
An Opportunistic Strategy for Motion Planning
in the Presence of Soft Task Constraints

Massimo Cefalo, Paolo Ferrari, Giuseppe Oriolo

Abstract— Consider the problem of planning collision-free
motions for a robot that is assigned a soft task constraint, i.e.,
a desired path in task space with an associated error tolerance.
To this end, we propose an opportunistic planning strategy in
which two subplanners take turns in generating motions. The
hard planner guarantees exact realization of the desired task
path until an obstruction is detected in configuration space;
at this point, it invokes the soft planner, which is in charge of
exploiting the available task tolerance to bypass the obstruction
and returning control to the hard planner as soon as possible.
As a result, the robot will perform the desired task for as long as
possible, and deviate from it only when strictly needed to avoid
a collision. We present several planning experiments performed
in V-REP for the PR2 mobile manipulator in order to show the
effectiveness of the proposed planner.

I. INTRODUCTION

Robots are invariably required to execute tasks in a
workspace that is populated by obstacles. If the robot is
kinematically redundant with respect to a given task, it can
perform it and simultaneously meet other basic requirements
such as avoidance of collisions, joint limits, and so on.

Tasks are generally expressed in terms of a certain set
of coordinates, called task coordinates. These may describe
quantities related to manipulation (end-effector position
and/or orientation), navigation (position of a representative
point of the robot, e.g., the center of mass), or perception
(placement of sensors in the workspace or directly of features
in sensing space, as in visual servoing). Often, the task is
assigned as a desired path or trajectory for the task coordi-
nates, resulting in an equality (hard) constraint. However, in
industrial and service applications there are many situations
where the task is better expressed by an inequality (soft)
constraint; for example, this constraint may represent the fact
that the desired path assigned to the task coordinates comes
with a certain error tolerance. Figure 1 shows an example of
such scenario.

The problem of generating collision-free robot motions
in the presence of hard task constraints is known as Task-
Constrained Motion Planning (TCMP). In the literature, there
exist two main classes of methods for solving the TCMP
problem, i.e., optimization- and sampling-based methods.

Optimization-based methods (see [1] for a general review)
cast the TCMP problem in the framework of kinematic
control, also called redundancy resolution, with the possible
inclusion of specific equality or inequality constraints related

The authors are with the Dipartimento di Ingegneria Informatica, Auto-
matica e Gestionale, Sapienza Università di Roma, Via Ariosto 25, 00185
Rome, Italy. E-mail: lastname@diag.uniroma1.it.

Fig. 1. In the problem of interest, the robot is assigned a soft task specified
by a desired path (red line) and a tolerance (green volume).

to the assigned task [2]. The discrete optimization technique
presented in [3] is able to compute very accurate tracking;
however, avoidance of workspace obstacles is not considered.
In any case, it should be kept in mind that, independently of
the specific version, kinematic control is a greedy strategy
whose optimization capabilities are inherently local; as a
consequence, it can work occasionally but never guarantee
completeness (finding a solution whenever one exists).

Sampling-based methods for solving the TCMP problem
typically use a mechanism for projecting configuration space
samples on the submanifold where the task constraint is
satisfied; see [4] for a review and [5], [6], [7] for specific
techniques aimed at manipulation planning. These methods
generally provide probabilistic completeness, but suffer from
the limitation that configuration space samples are connected
by local paths lying outside the constrained manifold. To
improve task tracking accuracy, it is necessary to use a more
dense sampling, typically leading to a dramatic increase of
the time needed to compute a plan. For complex problems,
this approach can turn out to be very inefficient and imprac-
tical.

In [8], we introduced a sampling-based approach for
solving the TCMP problem that avoids the need for a
projection mechanism thanks to a control-based motion
generation scheme; as a consequence, it becomes possible
to guarantee continuous satisfaction of the task constraint
with arbitrary precision. Building on this basic technique, we
have proposed a method for repeatable motion planning over
cyclic tasks [9] and another for planning dynamically feasible
motions in the presence of moving obstacles [10]. All these

IEEE Robotics and Automation Letters (RAL) paper presented at the
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

Copyright ©2020 IEEE

planners are designed for the case of hard constraints.
Most motion planners for the case of soft task constraints

rely on some sort of relaxation of the equality constraint
represented by the assigned task path or trajectory [11], [12].
In [13], [14], planning is performed over an approximation
of the constrained configuration space.

