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Abstract— This paper presents a novel online framework for
safe crowd-robot interaction based on risk-sensitive stochastic
optimal control, wherein the risk is modeled by the entropic risk
measure. The sampling-based model predictive control relies
on mode insertion gradient optimization for this risk measure
as well as Trajectron++, a state-of-the-art generative model
that produces multimodal probabilistic trajectory forecasts for
multiple interacting agents. Our modular approach decouples
the crowd-robot interaction into learning-based prediction and
model-based control, which is advantageous compared to end-
to-end policy learning methods in that it allows the robot’s
desired behavior to be specified at run time. In particular,
we show that the robot exhibits diverse interaction behavior
by varying the risk sensitivity parameter. A simulation study
and a real-world experiment show that the proposed online
framework can accomplish safe and efficient navigation while
avoiding collisions with more than 50 humans in the scene.

I. INTRODUCTION
As autonomous robots expand their workspace to cage-

free, social environments, they must be designed as safety-
critical systems; failures in avoiding collisions with humans
sharing the workspace result in catastrophic accidents. Safe
and efficient robot navigation alongside many humans is
still a challenging problem in robotics, especially due to the
potentially unpredictable and uncooperative nature of human
motion. We propose an effective solution to this problem
via risk-sensitive stochastic optimal control, wherein desired
collision avoidance and goal reaching motion is achieved by
a cost function, a risk-sensitivity parameter, and dynamic op-
timization. Specifically, we extend the Stochastic Sequential
Action Control (SAC) algorithm [1] to a risk-sensitive setting
through the use of exponential disutility [2], the objective
often referred to as the entropic risk measure [3]. The
proposed sampling-based algorithm, which we name Risk-
Sensitive Sequential Action Control (RSSAC), is a stochastic
nonlinear model predictive control (NMPC) algorithm that
optimally improves upon a given nominal control with a
series of control perturbations. Unlike many other control-
theoretic stochastic NMPCs [4], [5], [6], RSSAC is not
limited to a particular class of distributions such as Gaussian,
nor does it need to know the analytical form; it only requires
a black-box probabilistic generator. Leveraging this property
and recent advances in machine learning for modeling multi-
agent behavior, we combine RSSAC with Trajectron++ [7],
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Fig. 1: The proposed RSSAC-Trajectron++ framework is effective for safe
robot navigation in a social environment densely populated with humans.
(Left) A simulation environment with real human trajectories from the
UCY/UNIV scene [8], overlaid with predictions sampled from Trajectron++.
(Right) A risk-sensitive robot safely navigating itself alongside 5 humans.

a state-of-the-art generative model for predicting the many
possible future trajectories of multiple interacting agents
accurately and efficiently. The overall framework constitutes
a prediction-control pipeline for safe robot navigation, which
is shown to be capable of interacting with more than 50
pedestrians simultaneously while avoiding collisions and
steering the robot towards its goal.

The contributions of this paper are two-fold. First, the
extension of the Stochastic SAC to risk-sensitive optimal
control is presented as a theoretical contribution. This is
achieved by generalizing the mode insertion gradient [9],
[10] to the entropic risk measure. Second, the combined
RSSAC-Trajectron++ framework is presented as a novel
modular approach to safe crowd-robot interaction with dy-
namic collision avoidance. RSSAC takes advantage of the
parallelizability of Monte Carlo sampling, leading to an
efficient GPU implementation with real-time performance.
We conduct simulation studies as well as a real-world experi-
ment to demonstrate that the explicit probabilistic prediction
of Trajectron++ and risk-sensitive optimization of RSSAC
allow a robot to interact with many humans safely and
efficiently. They also reveal that the risk sensitivity parameter
adds an additional degree of freedom in determining the type
of interaction behavior exhibited by the robot, e.g. yielding
to or crossing in front of oncoming humans; this diverse
behavior is not achieved by tuning cost function parameters.

II. RELATED WORK
We first review relevant work in dynamic collision avoid-

ance and safe robot navigation in Section II-A. We then focus
on Stochastic SAC (Section II-B) and data-driven trajectory
forecasting methods (Section II-C), on which our RSSAC-
Trajectron++ framework is built.

A. Dynamic Collision Avoidance and Safe Robot Navigation
There exists a vast body of literature in the field of dy-

namic collision avoidance and safe robot navigation. Coordi-
nated collision avoidance is widely studied in the multi-robot
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systems literature, with methods including mixed integer pro-
gramming [11], reciprocal velocity obstacles [12], buffered
Voronoi cells [13], [14], Nash-equilibria-based differential
games [15], and safety barrier certificates [16]. These meth-
ods do not explicitly model uncoordinated agents or motion
uncertainty, which are both crucial aspects in human motion;
later in Section V we observe collisions for [14] due to
humans breaking the coordination assumption. A notable
exception is [17], where the authors propose probabilistic
safety barrier certificates for bounded motion uncertainty.
An alternative approach suited to bounded uncertainty is
the Hamilton-Jacobi (HJ) reachability analysis [18], [19],
although it suffers from the curse of dimensionality in
solving the Hamilton-Jacobi-Isaacs equation.

