
Visual Coverage Path Planning for Urban Environments

Cheng Peng1 and Volkan Isler2

Abstract— View planning for visual coverage is a funda-
mental robotics problem. Coverage for small objects (e.g. for
inspection) or small scale indoor scenes have been studied
extensively. However, view planning to cover a large scale urban
environment remains challenging. Algorithms that can scale up
to the size of such environments while providing performance
guarantees are missing.

In this paper, we model urban environments as a set of
surfaces with k distinct surface normals whose viewing cones
must be visited by a robot. We model the resulting coverage
problem as a novel variant of Traveling Salesman Problem
with Neighborhoods (TSPN). The neighborhoods are defined as
cones, which constrain the path coverage quality. We present
a polynomial time algorithm which admits an approximation
factor of O(k

tan(α)
max [LB,WB,HB]), where α is the maximum

viewing angle, and LB,HB,WB are respectively the length, width,
and height of a minimum enclosing box of a city scene B. In
addition to the analytical upper bounds, we show in simulations
that our method outperforms three baseline methods in both
trajectory length and run-time. We also demonstrate our
method and evaluate the coverage quality of a city containing
more than 70 buildings in a photo-realistic rendering software.

I. INTRODUCTION

Capturing detailed views of a large scale city environment
is crucial for many applications such as 3D reconstruction,
virtual tourism, search and rescue, environmental monitoring,
and disaster response. In the case of disaster response,
quickly assessing the structural damage and finding possible
passage ways are paramount to the rescue team. For a com-
plex shaped building or an entire city, it is also important to
optimize the number of viewpoints to efficiently represent the
3D geometry and textures without sacrificing image quality.
Therefore, an efficient and scalable data collection method is
desirable for large scale coverage and reconstruction tasks.

View planning is a fundamental robotics problem. Earlier
work [1]–[5] mainly use manipulators or ground vehicles
to cover small objects or to explore indoor environments.
With the availability of drones equipped with cameras, it is
now possible to take advantage of their versatility to cover
large 3D spaces. Recently, many works [6]–[12] address view
selection and trajectory planning problems for larger scenes.
However the current results are restricted to planar regions
(e.g. farms) or a single building. Extensions to large scale
environments are non-trivial as they need to account for com-
putational complexity, optimality, and memory efficiency.
Using a set of small surface patches to model the geometry of

*This work was supported by NSF grant number 1849107.
Cheng Peng1 and Volkan Isler2 are with the Department of Computer

Science and Engineering, University of Minnesota, 200 Union Street SE,
Minneapolis, MN, US, 55108 peng0175, isler@umn.edu

Fig. 1: (a) The city scene is a set of building with sur-
face normals facing different directions. The inverted cones
on the building surfaces illustrate a set of good viewing
quality regions for the points located at the cone apexes.
When a camera pose is within the cone, the point on the
apex is assumed to be “well-covered”. We generalize this
problem into a variant of Traveling Salesman Problem with
Neighborhoods and decompose it into the following three
subproblems. (b) Problem 1: Disjoint set of cones with
constrained apex locations. (c) Problem 2: Non-disjoint set of
cones with constrained apex locations. (d) Problem 3: Non-
disjoint set of cones with varying apex locations.

an entire city [8], [9], [11], [12] would be very expensive and
memory intensive. When optimizing for discrete viewpoints,
methods [11]–[14] that employ linear integer programming
or submodular function maximization would also be com-
putationally expensive. Furthermore, heuristic strategies are
unable to provide guarantees on the solution quality, which
is essential in large scale environments [15].