All the above methods attempt to satisfy only the soft task
constraint throughout the motion. We argue, however, that it
would be interesting (and presumably practical) to develop an
opportunistic planner which is capable of satisfying the hard
constraint whenever possible and of exploiting the available
tolerance only when needed. In particular, deviations from
the given task path should only take place in the presence of
obstructions in the constrained configuration space, such as a
narrow or closed passage. Narrow passages are a well-known
problematic issue for sampling-based planners; among the
most successful methods to handle them, one may mention
Gaussian sampling [15] and the bridge test [16]; see [17],
[18] for reviews on the topic. Very few works look at narrow
passages in a task-constrained setting; one example is [19].

The objective of this paper is precisely to present a motion
planner for the case of soft task constraints that is, for the
first time, opportunistic in the sense defined above. To this
end, we provide the following contributions:
• a hard planner for generating collision-free motions

that realize exactly the desired task path, essentially an
adaptation of our control-based randomized method for
TCMP [8];

• a heuristic criterion to detect obstructions to the hard
planner due to narrow/closed passages in the con-
strained configuration space;

• a soft planner for generating collision free-motions that
are compliant with the soft task and allow to bypass the
obstructions detected by the hard planner;

• another heuristic criterion to estimate when the obstruc-
tions to hard planning have been removed.

The paper is organized as follows. Section II provides
a precise formulation of the considered planning problem.
An overview of the proposed opportunistic planner is given
in Sect. III, while the hard and soft subplanners are de-
scribed in Sects. IV and V, respectively. Several planning
experiments for the PR2 mobile manipulator are shown in
Sect. VI. Finally, in Sect. VII we discuss some possible future
developments.

II. PROBLEM FORMULATION

Consider a robot whose configuration q takes values in a
nq-dimensional configuration space C. The robot moves in a
workspace W ⊆ IR3 containing fixed obstacles. Denote by
O ⊂ W and R(q) ⊂ W , respectively, the volume occupied
by the obstacles and by the robot at configuration q, and by
Cfree the free configuration space.

Assume that the robot is free-flying (i.e., its configuration
can move arbitrarily in C), so that its kinematic model
consists of simple integrators. In order to plan paths, we
use a geometric version [10] of such model, expressed as
q′ = ṽ, where ()′ = d()/ds denotes the derivative w.r.t.

the path parameter s. This equation entails that the tangent
vectors to any path q(s) in C can be chosen arbitrarily by
specifying the (geometric) inputs ṽ.

The task is described in coordinates t, taking values in an
nt-dimensional task space T . Coordinates t and q are related
by the forward kinematic map t = f(q), which at the tangent
vector level becomes t′ = J(q)q′, where J(q) = df/dq is
the task Jacobian. We will assume that nq > nt, i.e., the
robot is kinematically redundant for the assigned task.

In the situation of interest, shown in Fig. 1, the robot is
assigned a soft task defined by
• the desired task path td(s), with the path parameter s

taking values in [0, 1] without loss of generality;
• the tolerance ∆t(s), s ∈ [0, 1], a positive nt-vector that

represents for each component the maximum admissible
deviation of t from td at s.

The robot is allowed to exploit the tolerance whenever
realizing the desired task exactly is difficult or impossible,
due to the presence of narrow or closed passages in C.
The motion planner must be able to identify such situations
automatically in order to act accordingly.

Let et(q, s) = td(s)−f(q(s)) be the task error associated
to configuration q at s. In the following, we say that a
configuration q is compliant with the soft task if1

|et(q, s)| ≤ ∆t(s), for some s ∈ [0, 1]. (1)

A configuration q is compliant with the hard task if
et(q, s) = 0 for some s ∈ [0, 1] (i.e., if it realizes one sample
of the desired task path).