Another common approach to modeling motion uncer-
tainty is via the use of probability distributions. MDP and
POMDP frameworks have been applied to robot navigation
and collision avoidance [20], [21] and are best suited to
discrete action spaces. Stochastic Optimal Control (SOC),
especially sampling-based model predictive control (MPC),
is also gaining increasing attention due to its ability to handle
stochastic uncertainty and incorporate prediction of possible
future outcomes. Recent methods applied to safe robot nav-
igation and dynamic collision avoidance include exhaustive
search with motion primitives [22], path-integral control [5],
and information-theoretic control [23]. While the latter two
approaches can find approximately optimal solutions under
certain assumptions, they require the form of distribution
to be Gaussian. In addition, it is often not satisfactory to
only optimize for the expected cost, especially for safety-
critical systems. There exist many possible ways to endow
robots with risk-awareness [3], such as chance-constrained
optimization [24], conditional value at risk (CVaR) [25],
and entropic risk measure [26]. All of these methods come
with advantages and drawbacks, but in general there is a
trade-off between the complexity of modeling assumptions
and the statistical safety assurances. Our work employs the
entropic risk measure which has been extensively studied in
control theory [27], [28]. Albeit not yielding statistical safety
assurances, our algorithm can compute control inputs in
real-time for highly dynamic environments with multimodal
predictive distributions, which is quite challenging for chance
constrained optimization or CVaR-based methods.

Lastly, we briefly highlight similarities and differences
of our work from policy learning methods such as imita-
tion learning [29] or end-to-end deep reinforcement learn-
ing [30], [31]. Similar to these methods, our framework
applies machine learning to extract features from multi-
agent interactions. However, we use these features to make
explicit probabilistic predictions about other agents which
are then incorporated into optimization by the model-based
controller. Our modular approach has two advantages. First,
explicit prediction brings about better interpretability and
explainability of the resulting interaction. Second, our model-
based controller allows the robot’s behavior to be changed at
run time by simply modifying the cost function design or the
risk sensitivity parameter, while other methods would need
re-training to do so as the policy itself is data-driven.

B. Stochastic Sequential Action Control
SAC in its original form is a deterministic model predictive

control algorithm for nonlinear hybrid systems [10], [32].

In contrast to local trajectory optimization, at each time
the algorithm perturbs a given (open-loop or closed-loop)
nominal control to optimize a local improvement of the
total receding-horizon cost, a quantity known as the mode
insertion gradient [9]. SAC is shown to yield highly efficient
control computation with high-frequency replanning, which
often achieves better performance than local trajectory opti-
mization methods. In prior work [1], [33], we have gener-
alized the mode insertion gradient to stochastic systems and
solved challenging belief space planning problems, where
our approach significantly outperforms other state-of-the-art
methods under both sensing and motion uncertainty. The
proposed RSSAC algorithm is an extension of this algorithm
to risk-sensitive optimal control in which the cost functional
is the entropic risk measure. This makes the algorithm more
suitable for problems where safety is concerned, such as the
crowd-robot interaction one that we address in this paper.

C. Multi-Agent Trajectory Modeling from Data
Since human behavior is rarely deterministic or unimodal,

deep learning-based generative approaches have emerged as
state-of-the-art trajectory forecasting methods, due to recent
advancements in deep generative models [34], [35]. They
mostly use a recurrent neural network architecture with a
latent variable model, such as a Conditional Variational Au-
toencoder (CVAE) [34], to explicitly encode multimodality
(e.g. [36]), or a Generative Adversarial Network (GAN) [35]
to do so implicitly (e.g. [37]). Trajectron++ [7] belongs
to the former, making use of a CVAE to explicitly model
the multimodality of human behavior with a latent variable.
Specifically, it uses a discrete Categorical latent variable
which aids in performance as well as interpretability, since
different behavior modes are explicitly represented and able
to be visualized. Designed for downstream robotic motion
planning and control tasks, Trajectron++ can also produce
predictions that are conditioned on candidate future mo-
tion plans of the ego robot. We leverage this capability
in a real-world experiment in Section V and show that
the robot-future-conditional prediction significantly improves
both safety and efficiency of the robot navigation.