To address those challenges when covering city-scale
environments, we present a method that splits a city into
k groups of surface normals (k = 5 for a Manhattan world
with axis-aligned buildings). For each group of surfaces,
their normals are in the same direction. Our method con-
verts the coverage problem to a novel variant of cone-
TSPN [16] problem while providing an approximation factor
of O(k

tan(α) max([LB,HB,WB])) for the final trajectory, where
α is the maximum good quality viewing angle per point and
LB,HB,WB are respectively the length, width, and height of
the minimum enclosing box of a city scene B. Note that
our method allows the city to contain at most k distinct
surface normals for all surfaces. Therefore, each building
does not have to be rectilinear, which is the case for Cheng
et al. [15]. Using this solution as a subroutine, our algorithm
is able to achieve a polynomial run-time with a constant

IEEE Robotics and Automation Letters (RAL) paper presented at the
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

Copyright ©2020 IEEE

memory space, which significantly improves upon previous
methods [10]–[12], [15]. In summary, we study the problem
of visually covering a city in order to acquire high quality
views and make the following contributions:
• We present a polynomial time

O(1
tan(α) max([LB,HB,WB])) approximation algorithm

for the generalized cone-TSPN problem for the case
where the apex locations of the cones can lie on
multiple planes with the same orientation.

• We use this result to present a method to cover a large
scale city subject to a geometric view quality constraint
and present a bound which limits the deviation of our
performance from the optimal performance,

• We demonstrate our method and evaluate the coverage
quality of a city containing more than 70 buildings in a
photo-realistic rendering software.

II. RELATED WORK

In this section, we first review related work on TSP/TSPN,
followed by an overview of work in coverage planning.

A. Traveling Salesman Problem

Traveling salesman problem (TSP) is a classical optimiza-
tion problem. The objective is to find a shortest tour that
visits a given set of points. The Euclidean version of the
problem is shown to be NP-Complete [17]. In TSP with
neighborhoods (TSPN), the agent is asked to visit a given
set of regions instead of points, which is APX-Hard even
in the Euclidean space [17]–[19]. For neighborhoods of
known or bounded geometry, better approximation factors
can be found. Mata and Mitchell [20] provide an O(logn)
approximation for n connected neighborhoods in the plane.
Chan and Elbassioni [21] give a quasi polynomial time
approximation scheme (QPTAS) for weakly disjoint α fat
regions. Bodlaender et al. [22] give a PTAS for TSPN with
disjoint fat regions of similar sizes in Rd for a constant d.
Dumitrescu and Toth [23] give an O(1) approximation factor
for a set of hyperplanes and unit balls in Rd . Dumitrescu and
Toth [24] also achieve a constant factor approximation for
disks of varying size on a plane.

More recently, a specific neighborhood geometry of cones
(cone-TSPN) has been introduced [16]. Each cone repre-
sents the visibility/high-quality region of a ground point
using a camera sensor. For a set of cones with the same
apex angle, they provide an approximation factor of O(1+
log(hmax/hmin)), where hmax and hmin is the maximum and
minimum cone height. Stefas et al. [25] extend the setup to
varying cone orientations and give an approximation factor
of O(1+tanα

1−tanε tanα
(1+ log(hmax/hmin))), where ε is the cone

orientation and α is the apex angle.
Both works [16], [25] for TSPN of cones target planar

regions, which means all cones originate from the same
ground plane. In this paper, the coverage objective is for 3D
urban environments, where the surfaces can be at different
locations. Therefore, we generalize the problem setup to
cones with varying apex locations. We name this problem
as “generalized cone-TSPN with varying apex locations” or

GC-TSPN in short. This generalization increase the dimen-
sionality of the original problem (2.5D to 3D) with additional
complexity coming from varying cone orientations. Previous
methods [16], [21], [23] are unable to address GC-TSPN.

Papadopoulos et al. [26] proposed a sampling based
method to cover every point at least once with dynamic
constraints. Similarly, works from [27], [28] employs random
inspection tree algorithm (RITA) to plan trajectories to cover
the region. However, sampling based methods suffer from
sampling poses at narrow spaces. It may take long [27], [28]
to find path through smaller regions since they have smaller
probabilities relative to the entire space.

B. Coverage Path Planning

Coverage path planning (CPP) has been an active research
topic for decades. Many works [6]–[9] in CPP focus on
planar regions with fixed sensor footprints. Some works [29],
[30] decompose the free region into modular shapes, which
is referred to as “cellular decomposition”. A zig-zag or spiral
motion is then employed to cover the free cells [29]–[31]. In
the presence of obstacles, an adjacency graph [29] is built
from the decomposition such that each node represents a
free region to be covered. For a larger planar area, recent
methods [32], [33] also propose to revisit the area multiple
times efficiently in the presence of energy constrains.