Soft-Task-Constrained Motion Planning is the problem of
finding a configuration-space path q(s), s ∈ [0, 1], such that
for all s:
• q(s) is compliant with the soft task (deviations from

the desired path are within the tolerance).
• R(q(s)) ∩ O = ∅ (collisions are avoided);
• self-collisions, singularities and joint limits are also

avoided.
Although this is not made explicit in the above formulation,
we would obviously like the solution to comply with the hard
task as much as possible. Also, we assume that the initial
configuration qini is assigned, with f(qini) = td(0), while
the final configuration qfin = q(1) will result from planning.

Configurations that are compliant with the hard task make
up a (nq − nt)-dimensional submanifold of C, denoted by
Chard, which naturally decomposes as a foliation. In fact, it
is Chard = ∪s∈[0,1]L(s), with the generic leaf defined as

L(s) = {q ∈ C : et(q, s) = 0}.
The subset Csoft of configurations that are compliant with
the soft task is instead nq-dimensional. By letting

S(s) = {q ∈ C : |et(q, s)| ≤ ∆t(s)}
we can write Csoft = ∪s∈[0,1]S(s). However, this is not a
foliation because the S subsets are not disjoint: a configu-
ration will in general belong to multiple subsets S. Clearly,
we have Chard ⊂ Csoft and L(s) ⊂ S(s), for all s ∈ [0, 1].

1This inequality and similar ones in the paper are meant componentwise.

III. OVERVIEW OF THE OPPORTUNISTIC PLANNER

The proposed planner builds a tree T in Csoft ∩ Cfree,
with configurations as vertexes and collision-free subpaths
as edges. To this end, we make use of N + 1 samples of
the desired task path td(s), corresponding to the equispaced
sequence {s0 = 0, s1, ..., sN−1, sN = 1}. Henceforth, we
use the shorthand notation Li = L(si) and Si = S(si).
T is grown by two (sub)planners that alternate depending

on the context: the Hard Planner (HP) and the Soft Planner
(SP). The basic difference between them is that HP works
in Chard and SP in Csoft, i.e., subpaths generated by the first
are compliant with the hard task, whereas those generated by
the second are compliant with the soft task. Correspondingly,
a vertex of T generated by HP will belong to a single Li,
whereas a vertex generated by SP may belong to one or more
Si, with i = 1, ..., N .

The pseudocode of the proposed planner is given in
Algorithm 1. Construction of T starts by rooting it at the
initial qini. At the generic iteration, let h (h = 0, . . . , N −1)
be the frontier index, i.e., the index of the largest sample of
s for which there exists a vertex q in T on Lh or Sh.

First, HP is invoked in the attempt to extend T as much as
possible in Chard. When HP stops, it returns an updated value
of h. If h < N , it means that HP has heuristically identified
an obstruction to extending T from Lh through subpaths in
Chard; this may indicate that the extension is simply difficult,
due to the presence of a narrow passage in Chard ∩ Cfree, or
actually impossible, as it happens when an obstacle occupies
a portion of the desired task path. At this point, SP is invoked
to allow extension of T from Lh in Csoft, the rationale being
that this may overcome the obstruction. When SP stops, it
also returns an updated current value of h, now representing
the index associated to the value of s where extension by HP
is considered viable again; HP is invoked, and the procedure
is repeated (see Fig. 2). SP returns h = ∅ if it does not
succeed in extending T from Lh. The inner loop (lines 3-7
of Algorithm 1) continues until h = N or h = ∅. In the first
case, a configuration qfin exists in T such that qfin ∈ LN or
qfin ∈ SN (depending on whether it has been generated by
HP or SP), and a path qiniqfin can be extracted from T . In
the second case, the planner returns a failure.

A remark is in order here about the choice of N , i.e., the
number of subsets Li (or Si) used by our planner. While

Algorithm 1: Opportunistic Planner
1 T .AddVertex(qini);
2 h← 0;
3 repeat
4 h← HP(T , h);
5 if h < N then
6 h← SP(T , h);
7 until h = ∅ or h = N ;
8 if h = N then
9 qiniqfin ← T .RetrievePath();

10 return qiniqfin;
11 return ∅;

Fig. 2. The tree T built by the opportunistic planner (solid blue/green).
The portion of T up to Lh (solid blue) has been generated by HP and is
contained in Chard. The red arrows originating at vertexes on Lh indicate
a number of failed extension attempts, after which SP has been invoked to
extend T in Csoft. To this end, SP identifies the first task sample sk where
the obstruction has disappeared, and grows an auxiliary tree Tsoft (dashed
green) towards Sk . When Tsoft has reached Sk , the subpath from Lh to
Sk (solid green) is added as an edge to T . At this point, control goes back
to HP, and extension of T is in Chard is resumed (solid blue).