III. PROBLEM STATEMENT

A. Dynamics Model
Following [1], [33], this work assumes a discrete-time

dynamical system model for other agents (i.e. humans) while
employing a continuous-time one for the robot. This model-
ing assumption is practical, as 1) in general the robot receives
information of its surrounding environment at a much lower
frequency than actuation; and 2) with this representation one
can naturally handle potentially agile robot dynamics without
coarse time discretization. Let x(t) ∈ Rn denote the state of
the robot at time t, whose dynamics are modeled by

ẋ(t) = f(x(t)) +H(x(t))u(t), (1)

where u(t) ∈ U ⊆ Rm is the control and U is a bounded
convex set. We assume that the dynamics are deterministic
and control-affine. As the robot navigates in the environment,
it receives position information on humans in the scene and
updates it at discrete times {tk}k≥0, with interval time ∆to.
Similarly to related works [13], [14] we do not assume veloc-
ity information to be available to the robot. Let pi(tk) ∈ R2
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denote the position of the human with label i ∈ {1, . . . , N}.
From tk−1 to tk, the position pi(tk−1) changes to pi(tk) with
difference yik. From the robot’s continuous-time perspective,
this is viewed as a periodic jump discontinuity given by{

pi(tk) = pi(t−k ) + yik
pi(t) = pi(tk) ∀t ∈ [tk, tk+1),

(2)

where t−k is infinitesimally smaller than tk. The dynamics of
the joint state s(t) = (x(t), p1(t), . . . , pN (t)) are specified
by (1) and (2), which together constitute a hybrid dynamical
system with time-driven switching. We treat N as a fixed
number in this section, but relax this assumption later and
handle a time-varying number of humans via replanning.

The robot plans its control actions over a finite hori-
zon [t0, tT ] while the humans make stochastic transitions
{yik}(1≤i≤N,1≤k≤T ). Stacking these transition variables, we
obtain a random vector with distribution D. This distribution
can be dependent on other variables such as past history of
interactions and/or future motion plans of the robot. For the
sake of planning, we only require that samples drawn from
D are available. In this work we choose to model D with
Trajectron++ [7], due to its superior performance over other
trajectory forecasting methods as well as its capability to
produce robot-future-conditional predictions. The reader is
referred to [7] for further details on Trajectron++.

B. Optimal Control Problem
Consider a finite horizon optimal control cost of the form

J =

∫ tT

t0

c(s(t), u(t))dt+ h(s(tT )), (3)

where c(·) is the instantaneous cost function and h(·) is the
terminal cost function. In this work we assume that c(·) is
the well-known LQ tracking cost plus a collision cost term:

c(s(t), u(t)) =
1

2
(x(t)− r(t))TQ(x(t)− r(t))+

1

2
u(t)TRu(t) + ccol(s(t)), (4)

where Q = QT � 0 and R = RT � 0 are weight
matrices, and ccol(·) ≥ 0 is a collision penalty function that
is continuously differentiable, bounded, and has bounded
gradient with respect to x. The reference trajectory r is
assumed to be given, possibly from a high level global
planner. Similarly, the terminal cost h(·) is defined by

h(s(tT )) =
β

2
(x(tT )− r(tT ))TQ(x(tT )− r(tT ))+

βccol(s(tT )), (5)

where β ≥ 0 determines the relative weight between the
terminal and instantaneous costs.

Having specified the cost functional J , we define the (risk-
neutral) stochastic optimal control problem as follows.

Problem 1 (Risk-Neutral Stochastic Optimal Control):

minimize
u

ED[J ]

subject to (1), (2) ∀i ∈ {1, . . . , N} ∀k ∈ {0, . . . , T}
x(t0) = x0, p

i(t0) = pi0 ∀i ∈ {1, . . . , N}
u(t) ∈ U ∀t ∈ [t0, tT )

C. Entropic Risk Measure

The formulation of Problem 1 ignores the safety-critical
aspect of collision avoidance, as simply optimizing the
expected value fails to take into account the shape of the
distribution. A remedy is to introduce the following entropic
risk measure with risk sensitivity parameter σ > 0:

RD,σ(J) ,
1

σ
log
(
ED[eσJ ]

)
. (6)

As long as the robot trajectory x is bounded for all admissible
control, J becomes a bounded random variable and RD,σ(J)
is finite. It is known that this transformation approximately
decouples the mean and variance:

RD,σ(J) ≈ ED[J ] +
σ

2
VarD(J) (7)

for small σVarD(J) [2]. The meaning of σ is now clear;
it is a parameter that determines how much we care about
the variability of the cost in addition to the mean. Larger
σ increases risk sensitivity, while the risk-neutral objective
ED[J ] is recovered as σ → 0+.