In 3D coverage path planning, instead of covering all free
space, most works focus on covering the surface of a 2D
object or a scene. For an urban environment, Cheng et al. [15]
propose a time-optimal method that executes a spiral motion
per building for a complete coverage. However, viewing
quality is not specified and the coverage is performed on each
building separately. In comparison, our method proposes a
coverage quality model using cones, which generalizes the
“frontal view” [10]–[12] preference for each surface. For
more recent works on aerial 3D coverage, Bircher et al. [13]
propose a two-step optimization framework to plan for an
efficient trajectory. They first compute a set of viewpoints for
a complete coverage, which is formulated as an art gallery
problem (AGP) [34]. Then, a tour is computed that visits all
viewpoints using a method from Lin et al. [35].

III. PROBLEM FORMULATION

We assume that a scene contains a ground plane which
coincides with the ZW = 0 plane of a world frame {W}.
We model a city as a set of buildings B = {b1,b2, ...,bB}
as shown in Figure 1 (a). We make the assumption that
the bottom surfaces of all buildings lie on the common
ground plane. Denote a set of surfaces of a building as
bi = {si

1,s
i
2,s

i
3, ...} excluding the bottom surface. Given the

surface normal norm(si
1) of surface si

1, we further assume
that the surface normals of all surfaces belong to a subset of k
directions such that norm(si

j) ∈ {N1,N2, ...,Nk}, ∀i ∈ B,∀ j ∈
K, where {N1,N2, ...,Nk} are k distinct normal directions. For
example, if all boxes are axis-aligned, then there are a total
of 5 distinct surface normals.

We use a drone equipped with a pin-hole camera with
a 90◦ field-of-view to cover the city. For a point p on a

surface s j ∈ b, there exists a good quality viewing region
denoted as τ(p, [dv,α]), where dv is the maximum viewing
distance measured along the surface normal and α is the
maximum viewing angle measured from the surface normal
norm(s j). The good-quality region τ(p, [dv,α]) becomes an
inverted cone originated at the point with apex angle α and
cone height dv as shown in Figure 1 (a), which is also used
in works from [16], [25]. We define an indicator function
g(s j,J) = 1 for surface s j such that there always exist a view
in the trajectory J that intersects the quality viewing region
for all points on the surface J∩ τ(p, [dv,α]) 6= 0, ∀p ∈ s j.

The objective is to find a shortest tour to cover all surfaces
of all buildings in a city. Given a scene B = {b1,b2, ...,bB}
with a set of buildings bi and their corresponding surfaces
bi = {si

1,s
i
2,s

i
3, ...}, we would like to find a shortest trajectory

J such that g(si
j,J) = 1 for ∀si

j ∈ B.

IV. TECHNICAL APPROACH

Our approach represents viewing regions of points to be
covered as cones and computes a path which intersects all
cones. This formulation naturally leads to a variant of TSP
with Neighborhoods (TSPN) where the neighborhoods are
cones. Variants of Cone-TSPN have been studied in the liter-
ature [16], [25]. However, all existing solutions require cones
to have their apexes on a common plane. This assumption
is violated for the example when considering the top planes
of buildings with non-uniform heights. Therefore, our main
technical contribution is to generalize Cone-TSPN to various
cone apex locations and orientations. (Section V).

At a high level, our approach is as follows. For a given
scene B, we cluster all the surfaces in the scene into k
subgroups. For a subgroup i = [1,2,3, ...,k], the surfaces
share a same surface normal Ni. For each subgroup i, we
formulate the coverage path planning problem as GC-TSPN
and propose our Algorithm 2 to find an efficient trajectory.
The final coverage strategy for the entire scene B then
combines k trajectories from all subgroups.