N has no impact on the accuracy with which the desired
task path is realized, it is true that larger values of N allow
a finer generation of subpaths in T , ultimately increasing
the possibility of navigating the robot among obstacles.
However, the size of the tree will grow accordingly, for
vertexes will have to be placed on a larger number of subsets
Li (by HP) or Si (by SP). The value of N must therefore
represent a reasonable trade-off between maneuvrability of
the robot and complexity of planning.

In the following sections, we describe in detail the struc-
ture of both the HP and SP planners.

IV. HARD PLANNER

HP is essentially an adaptation of the control-based plan-
ner proposed in [8], with the addition of a heuristic-based
mechanism for detecting obstructions to further tree exten-
sion in Chard. The pseudocode of HP is given in Algorithm 2.

At each iteration, a random configuration qrand is gener-
ated in Ctask. The tree T is then searched for the closest
vertex qnear to qrand; call sj the path parameter value
associated to the leaf Lj where qnear lies. At this point,
a subpath starting from qnear and leading to a new configu-
ration qnew ∈ Lj+1 is produced by numerical integration
of q′ = ṽ from sj to sj+1 under the following motion
generation scheme:

ṽ = J†(q)(t′d + ktet(q)) + (I − J†(q)J(q))w̃, (2)

where J† is the pseudoinverse of the task Jacobian J , kt
is a positive gain, I − J†J is the orthogonal projection
matrix in the null space of J , and w̃ is a nq-dimensional
vector that represents a residual geometric input (it can be
chosen arbitrarily without affecting task execution). To allow
effective exploration of the planning space, w̃ is randomly
generated with bounded norm. Subpaths generated from
Chard via (2) are guaranteed to remain in Chard; whereas
they converge exponentially to Chard if qnear is outside it.

Algorithm 2: HP(T , h)
1 repeat
2 qrand ←RandomConfig(Ctask);
3 qnear ←NearestVertex(T, qrand);
4 (qnew, qnearqnew)←Extend(T, qnear);
5 if Valid(qnearqnew) then
6 T.Add(qnew, qnearqnew);
7 if qnew ∈ Lh+1 then
8 h← h+ 1;
9 else

10 mfail(qnear)← mfail(qnear) + 1;
11 until (mfron≥mmax

fron and mfail(qj)≥mmax
fail , for all qj ∈Lh)

or h = N ;
12 return h;

Once it has been generated, the subpath qnearqnew is
validated, i.e., it is checked for collision with obstacles, self-
collisions, singularities2 and violation of joint limits. If none
of the above occurs, the subpath is valid and we add qnew

and qnearqnew to T as, respectively, a new vertex and edge.
If qnew belongs to a leaf on which there are no other vertexes
(i.e., if qnew ∈ Lh+1), the frontier index h is increased. If
the subpath is not valid, the failure counter mfail associated
to qnear is increased.

The above extension procedure is iterated until the frontier
index h reaches N , or an obstruction is detected to further
extension of T . As explained in the previous section, the
latter may be due to a narrow or even closed passage in
Chard∩Cfree. To identify such situations, a heuristic criterion
is used. In particular, HP will assume that an obstruction
exists if both the following conditions are satisfied (see
Fig. 3):
• the number mfron of vertexes on the frontier leaf Lh

has reached a threshold value mmax
fron , indicating that Lh

has been sufficiently explored;
• for each vertex qj on Lh, the number of failed expan-

sions mfail(qj) from qj has reached a threshold value
mmax

fail , implying that a sufficient number of extensions
have been attempted from the vertex (and therefore
kinematic redundancy has been fully exploited).

Upon detecting an obstruction, HP returns control to the
main planner with h as frontier index.