Replacing the expectation in Problem 1 with (6), we obtain
the following risk-sensitive optimal control problem:

Problem 2 (Risk-Sensitive Stochastic Optimal Control):

minimize
u

RD,σ(J)

subject to the same constraints as in Problem 1

IV. RISK-SENSITIVE SEQUENTIAL ACTION
CONTROL

A. Review of Stochastic Sequential Action Control

Even solving Problem 1 is intractable due to potential non-
convexity in ccol and complexity in D. An efficient, approxi-
mate MPC solution can be obtained via Stochastic SAC [1],
[33]. In this framework, we seek the optimal perturbation
of a given nominal control such that the expected value
of the mode insertion gradient [9], [10], which quantifies
local effects of the perturbation on the cost functional J , is
minimized. We assume that the nominal control is an open-
loop control schedule u (although it is straightforward to
extend our method to deal with closed-loop nominal control
policies [1], [33]). The perturbed control is defined as

uε(t) ,

{
v if t ∈ (τ − ε, τ ]

u(t) otherwise,
(8)

where v ∈ U , τ ∈ (t0, tT ), ε ≥ 0 are the perturbation pa-
rameters. The perturbation uε yields deterministic, perturbed
state trajectory xε and cost Jε under a specific sample from
D. The mode insertion gradient is the sensitivity of the cost
J to the perturbation duration ε, with v and τ fixed:

∂+J

∂ε

∣∣∣∣
ε=0

, lim
ε→0+

Jε − J
ε

. (9)

The value of the mode insertion gradient is given by

∂+J

∂ε

∣∣∣∣
ε=0

=
1

2
vTRv + ρ(τ)TH(x(τ))(v − u(τ))

− 1

2
u(τ)TRu(τ), (10)
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where x is the robot state trajectory induced by nominal
control u, and ρ is the adjoint variable matching the dimen-
sionality of the robot state. Specifically, it follows the ODE:

ρ̇(t) = − ∂

∂x
c(s(t), u(t))

−
(
∂

∂x
f(x(t)) +

∂

∂x
H(x(t))u(t)

)T

ρ(t), (11)

with boundary condition ρ(tT ) = ∂
∂xh(s(tT )). As the joint

state s(t) is a random vector due to stochasticity in human
motion, so is ρ(t) and (11) is valid under the specific sample
from D. Taking the expectation yields the expected mode
insertion gradient ED [∂+J/∂ε|ε=0], which is obtained by
replacing ρ(τ) in (10) with ED[ρ(τ)].

B. Generalized Mode Insertion Gradient
Under a weak regularity condition on the dynamics func-

tion (1) and for the cost J defined by (3), (4), (5), one
can show1 that the robot trajectory x is bounded for all
admissible control, and that the perturbed cost Jε is Lipschitz
continuous in ε ≥ 0:

|Jε − J | ≤ εK, (12)

under the same random sample from D for J and Jε. The
value of the constant K is not dependent on the samples.
Therefore, the dominated convergence theorem allows us to
interchange the derivative and the expectation:

ED
[
∂+J

∂ε

∣∣∣∣
ε=0

]
=
∂+ED[J ]

∂ε

∣∣∣∣
ε=0

. (13)

The right-hand side of (13) is the mode insertion gradient
generalized to the case of risk-neutral stochastic optimal
control (i.e. Problem 1). If the optimal value with respect
to v is negative for some τ , then there exists a sufficiently
small ε for which the perturbation defined by (v, τ, ε) will
reduce the expected cost. If instead it is zero, we can think of
the nominal control as satisfying a local optimality condition.

C. Extension to Entropic Risk Measure
Sections IV-A and IV-B have provided a summary of

prior work [1], [33]. Now we are set to derive the gener-
alized mode insertion gradient for the entropic risk measure
RD,σ(J), which is a novel contribution of this paper.

Lemma 1: Suppose that the total cost J satisfies (12).
Then, for σ > 0 the following relation holds:

ED
[
∂+e

σJ

∂ε

∣∣∣∣
ε=0

]
=
∂+ED[eσJ ]

∂ε

∣∣∣∣
ε=0

. (14)

Proof: Let Jε and J be the perturbed and the nominal
cost, respectively. We have

|eσJ
ε

− eσJ | = |e
σ(Jε−J) − 1|

eσJ
≤ eσ|J

ε−J| − 1, (15)

where we used |ex−1| ≤ e|x|−1 and eσJ ≥ 1. Substituting
(12) and dividing by ε > 0, we obtain

|eσJε − eσJ |
ε

≤ eσKε − 1

ε
(16)

1A more general and detailed analysis is provided in [33] where we
provide sufficient conditions for (13) to hold.