To solve GC-TSPN, we further divide GC-TSPN into
3 subproblems as shown in Figure 1 (b)(c)(d). For the
first problem ”Disjoint set of cones with constrained apex
locations“ (Problem 1) shown in Figure 1(b), the constrained
apex location refers height differences less than dv/2 so that
there always exists a plane orthogonal to the group normal
Ni that can intersect all cones. Using methods from [24],
we can find a constant approximation factor trajectory for
disjoint disks of varying sizes on the plane that intersects
all cones. Next, we generalize the special case to non-
disjoint set of cones (Problem 2) as shown in Figure 1(c).
To solve this problem, we generate a maximal independent
set (MIS) of all cones. By adding detours to the trajectory
to the previous problem, the resulting trajectory visit the
neighborhoods of the MIS and admits an O(1

tan(α)) approx-
imation factor. At last, we generalize the problem to non-
disjoint cones with varying apex locations (Problem 3). By
dividing the unbounded height differences into subgroups,
we can solve this problem by solving a set of Problem
2. To cover all surfaces in a city, we execute our method

for each group with Nk surface normals and combine the k
trajectories into a final trajectory. The final trajectory admits
an O(k

tan(α) max([LB,HB,WB])) approximation.

V. GENERALIZED CONE-TSPN

In this section, we convert a coverage path planning
problem of a set of surfaces with the same surface normals
into GC-TSPN, which is a variant of cone-TSPN [16], [25].
To approach the general problem, we first solve Problem 1
of disjoint cones with constrained apex locations.

A. Problem 1: Disjoint cones of constrained apex locations

Denote a set of cones defined as C = {c1,c2, ...,cn} with
the same apex angle α and cone height dv. The bisector
of each cone is the same normal vector N. Without loss
of generality, we assume cone bisector faces upward (N =
[0,0,1]T) and the minimum height cone is always located at
the ground plane (min(H(C)) = 0). Denote the apex height
of a cone as H(ci) ∈H(C). The constrained apex location is
then defined as max(H(C))−min(H(C))≤ dv/2 as shown in
Figure 1(b). It means that we can always find an intersection
plane parallel to the ground plane such that all cones will be
intersected and the resulting disk radius from the intersection
plane is non-zero.

Fig. 2: (a) Optimal trajectory J∗ that covers the cones at
different location with starting location x0 and xt = x0 +
[0,0,ht]

T . (b) The optimal trajectory J∗t that covers the cones
at plane ht with maximum detour length for each circle
2dv tan(α). J∗0 is the projection of J∗ on plane ht .

Lemma 5.1: The Minkowski sum M(J∗,1.5dv,4dv tan(α))
of the optimal tour J∗ when sweeps a cylinder of height 1.5dv
and diameter 4dv tan(α) is guaranteed to enclose all cones
that the optimal tour visits.

M(J∗,1.5dv,4dv tan(α))≤ 6d2
v tan(α)|J∗| (1)

Proof: When projecting the optimal tour J∗ to the
ground plane denoted as J∗0 , the apex location projected on
to the ground plane will be at most dv tan(α) away from J∗0 .

Since the optimal tour J∗ is guaranteed to visit all cones in
C, we can sweep a cylinder of height 1.5dv with diameter
4dv tan(α) to enclose all cones. Given the height and the
diameter of the cylinder, the maximum sweeping volume
along the optimal tour J∗ is then (1.5dv)(4dv tan(α))|J∗| =
6d2

v tan(α)|J∗|.
Lemma 5.2: Given the Minkowski sum

M(J∗,1.5dv,4dv tan(α)) of the optimal tour J∗ that
visits a disjoint set of cones C, the total number of all cones
n is upper bounded as:

n≤ 18|J∗|
πdv tan(α)

(2)

Proof: Since all cones are disjoint, the Minkowski sum
must also enclose all disjoint cones.

M(J∗,1.5dv,4dv tan(α))≥ n
π

3
d3

v tan2(α)

By substituting results from Eq 1, we can get the following
relationship.

6d2
v tan(α)|J∗| ≥ n

π

3
d3

v tan2(α)

n≤ 18|J∗|
πdv tan(α)

Algorithm 1 Slice-and-Visit
Input: x0 ∈ R3, C = {c1,c2, ...,cn}, dv
Output: Jt

1: Set ht = dv
2: Set Cht = ht ∩C, which is a set of circles on plane ht
3: Set xt = x0 +[0,0,ht]

T

4: Plan a tour Jt for Cht starting at xt using method
from [24].