V. SOFT PLANNER

SP, whose pseudocode is given in Algorithm 3, is invoked
when HP detects an obstruction to further extension of T
in Chard from Lh. SP first identifies the index k (k = h +
1, . . . , N) associated to the first task sample sk where the
obstruction disappears, and then grows an auxiliary tree Tsoft

in Csoft to connect Lh to Sk. Once a connecting subpath has

2We have chosen to discard singular configurations in HP for two reasons.
First, most singularities of redundant robots are avoidable, in the sense that
the desired task path can be executed by a different joint space motion. The
second reason is that, while it is true that a singularity-robust pseudoinverse
would allow to go through unavoidable singularities, this would produce
an error with respect to the desired path; by discarding singularities, we
entrust SP to intervene and produce such deviation if necessary to solve the
problem.

R_Ld

R_

aBAR

Fig. 3. The proposed heuristic criterion detects an obstruction if (1) the
number mfron of vertexes on the frontier leaf has reached a threshold
mmax

fron , and (2) the number mfail(qj) of failed extension attempts from
each such vertex qj has reached a threshold mmax

fail .

been found, it is extracted from Tsoft and added as an edge
to T . At this point, HP resumes planning in Chard (Fig. 2).

Similarly to HP for detecting obstructions, also SP uses a
heuristic criterion to identify k. In particular, a fixed number
of inverse kinematics solutions is generated in Lh+1. If the
number mfree of collision-free configurations among them
is larger than a given threshold mmin

free , then k = h + 1;
otherwise, the procedure is repeated for Lh+2, and so forth.
If h reaches N , it means that SP will operate until task
termination as planning in Chard can never be resumed.

Once k has been identified, SP starts to grow an auxiliary
tree Tsoft in Csoft, whose root is chosen at a random vertex qh

of T lying on Lh. At each iteration, a random configuration
qrand is generated in Cfree and its closest vertex qnear in
Tsoft is found. Then, the SP extension procedure (described
in detail below) is invoked to produce a subpath qnearqnew

which is valid and complies with the soft task for increasing
values of s. If successful, qnearqnew and qnew are added to
Tsoft as an edge and a vertex, respectively. This procedure
is iterated until one of the following conditions is met:
• qnew ∈ Sk, i.e., qnew is compliant with the soft task at
sk. In this case, the subpath qhqnew is extracted from
Tsoft and added to T together with qnew as, respectively,
a new edge and a new vertex.

• A maximum number imax of extension attempts is
exceeded. In this case, a failure is reported.

A. Soft Tree Extension

The SP extension procedure, whose pseudocode is given
in Algorithm 4, generates a subpath qnearqnew in Csoft

through a sequence of configurations that are valid and
compliant with the soft task for increasing values of s.
To this end, it uses a fine discretization of the [sh, sk]
interval with a step δs, producing the equispaced sequence
{sh, sh+δs, . . . , sh+M ·δs = sk}, with M = (sk−sh)/δs.
Every new configuration generated during extension will be
associated to a unique value of s within the above sequence.

Extension begins by taking a step of length η from qnear

towards a random configuration qrand; let qcurr be the
generated configuration and scurr the associated parameter

Algorithm 3: SP(T , h)
1 k ← h;
2 repeat
3 k ← k + 1;
4 GenerateIKSolutions(msol, Lk);
5 mfree ← CountCollisionFreeSolutions();
6 until mfree ≥ mmin

free or k = N ;
7 qh ← RandomVertex(T,Lh);
8 Tsoft.AddVertex(qh);
9 i← 0;

10 repeat
11 qrand ← RandomConfig(Cfree);
12 qnear ← NearestVertex(Tsoft, qrand);
13 (qnew, qnearqnew)← ExtendSoft(qnear, qrand, k);
14 if qnew 6= ∅ then
15 Tsoft.Add(qnew, qnearqnew);
16 i← i+ 1;
17 until qnew ∈ Sk or i = imax;
18 if qnew ∈ Sk then
19 qhqnew ← Tsoft.RetrievePath();
20 T.Add(qnew, qhqnew);
21 return k;
22 return ∅;

Algorithm 4: ExtendSoft(qnear, qrand, k)

1 qcurr ← qnear + η
qrand−qnear

‖qrand−qnear‖
;

2 compute scurr (3);
3 repeat
4 compute et(qcurr, scurr + δs)(4);
5 compute d (5);
6 qcurr ← qcurr + ηd;
7 compute scurr (3);
8 until scurr = sk or scurr = ∅ or !Valid(qcurr);
9 if scurr = sk then