Let g(ε) denote the right-hand side of this inequality, which
is a strictly monotone increasing function for ε > 0. Now
let |fε(J)| denote the left-hand side as a function of J
parameterized by ε. Take some positive ε0 and a sequence
{εn}n≥0 converging to 0+ as n → ∞. It follows that
∀n ≥ 0, |fεn(J)| ≤ g(ε0). The dominated convergence
theorem applies as g(ε0) is a finite, deterministic constant:

ED[ lim
n→∞

fεn(J)] = lim
n→∞

ED[fεn(J)], (17)

which is equivalent to (14).
Theorem 1 (Mode Insertion Gradient of Entropic Risk):

Suppose that the regularity condition mentioned in Section
IV-B is met so the robot trajectory x is bounded under
admissible control and the cost J satisfies (12). Then, for
fixed v and τ the mode insertion gradient of the entropic
risk measure ∂+

∂εRD,σ(J)|ε=0 exists and is given by

∂+
∂ε
RD,σ(J)

∣∣∣∣
ε=0

=

1

2
vTRv +

ED[eσJρ(τ)]T

ED[eσJ ]
H(x(τ))(v − u(τ))

− 1

2
u(τ)TRu(τ), (18)

where J inside the expectations is the cost value under the
nominal control u.

Proof: As the robot trajectory is bounded, J is a
bounded random variable and the value of RD,σ(J) is finite.
The chain rule gives

∂+
∂ε
RD,σ(J)

∣∣∣∣
ε=0

=
1

σED[eσJ ]

∂+ED[eσJ ]

∂ε

∣∣∣∣
ε=0

(19)

=
1

ED[eσJ ]
ED
[
eσJ

∂+J

∂ε

∣∣∣∣
ε=0

]
, (20)

where we also used Lemma 1. Substituting (10) and simpli-
fying the terms complete the proof.

The mode insertion gradient of entropic risk (18) is a
generalization of the stochastic mode insertion gradient (13).
Indeed, for the risk neutral case (i.e. σ = 0) the two
equations match. This enables us to extend the Stochastic
SAC algorithm to risk-sensitive optimal control problems
without changing the structure of the algorithm.

D. RSSAC Algorithm
The core of RSSAC is the following optimization problem,

which substitutes Problem 1 (if σ = 0) and 2 (if σ > 0).
Problem 3 (Mode Insertion Gradient Optimization):

minimize
v,τ

∂+
∂ε
RD,σ(J)

∣∣∣∣
ε=0

subject to τ ∈ (t0 + tcalc, tT )

v(τ) ∈ U ∀τ ∈ (t0, tT ),
where tcalc is a computation time budget. The objective can
be evaluated by Monte Carlo sampling the joint dynamics
(1), (2) under the nominal control and backward integration
of the adjoint dynamics (11). Fixing τ , Problem 3 is a
quadratic minimization over v under a convex constraint. The
optimal value v∗(τ) can be obtained analytically for simple
constraints such as a box constraint or a norm inequality
constraint with a scaled identity matrix R. Optimizing τ is
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Algorithm 1 Control Computation with RSSAC

INPUT: Initial joint state s(t0), reference trajectory r, nom-
inal control schedule u(t) for t ∈ [t0, tT ].

OUTPUT: Optimally perturbed control schedule uε
1: for j = 1:M do
2: Forward-simulate the joint dynamics (1), (2) while

sampling human transitions {yik}
j
(1≤i≤N,1≤k≤T ) from D

3: Compute sampled cost Jj
4: Backward-simulate adjoint robot trajectory ρj with

sampled human transitions (11)
5: end for
6: Compute Monte Carlo estimate: ED[eσJρ] ≈

1
M

∑M
j=1 e

σJjρj and ED[eσJ ] ≈ 1
M

∑M
j=1 e

σJj

7: Solve Problem 3
8: Specify ε or search by re-simulating the dynamics
9: uε ← PerturbControlSchedule(u, v∗, τ∗, ε) (8)

10: return uε

achieved by solving v∗(τ) multiple times and searching for
the minimum value. There is only a finite number of τ to
consider since in practice we use numerical integration, such
as the Euler scheme with some discrete step size, to integrate
the robot dynamics. The optimal mode insertion gradient is
always non-positive, and if it is negative then there exists
some ε > 0 such that the entropic risk measure is reduced
as a result of the control perturbation. The value of ε can
be either specified or searched. If instead the mode insertion
gradient is zero, we set ε = 0 and choose not to perturb.

The pseudo-code of the RSSAC algorithm is presented
in Algorithm 1. Importantly, the Monte Carlo sampling part
is naturally parallelizable. Note that the risk sensitivity has
no effect unless we draw at least M = 2 samples. The
replanning happens at every ∆tr seconds, allowing for a
variable number of humans to be considered over time. The
complexity of the algorithm is O(NMT ) where N denotes
the number of humans, M the number of samples, and T
the planning horizon.