If we choose a specific height ht that intersects all cones
at non-apex location, we can use the algorithm in [24] to
visit disks (non-zero radius) with an O(1) approximation.
Denote Jt as a tour that visits all the cones at height ht using
algorithm in [24]. The constant in O(1) approximation is
denoted as B(Jt). Here, we present our next Lemma that
defines the relationship between the trajectory Jt and the
optimal trajectory J∗ that visits all cones C.

Lemma 5.3: Denote ht as a specific plane orthogonal to
the cone bisector that intersects all cones in C at non-apex
location. There exists a trajectory Jt that visits all the disjoint
cones on the plane ht , where the trajectory length comparing
to optimal trajectory is bounded as follows.

|Jt |
B(Jt)

−|J∗| ≤ 2ndv tanα +2dv (3)

Proof: We know the optimal trajectory length that visits
all disjoint disks of varying size is |J∗t |=

|Jt |
B(Jt)

. The projection
of the optimal trajectory J∗ on the plane ht is denoted J∗0 .
Note that J∗0 may not intersect all disks on the plane ht
as shown in Figure 2 (b). By adding a detour of at most
dv tan(α) per disk, which is the radius of a cone (Figure 2
(b)), trajectory J∗0 is guaranteed to visit the center of a disk.

Therefore, the additional tour should visit n disk centers and
come back to J∗0 , which results in a detour length of at most
(2dv tan(α))∗n. There is also an additional cost to move up
to a point xt on plane ht from the starting location x0, which
results in an additional trip of at most 2ht ≤ 2dv.

|Jt |
B(Jt)

≤ |J∗0 |+2ndv tan(α)+2ht

≤ |J∗|+2ndv tan(α)+2dv

Using Lemma 5.1, 5.2, and 5.3, we can bound the length
of trajectory Jt that visits all cones at height ht .

Theorem 5.4: Denote a set of disjoint cones as C =
{c1,c2, ...,cn} with the same apex angle α and cone height
dv. The apex location of the cones are constrained to be
max(H(C))−min(H(C)) ≤ dv/2. Our algorithm Slice-and-
Visit(Algorithm 1) that visits the cone at height ht = dv
produce a trajectory Jt with bound

|Jt | ≤ B(Jt)(2+
36
π
)|J∗| (4)

Proof: Since max(H(C)) − min(H(C)) ≤ dv/2 and
min(H(V)) = 0, the plane at height dv is guaranteed to slice
all cones at non-apex locations (disks with non-zero radius).
We can substitute the upper bound for n in Eq 2 to Eq 3.

|Jt |
B(Jt)

−|J∗| ≤ 2ndv tan(α)+2dv

|Jt |
B(Jt)

−|J∗| ≤ 36|J∗|
π

+2dv

Since the optimal trajectory have to travel at most dv/2 to
visit the apex of the highest cone from the ground, a close
tour doubles this value and can be bounded as dv ≤ |J∗|.

|Jt |
B(Jt)

−|J∗| ≤ 36|J∗|
π

+2dv

|Jt |
B(Jt)

−|J∗| ≤ 36|J∗|
π

+2|J∗|

|Jt | ≤ B(Jt)(3+
36
π
)|J∗|

B. Problem 2: Non-disjoint cones of constrained apex
heights

To visit a set of non-disjoint cones, we can borrow the idea
from [24] that first finds a maximal independent set of the
cones and modifies the trajectory to visit the neighborhoods.

Theorem 5.5: Denote a set of non-disjoint cones as C =
{c1,c2, ...,cn} with the same apex angle α and height
dv. The apex location of the cones are constrained to be
max(H(C))−min(H(C)) ≤ dv/2. Our algorithm General-
Slice-and-Visit (Algorithm 2) generates a trajectory Jnon

t with
an approximation factor of O(1

tan(α)).

|Jnon
t | ≤ B(Jnon

t)(
36

π tan(α)
+50)|J∗| (5)

Before proving this theorem, we first need to show that
the detour around the edges of all cones in CMIS can also

Fig. 3: (a) A detour that visits the neighborhoods of a set of
disjoint cones is generated by moving vertical upward and
circulating the edge (red ellipse) of each cone. (b) Converting
coverage of a single point to a circular patch of radius rcover
by shrinking the cone’s apex angle.

visit their neighborhoods. We define the edge of a cone as
the perimeter on the top-most surface shown as red circles
in Figure 3 (a).