10 return [qcurr, qnearqcurr];
11 return [qcurr.parent, qnearqcurr.parent];

sample, i.e., the smallest value in the subsequence {snear +
δs, . . . , sk} for which qcurr is compliant with the soft task:

scurr = min s ∈ {snear + δs, . . . , sk} : qcurr ∈ S(s), (3)

where snear is the parameter sample associated to qnear.
Then, an iterative procedure starts aimed at generating

a subpath in Csoft from qcurr towards Sk. At the generic
iteration, a task error is computed for the current configura-
tion qcurr giving a small increase δs to the associated path
parameter value scurr:

et(qcurr, scurr + δs) = td(scurr + δs)− f(qcurr). (4)

Then, a descent direction for the task error in configuration
space is computed as

d = − JT (qcurr)et(qcurr, scurr + δs)∥∥∥JT (qcurr)et(qcurr, scurr + δs)
∥∥∥ , (5)

where JT (qcurr) is the transpose of the task Jacobian. The
current configuration is then updated by taking a step of
length η in the direction d, and the cycle continues.

The cycle is interrupted in the following cases:

1) the current configuration qcurr belongs to Sk, i.e.,
scurr = sk;

2) qcurr is not compliant with the soft task;
3) qcurr is not valid.
In case 1, a subpath starting from qh and leading to

a configuration in Sk has been found, and is returned to
SP together with the configuration itself. In cases 2-3, the
subpath generated so far cannot be further extended without
violating the validity requirements and the compliance with
the soft task; therefore, only the portion of the subpath
leading to the parent configuration of qcurr is returned to
SP.

VI. PLANNING EXPERIMENTS

We have implemented the proposed opportunistic planner
in the V-REP simulation environment on an Intel Core
i7-8700K CPU running at 3.7 GHz. The chosen robotic
platform is the PR2 mobile manipulator, which consists of
an omnidirectional base, a liftable torso, and two arms with
8 DOFs each.

We present planning experiments obtained in four different
scenarios. The task is always assigned in terms of the
position of the robot right end-effector, while the left arm is
kept frozen. Hence, the robot configuration q consists of the
planar position and orientation of the base, the torso height,
and the joint coordinates of the right arm, for a total of
nq = 12 generalized coordinates.

The same parameters are used in all scenarios:
• the samples of the desired task path are N + 1 = 11;
• kt = 10 in the motion generation (2), which is inte-

grated with Euler method and a stepsize of 0.002;
• HP detects the presence of a planning obstruction by

setting mmax
fron = mmax

fail = 5, while SP identifies its
absence using msol = 100 and mmin

free = 20;
• SP extension works with η = 0.01 and δs = 0.02.
The tolerance is specified in the local frame3 of the desired

task path, as this is the most simple and intuitive option for
the user. Accordingly, compliance with the soft task at a
certain configuration is evaluated using (1) by expressing
the task error in that frame.

For each scenario, we report some snapshots from a
solution (Figs. 4–7) as well as the evolution of the task
error along that solution (Fig. 8). To better appreciate the
quality of the generated motions, we invite the reader to
watch the accompanying video, which shows animated clips
of the solutions.

In the first scenario (Fig. 4), the desired task path for the
end-effector is a line passing through a pillar. The tolerance
is specified as ∆t = (0.07, 0.2, 0.1) m (corresponding to
the green volume in Fig. 1). In the first part of the motion,
HP is able to execute the desired task path (snapshots 1 and
2). In the vicinity of the pillar, HP detects an obstruction
and SP is invoked; this leads to an end-effector path that

3In our implementation, such frame has the origin at td(s) and the x- and
y-axes oriented, respectively, as t′d(s) = (x′d, y

′
d, z
′
d) and (y′d,−x

′
d, 0);

the z-axis is consequently defined. With this choice, the x-axis is always
tangent to td(s) and oriented along the direction induced on td(s) by s.

Fig. 4. Planning scenario 1: snapshots from a solution. The desired and actual task paths are shown in red and blue, respectively. The robot leaves the
desired path only when strictly necessary to avoid the pillar.