E. Implementation Details
In our implementation, we use the double integrator model

for the robot’s dynamics: x(t) = (xp(t), xv(t)), ẋp(t) =
xv(t), ẋv(t) = u(t). These dynamics are integrated using the
Euler scheme with step size ∆tc = 0.02[s]. The cost weight
matrices are Q = Diag(0.5, 0.5, 0, 0) and R = 0.2I2×2. The
collision cost is the following sum of Gaussian functions
centered at each human:

ccol(s(t)) =

N∑
i=1

α exp

(
−
‖xp(t)− pi(t)‖22

2λ

)
, (21)

with peak parameter α = 100 and bandwidth parameter
λ = 0.2. The relative weight of the terminal cost is set
to β = 0.1. The reference trajectory r is a straight line
connecting the initial robot position to the goal position at
a constant target speed, and is replanned whenever ‖x(t)−
r(t)‖2 > 2[m]. The control constraint is ‖u(t)‖2 ≤ umax

with umax = 5.0, 2.5[m/s2] in the simulation and the real-
world experiment, respectively. Monte Carlo sampling is
parallelized on a GPU with sample size M = 30. The
planning horizon is 4.8[s], which corresponds to T = 12

steps of human motion prediction with measurement interval
∆to = 0.4[s].

In contrast to prior work [1], [33], we searched for ε from
{0, 1e−3, 2e−3, 4e−3, 8e−3, 1.6e−2, 2e−2, 4e−2, 8e−2}[s] by
re-simulating the perturbed dynamics. The nominal control
u is a simple MPC-style search algorithm and takes the form

u(t) =

{
us(t) if t ∈ [t0 + tcalc, t0 + tcalc + ∆to]

upr(t) otherwise,
(22)

where upr is the perturbed control from the previous iteration,
and us is either the same as upr or chosen from a set
of constant control inputs {(a cos(θ), a sin(θ))} with a ∈
{0.4umax, 0.8umax} and θ ∈ {0, π/4, π/2, . . . , 2π}. The
best us is chosen based on the evaluation of RD,σ(J) for each
nominal control candidate using the Monte Carlo samples.
This nominal search is similar to the iterative update scheme
presented in [32] in that the previously-computed perturba-
tion is used in the next iteration, but we insert us prior to
running Algorithm 1. It can also be considered as a simplified
version of a tree search with motion primitives [22] with only
17 control choices and tree depth 1. Note that if robot-future-
conditional prediction is used, the distribution D is different
for each candidate nominal control, allowing the robot to
consider the effect of various future robot trajectories on
human behavior. We found this simple nominal search to
be effective compared to constant nominal control [10], [32]
while retaining low computational cost.

We have implemented all the control code in Julia and
achieved real-time performance with replanning interval
∆tr = tcalc = 0.1[s].

V. RESULTS
A. Simulation Results

We evaluated the performance of RSSAC in simulation
and compare against three baseline collision avoidance al-
gorithms: 1) LQ-Tracking with Buffered Input Cell (BIC)
[14], 2) Nominal Search (Section IV-E) Only, 3) Exhaustive
Tree Search with Motion Primitives [22]. BIC is a reciprocal
collision avoidance method that has similar computational
complexity to the Velocity Obstacle (VO) approaches. Un-
like VO, BIC does not require the velocity information
of other agents to be available and is applicable to high-
order linear dynamics. As our robot is a double-integrator
and only obtains position measurements, BIC is a more
suitable reciprocal collision avoidance approach than VO.
BIC is minimally invasive in that an arbitrary control input
is projected onto a convex polygon in the control space.
Collision avoidance is guaranteed as long as all the agents
respect their own BIC constraint. We use the LQ-Tracking
cost (without ccol) to solve a deterministic optimal control
problem and the BIC constraint adjusts the control input
based on the current positions of humans. The robot is said to
be in collision if it is within 40[cm] from a human, but we set
this threshold to 80[cm] for planning with BIC only to give
it an extra safety margin. The exhaustive search is similar to
the nominal search in that it uses samples from D, but the
tree depth is T = 4 and at each depth the constant control
is chosen from {(a cos(θ), a sin(θ))} with a ∈ {0, 0.6umax}
and θ ∈ {0, π/4, π/2, . . . , 2π}. This results in 94 = 6561
sequences of control inputs to be considered. Despite par-
allelization on a GPU and a long replanning interval of
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Fig. 2: Quantitative results from 100 runs show that risk-neutral (i.e. σ = 0) RSSAC further improves the performance of Nominal Search Only as the
theory suggests, achieving both safety and efficiency. Note that the farther up and to the right, the better, as the x-axis is flipped. Exhaustive Search could
not scale to the UNIV scene with more than 50 humans. BIC resulted in multiple collisions. Error bars show standard deviation.