Lemma 5.6: There exists a maximal independent set CMIS
of C such that a trajectory that contains the edge of each cone
in CMIS is guaranteed to intersect all cones in C.

Proof: We prove this lemma by contradiction. Suppose
there exists a cone cy /∈CMIS and cy does not intersect any
other cones in CMIS. The first case is when cy does not
intersect any other cones in C. It is clear that the algorithm
will find cy ∈ CMIS, which contradicts the assumption. The
second case is when cy intersects another cone cx through
the edge of cy, which is equivalent to H(cx) > H(cy) and
cx ∩ cy 6= 0. Given that our algorithm finds CMIS from the
lowest height, it means that cy ∈CMIS, which contradicts the
assumption. The third case is then cy intersects another cone
cx through the edge of cx. We can use the proof for the
second case by switching cx and cy.

For each cone ci that the trajectory visit at height ht ,
we add an additional detour that visits the edge of ci as
shown in Figure 3. Therefore, we can bound the trajectory
length with the following proof for Theorem 5.5. Proof:
The additional trajectory cost is at most n[2dv+2dv tan(α)+
2πdv tan(α)], where dv for going vertically up to the cone
surface, dv tan(α) is the distance to the edge of the cone, and
2πdv tan(α) is the edge circle circumference. Using similar
deriving process in Theorem 5.5, we can get the following.

|Jnon
t |

B(Jnon
t)
−|J∗| ≤ n[2dv +2dv tan(α)+2πdv tan(α)]+2dv

|Jnon
t |

B(Jnon
t)
−|J∗| ≤ dv[2+2tan(α)+2π tan(α)]

18|J∗|
πdv tan(α)

+2|J∗|

|Jnon
t | ≤ B(Jnon

t)(
36

π tan(α)
+50)|J∗|

C. Problem 3: Non-disjoint cones of varying apex locations

Now, we can generalize the apex location to varying
heights, which means that max(H(C))−min(H(C)) is un-
bounded (Figure 1 (d)). Our strategy for this case is to sep-
arate the cones into different height groups. Each group will
be visited using our General-Slice-and-Visit (Algorithm 2)

method. The different height groups will be connected via a
vertical line linking all sub-tours at the starting location x0.

Theorem 5.7: Denote a set of non-disjoint cones as C =
{c1,c2, ...,cn} with the same apex angle α and height dv.
The height of the apex location is defined as H(ci) ∈ H(C)
for cone ci ∈ C. There exist a tour J that visits C with
an approximation factor of O(max(H(C))

tan(α)) compared to the
optimal trajectory J∗.

|J| ≤ (B(Jt)(
36

π tan(α)
+50)

max(H(C))

1.5dv
+2)|J∗| (6)

Proof: We first classify cones in C into differ-
ent groups of apex height denoted as G with height
range [hmin,1.5dv + hmin), [1.5dv + hmin,3dv + hmin), [3dv +
hmin,4.5dv + hmin), ..., [1.5mdv + hmin,1.5(m + 1)dv + hmin)
until the last group contains hmax. Therefore, the number
of groups in G is (max(H(C))−min(H(C)))/(1.5dv). There
exists an additional tour for our trajectory J to visit all groups
in G, which is 2(max(H(C))−min(H(C))) at max starting
from x0 for a round trip. We also know that min(H(C)) =
0. Similar to proof for Theorem 5.5, we can bound the
maximum height as max(H(C))≤ |J∗|.

|J| ≤ B(Jt)(
36

π tan(α)
+50)

max(H(C))

1.5dv
|J∗|+2max(H(C))

|J| ≤ (B(Jt)(
36

π tan(α)
+50)

max(H(C))