Fig. 5. Planning scenario 2: snapshots from a solution. The task tolerance is exploited in correspondence of the two portions of the desired path that are
obstructed by pillars.

Fig. 6. Planning scenario 3: snapshots from a solution. The robot carries an object from a location to another above the table, leaving the desired
end-effector path only when strictly necessary to avoid collisions between its torso and the table.

Fig. 7. Planning scenario 4: snapshots from a solution. Although the environment is quite cluttered, the robot succeeds in carrying the object along the
desired path, momentarily deviating from it only in order to avoid the cabinet.

deviates (snapshot 3) from the desired one for s ∈ [0.3, 0.5],
still remaining inside the available tolerance (Fig. 8). As
soon as SP considers the obstruction to have disappeared,
HP takes back control and the robot returns on the desired
path (snapshot 5).

The second scenario (Fig. 5) is aimed at confirming that
the opportunistic planner is able to leave and return to the
desired task path multiple times. To this end, the robot end-
effector is assigned a sinusoidal path that passes through two
pillars, with the tolerance defined as ∆t = (0.07, 0.3, 0.1) m.
Snapshots 2 and 4 show that the robot correctly exploits the
tolerance twice, for s ∈ [0.1, 0.3] and s ∈ [0.7, 0.9], while
the desired path is realized everywhere else (see also Fig. 8).

In the third scenario (Fig. 6) the robot must execute a
simple pick and place task, i.e., moving a ball from an
initial to a final position on the table. In such a situation,
the user may specify a very simple (and time-efficient)
tentative task path, defined as the line segment joining the
two locations above the pick and place positions. This path
may be abandoned if necessary, but for safety reasons it is

desirable that the object always remains above (but not in
contact with) the table during the motion. Such requirements
translate to a tolerance specified as ∆t = (0.07, 0.3, 0.1) m.
The results show that the desired path is perfectly executed
at the start and at the end, with the robot retracting its end-
effector for s ∈ [0.4, 0.8] (snapshots 2-4) to avoid collision
between its torso and the table. As indicated by Fig. 8, the
task error is always within the tolerance region.

The final scenario (Fig. 7) also deals with a pick and
place task, with the robot now required to move the ball
from a shelf to a desired location on a bookcase. The task is
specified through a curved desired path and a tolerance ∆t =
(0.05, 0.25, 0.1) m. An early portion of the desired path goes
through a cabinet, while the second part requires the robot to
navigate a very cluttered region. As in previous scenarios, the
desired path is initially realized (snapshot 1) and, under the
action of SP, briefly abandoned for s ∈ [0.1, 0.4] in order to
avoid the cabinet (snapshots 2 and 3). Once such obstruction
has been removed, HP takes back control and brings back
the robot to the desired path, staying on it until the end in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5 planning experiment 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5 planning experiment 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5 planning experiment 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5 planning experiment 3

Fig. 8. Evolution of the task error et in the four planning experiments.
The dashed lines indicate the tolerance for each component.

spite of the very limited workspace clearance.
Table I reports some performance data averaged over 20

runs of the opportunistic planner in each scenario.

VII. CONCLUSIONS

We have considered the problem of planning collision-
free motions for redundant robots in the presence of soft
task constraints, specified by a desired path in task space
with an associated tolerance. The objective was to devise
a planner that can realize the desired path for as long as
possible, exploiting the tolerance only when strictly needed
to avoid a collision.

scenario planning
time (s)

HP
invocations

SP
invocations

vertices
in T

collision
checks

1 2.42 2 1 41 3098
2 7.51 3 2 54 6555
3 6.23 2 1 37 9065
4 13.64 2 1 43 17047

TABLE I
AVERAGED PERFORMANCE DATA.

Our opportunistic approach alternates two subplanners:
the first (HP) plans a robot motion that satisfies the hard
constraint, until it detects an obstruction based on a heuristic
criterion; when this happens, it invokes the second planner
(SP), which is only required to satisfy the soft constraint
and may therefore be able to bypass the obstruction, giving
back control to HP as soon as possible. We implemented the
method in V-REP for the PR2 mobile manipulator, presenting
successful planning experiments in several scenarios.

