remaining time
is not sufficiently long for completing the motion while
respecting the constraints. It should be also noticed that the
repetitive closed-loop initialisation generates a highly discon-
tinuous reference and could increase the tracking error of the
impedance controller. This comparison showed that, while
the approach introduced in [15] renders feasible trajectories
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Fig. 5. Comparative simulation between the references generated by this
work algorithm and [15].
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Fig. 6. Reference and measured trajectories in the free motion experiment.

in free motions, it fails to handle non-negligible disturbances,
e.g. resulting from an external intervention.

B. Free Motion experiment

The first experiment consists in the end-effector tracking
the calculated reference trajectories without any external
interference. The online-computed reference trajectory and
the actual one are shown in Fig. 6 for the three Cartesian
coordinates. The lower accuracy of the controller along the
Y and Z directions is due to the model errors affecting the
dynamics compensation of the controller when operating at
a relatively low impedance. Despite the presence of these
errors, which are exploited to show the robustness of our
planning scheme, the selected threshold dmax allows the
planner to distinguish this case of low tracking performance
from the one in which the end-effector is stopped by external
causes. The measured state of the end-effector is therefore
never used by MPC during the motion and the initial state
of each predictive horizon is estimated using (16). This
test evidences the smoothness of the trajectory generated
by the target selector, thanks to the suitable estimation of
the predictive horizon initial state, and the prediction of the
computational time tkct at each MPC execution.

The computational time of MPC and the relative esti-
mation performed at each execution are shown in Fig. 7.
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Fig. 7. Measured and estimated MPC computational time.
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Fig. 8. Reference and measured trajectories (thick lines), and predictive
horizons (fine lines) in the interrupted motion experiment.

The moving average estimator is set to an initial value of
0.03 s at the first execution (as a conservative guess). As
shown in the figure, the estimated value progressively adapts
to the measured trend. The maximum MPC computational
time recorded during the test is about 0.02 s, which is fairly
smaller than the MPC activation rate.

C. Interrupted Motion experiment

The second experiment, which shows more clearly the
effectiveness of the proposed scheme, replicates the scenario
presented in Sec. V-A. The physical interaction of the oper-
ator with the robot creates an interruption of approximately
8.5 s that prevents the end-effector from following the ref-
erence trajectory (the contact starts around the time 2 s, and
ends at 10.5 s approximately). The reference and measured
trajectories associated with the three Cartesian coordinates,
together with the predictive horizons, are shown in Fig. 8.
When locking mode is inactive, the predictive horizons are
superimposed, since the initial state is estimated from the
previous solution and the computational time of MPC is
compensated. Instead, whenever the locking mode activates,
the actual state is used as the initial condition.

D. Quicker Motion experiment

In the last experiment, we repeat the test described in
Sec. V-C while the desired target time is set to 5 s, to produce



a quicker motion and verify the robustness of the algorithm.
The results are shown in Fig. 9.
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Fig. 9. Reference and measured trajectories (thick lines), and predictive
horizons (fine lines) in the quicker motion experiment.

VI. CONCLUSIONS

This paper presented a Cartesian trajectory planning
scheme, based on Model Predictive Control, allowing to
manage unforeseen disturbances such as interactions with
external objects/agents, interrupting the task execution. Dif-
ferently from previous works, which employ the trajectory
planner as a standalone unit, we proposed an MPC-based
scheme to generate optimal trajectories while exchanging
information with a novel target selector, responsible for
defining the higher level decision-making process and se-
quentially updating the reference to the controller. This
decoupling enables the separation of the computationally
burdensome part of the planner from the real-time layer, and
confers a high flexibility to the MPC formulation, so that its
initial conditions and final targets can be externally defined
through communication with the target selector. Moreover,
to provide a smooth reference when switching between
consecutive predictive horizons, the computational time of
MPC is estimated and compensated during executions. The
efficacy of the proposed approach has been experimentally
validated on a robot arm, analysing the resulting motion with
and without external interaction.

Future works shall focus on the integration with an orien-
tation planner e.g. [24], and providing the planner with time
optimality to automatically define the target time at each
iteration, depending on the imposed kinematic constraints.
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