Fig. 3: Compared to the risk-neutral case in Fig. 2, RSSAC with σ = 1.0 significantly reduces the standard deviation of the minimum robot-human distance
by 11%, 12%, and 24% in (a), (b), and (c), respectively. The risk sensitivity trades off the stochastic collision cost and the deterministic tracking cost,
which results in increased standard deviation in the x-axis in (a) and (b), and overall distance increase in (c) where the scene was most densely-populated.

∆tr = tcalc = 0.4[s], Exhaustive Search never achieved real-
time performance. RSSAC, Nominal Search, and Exhaustive
Search all used M = 30 prediction samples (per human)
drawn from the Trajectron++ model [7].

For this evaluation, we used three distinct sequences from
the publicly available ETH [38] and UCY [8] pedestrian mo-
tion datasets. They consist of real pedestrian trajectories with
rich multi-human interaction scenarios. Each sequence that
we used is a series of consecutive frames clipped from the
ETH/ETH Test scene, the ETH/HOTEL Test scene, and the
UCY/UNIV Test scene. For brevity, we refer to these as the
“ETH,” “HOTEL,” and “UNIV” sequences, respectively. In
each scene, the robot starts from a collision free configuration
and moves towards a specified goal while avoiding collisions.
The ETH sequence is 10[s] long and has 16 total pedestrians.
The HOTEL sequence is also 10[s] long and has 8 total
pedestrians. The UNIV sequence is the most challenging
with 95 total pedestrians over a horizon of 20[s]; there always
exists 36 to 54 pedestrians simultaneously in each frame (see
Fig. 1). Note that none of those pedestrians recognize or
react to the robot as their motion is a replay from the data.
This is the so-called “invisible robot” setting [31] where the
robot has to predict Human-Human interaction only. For this
reason, we did not condition the prediction of Trajectron++
on the nominal control candidates of the robot.

Trajectron++ was trained following the same procedure
as detailed in [7]. The model was trained for 2000 steps
with the Adam [39] optimizer and a leave-one-out approach.
That is, the model was trained on all datasets but the one
used for evaluation. This training was done off-line prior
to running RSSAC. At run time, RSSAC fetches prediction
samples from the trained model every ∆to = 0.4[s] and uses
them for the mode insertion gradient optimization. All the
online computation was performed on a desktop computer
with an Intel Xeon(R) CPU ES-2650 v3, 62.7 GiB memory,
and a GeForce GTX 1080 graphics card.

Fig. 2 shows the statistical simulation results of RSSAC

Fig. 4: Qualitative comparison of RSSAC with σ = 0 (left) and σ = 1.0
(right) in the HOTEL scene. These results differ in the minimum robot-
human distance by only 3[cm] and the normalized goal distance by 0.01,
but the risk-sensitive robot (right) yields to potentially conflicting humans
as opposed to the risk-neutral robot (left). Both simulations used the same
random seed. Sampled predictions from Trajectron++ are also depicted.

and the baseline methods. RSSAC, Nominal Search, Exhaus-
tive Search were implemented with σ = 0. The x-axis shows
the final distance between the robot and its goal normalized
by the initial distance. The y-axis is the minimum distance
between the robot and a human. These performance metrics
measure the safety and efficiency of robot navigation, and are
often in conflict. For each method we performed 100 runs
with different random seeds. The goal of the robot was also
randomized. As can be seen, RSSAC was both the safest and
the most efficient among those methods that ran in real-time.
BIC ended up in multiple collisions in all the three cases as
the humans violated the reciprocity assumption. We did not
test Exhaustive Search for the UNIV case due to its poor
scalability; the computation took about 10× longer than the
allocated time budget. We also note that RSSAC did further
improve the performance of the Nominal Search, which itself
was already achieving reasonably safe navigation.
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Fig. 5: A synthetic intersection sce-
nario with a human. The prediction is
drawn from a linear Gaussian model
with a constant mean velocity.

Fig. 6: Minimum robot-human distance (top) and
empirical probability of yielding (bottom) for the
synthetic intersection scenario. Changing the risk-
sensitivity (left) consistently affected whether or
not the robot yields, while the other two cost
tuning parameters (middle and right) did not.

Fig. 7: Quantitative results of the real-world exper-
iment with 5 human subjects. Using robot-future-
conditional predictions with σ = 1.0 achieves
the best average performance. Error bars show the
standard deviation of 5 runs with a randomized
robot goal and human start-goal assignment.