Our approach can be further developed along several
lines, such as (i) devising an automatic procedure for tuning
the planner parameters, in particular N ; (ii) extending the
method to robots subject to nonholonomic constraints; (iii)
taking into account moving obstacles; (iv) generating solu-
tions that are optimal w.r.t. a given performance criterion.

REFERENCES

[1] S. Chiaverini, G. Oriolo, and A. A. Maciejewski, “Redundant robots,”
in Springer Handbook of Robotics – 2nd Edition, B. Siciliano and
O. Khatib, Eds. Springer-Verlag Berlin Heidelberg, 2016, pp. 221–
242.

[2] O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of
redundant manipulators: Generalizing the task-priority framework to
inequality task,” IEEE Trans. on Robotics, vol. 27, no. 4, pp. 785–792,
2011.

[3] D. Rakita, B. Mutlu, and M. Gleicher, “Stampede: A discrete-
optimization method for solving pathwise-inverse kinematics,” in 2019
IEEE Int. Conf. on Robotics and Automation, 2019, pp. 3507–3513.

[4] Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-based methods
for motion planning with constraints,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 1, pp. 159–185, 2018.

[5] G. Oriolo and C. Mongillo, “Motion planning for mobile manipulators
along given end-effector paths,” in 2005 IEEE Int. Conf. on Robotics
and Automation, 2005, pp. 2166–2172.

[6] M. Stilman, “Task constrained motion planning in robot joint space,”
in 2007 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2007,
pp. 3074–3081.

[7] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A
framework for pose-constrained manipulation planning,” Int. J. of
Robotics Research, vol. 30, no. 12, pp. 1435–1460, 2011.

[8] G. Oriolo and M. Vendittelli, “A control-based approach to task-
constrained motion planning,” in 2009 IEEE/RSJ Int. Conf. on In-
telligent Robots and Systems, 2009, pp. 297–302.

[9] G. Oriolo, M. Cefalo, and M. Vendittelli, “Repeatable motion planning
for redundant robots over cyclic tasks,” IEEE Trans. on Robotics,
vol. 33, no. 5, pp. 1170–1183, 2017.

[10] M. Cefalo and G. Oriolo, “A general framework for task-constrained
motion planning with moving obstacles,” Robotica, vol. 37, pp. 575–
598, 2019.

[11] T. Kunz and M. Stilman, “Manipulation planning with soft task
constraints,” in 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2012, pp. 1937–1942.

[12] M. Guo and M. M. Zavlanos, “Probabilistic motion planning under
temporal tasks and soft constraints,” IEEE Trans. on Automatic Con-
trol, vol. 63, no. 12, pp. 4051–4066, 2018.

[13] I. Sucan and S. Chitta, “Motion planning with constraints using
configuration space approximations,” in 2012 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2012, pp. 1904–1910.

[14] Z. Fusheng, L. Yizhou, G. Wei, W. Pengfei, L. Mantian, W. Xin, and
L. Jingxuan, “Learning the metric of task constraint manifolds for
constrained motion planning,” Electronics, vol. 7, p. 395, 2018.

[15] V. Boor, M. Overmars, and A. V. der Stappen, “The gaussian sampling
strategy for probabilistic roadmap planners,” in 1999 IEEE Int. Conf.
on Robotics and Automation, 1999, pp. 1018–1023.

[16] D. Hsu, “The bridge test for sampling narrow passages with proba-
bilistic roadmap planners,” in 2003 IEEE Int. Conf. on Robotics and

Automation, 2003, pp. 4420–4426.
[17] Z. Sadeghi and H. Moradi, “A new sample-based strategy for narrow

passage detection,” in 2011 9th IEEE World Congress on Intelligent
Control and Automation, 2011, pp. 1059–1064.

[18] M. Saha, J.-C. Latombe, Y.-C. Chang, and F. Prinz, “Finding nar-
row passages with probabilistic roadmaps: The small-step retraction
method,” Autonomous Robots, vol. 19, no. 3, pp. 301–319, 2005.

[19] D. Berenson, T. Siméon, and S. Srinivasa, “Addressing cost-space
chasms in manipulation planning,” in 2011 IEEE Int. Conf. on Robotics
and Automation, 2011, pp. 4561–4568.