B. Effects of Risk Sensitivity

Next, we studied the effects of risk sensitivity in the
context of safe robot navigation among humans. Fig. 3
compares RSSAC with σ = 0 (the same data as in Fig.
2) and σ = 1.0. Our risk-sensitive optimization significantly
reduced the standard deviation of the minimum robot-human
distance by 11%, 12%, and 24% for the ETH, HOTEL, and
UNIV scenes, respectively. The risk sensitivity trades off the
stochastic collision cost and the deterministic tracking cost,
which appears in the ETH and HOTEL results where the
standard deviation of the normalized goal distance slightly
increased by 3.9% and 2.3%. On the other hand, the UNIV
scene was so densely populated with humans that the risk-
sensitive robot was unable to approach the goal. Although
not necessarily captured by the quantitative metrics, overall
the risk-sensitive robot also exhibited another intriguing
behavioral difference as depicted in Fig. 4; the risk-sensitive
robot tends to yield to potentially conflicting humans.

To gain a better understanding of the effects of risk-
sensitivity, we designed a simplified intersection scenario as
illustrated in Fig. 5. The human in this toy example followed
a linear Gaussian model with a constant mean velocity and
was in a potential collision course with the robot. We ran 100
simulations for each σ in {0.0, 0.5, 1.0}. The goal position
was not randomized in this study. We also ran two additional
sets of 100 simulations wherein we kept σ = 0.0 but varied
the collision cost peak parameter α and the bandwidth λ,
respectively. This was to elucidate the difference between
risk sensitivity tuning and cost function design. The results
are summarized in Fig. 6 and confirm that the more risk-
sensitive the robot becomes, the more likely it is to yield
to the human. This consistent trend was not present when
changing α or λ only. On the other hand, there was a positive
correlation between the minimum robot-human distance and
all the three parameters. This observation suggests that the
risk sensitivity parameter σ affects the global behavior of the
robot that determines the “type” of interaction, whereas cost
function tuning affects the local behavior only (i.e. minimum
robot-human distance). Thus, the risk sensitivity parameter
can be considered as an additional degree of freedom in
choosing desirable robot behavior.

C. Real-World Experiment

Our simulation study was accompanied by a real-world
experiment with a holonomic robot [40] and 5 human sub-
jects in an indoor environment (see Fig. 1). Those subjects
were assigned a specific start and goal positions, and were
instructed to walk to each individual goal at normal speeds.
Although the start-goal pairs remained the same, we changed
their assignment to the subjects after each run so the type of
interaction remained diverse. The robot started at a known
position, but its exact goal was randomized and not known to
the subjects. The positions of all the subjects as well as the
robot were measured by a motion capture system. We used
the same parameters as in the simulation study except umax.
A major difference between the simulation and the real-world
experiment is that the robot is “visible” to humans in the
experiment, which requires the robot to take into account
resulting human-robot interaction in addition to human-
human interaction. This was achieved by conditioning the
prediction of Trajectron++ by the nominal control candidates
for RSSAC, similar to [22]. As explained in Section IV-E,
this robot-future-conditional prediction lets the robot reason
about the effect of different nominal control candidates on
human behavior, prior to RSSAC perturbation on the best
one. We compared the performance of the unconditional
prediction (as in the simulation study) to the conditional
prediction for both risk-neutral and risk-sensitive cases.

The results of the experiment are presented in Fig 7. For
each setting we performed 5 runs. The robot with uncondi-
tional predictions was either too conservative (σ = 1.0) or
unsafe (σ = 0.0). Using conditional predictions improved
overall performance; we did not observe a single collision
with conditional predictions. This supports our hypothesis
that the robot-future-conditional prediction facilitates appro-
priate human-robot interaction. Of the four cases tested,
using conditional predictions with σ = 1.0 achieved the
best average performance, as well as the smallest variance
in minimum robot-human distance.

VI. CONCLUSIONS

This paper presents a novel online framework for safe
crowd-robot interaction with dynamic collision avoidance.
Our theoretical contribution is a derivation of the mode
insertion gradient for the entropic risk measure. This theory
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leads to an efficient and high-performance implementation
of RSSAC, the proposed model predictive control algorithm
for safety-critical systems. As a major practical contribution,
we show that the probabilistic, robot-future-conditional pre-
dictions of Trajectron++ combined with the risk-sensitive
optimization of RSSAC lead to safe and efficient robot
navigation among many mutually-interacting humans. Fur-
thermore, the risk sensitivity parameter is found to play a
crucial role in determining the type of interaction behavior,
such as yielding. In future work, we plan to apply the
RSSAC-Trajectron++ framework to vehicle dynamics and
scenes with heterogeneous agents. We are also interested in
automatically adapting the risk sensitivity parameter so that
any specifically-desired robot behavior emerges.
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