1.5dv
+2)|J∗|

D. Coverage path planing to GC-TSPN

The coverage path planning problem can be converted into
a traveling salemans problem with neighborhoods of cones.
By changing the cone apex angle α into αmod = α − ε ,
where 0 < ε < α , we can cover a circular patch with radius
rcover = dv(tan(α)− tan(αmod)) around the apex location
instead of a single point as shown in Figure 3 (b). Such
modification also allows our method to deal with occlusion.
For a scenario that a short building is surrounded by a set of
tall buildings, arbitrary cone heights dv and apex angle α of
the short building can be partially blocked by side buildings.
We shrink both dv and α so that the cones are no longer

Algorithm 2 General-Slice-and-Visit
Input: x0 ∈ R3, C = {c1,c2, ...,cn}, dv
Output: Jnon

t

1: Denote Csort as sorting {c1,c2, ...,cn} with ascending
H(ci)

2: Set CMIS = {}
3: for ci ∈Csort do
4: CMIS =CMIS∪ ci
5: Set Neighbors(ci) = {ck | ck intersect ci, ck ∈Csort}
6: Csort =Csort \ Neighbors(ci)
7: end for
8: Find Jt using Algorithm 1 with input CMIS
9: For each ci that Jt visits, add a detour that moves up to

the ci surface and circulates along the edge of ci
10: Denote Jnon

t as the new trajectory for non-disjoint cones

Fig. 4: Qualitative comparison of the coverage results. (a) Im-
ages of the buildings in unreal simulation. (b) Corresponding
images of the registered 3D point cloud from our trajectory.

in obstacles. Since the modified cone is smaller, multiple
circular detours around CMIS in Line 9 of Algorithm 2 are
required to cover the neighborhoods. However, the additional
detours in Theorem 5.5 does not change the order of the
approximation factor.

VI. PATH PLANNING FOR A CITY

We have established how to plan a trajectory for a set of
surfaces that are facing the same direction. In this section,
we generalize this method to a city B that contains k
distinct surface normals. To plan for surfaces of different
orientations, we first group the surfaces into k subgroups
based on their normal directions. For each group Si ⊆ B
and i = [1,2, ...,k], Divide-and-Visit (Algorithm 2) is used
to compute a trajectory Ji. To combine all the trajectories
Ji, i ∈ [1,2, ...,k], we connect the starting location of each Ji
and denote the resulting tour as J.

Theorem 6.1: Denote a city B = {s1,s2, ...,sm} that con-
tains surfaces on each building. The surface normal is defined
as norm(si) ∈ {N1,N2, ...,Nk} ∀si ∈ B, where {N1,N2, ...,Nk}
is a set of k distinct normal directions. The final trajectory J
that covers B with high quality such that g(si,J) = 1, ∀si ∈ B
admits an approximation factor O(k

tan(α) max([LB,WB,HB])),
where [LB,WB,HB] are the length, width and height of the
minimum enclosing box of B.

Proof: For each subgroup Si ⊆ B that share the same
surface normals, we use Divide-and-Visit to compute a
trajectory that is at most O(1

tan(α) max(H(Si))) comparing to
the optimal trajectory. For any pair of subgroups Si ⊆ B and
S j ⊆B such that Si∩S j = /0, we assume Algorithm 2 produces
trajectories Ji and J j respectively. The distance between the

closest point of Ji and J j is at most
√

L2
B +W 2

B +H2
B ≤√

3max([LB,WB,HB]). Therefore, the resulting trajectory that
visits all the surfaces of a city B admits an approximation
factor of O(k

tan(α) max([LB,WB,HB])).

VII. EXPERIMENTS

Here, we provide the implementation details of our
method. For a city B, we are first given a discrete set of
surfaces and their normals. They are then clustered into k
subgroups. Since a cone defines a set of good viewing region
for the point on the cone apex, to cover an entire surface

Fig. 5: Comparisons among trajectories of the top surfaces
of the buildings in unreal simulation. Our method is more
efficient because it allows coverage of multiple surfaces
from a single view (Algorithm 2 Line 9), whereas other
methods dedicate a single view for each patch. (a) Our
method (b) TSP-Grid method (c) TSP-Grid-Fast method (d)
Time-optimal method [15]

requires infinitely many cones. Therefore, using strategy in
Section V-D, a discrete set of cones per surface can be
generated with apexes located at a grid with resolution of
rcover (Sec V-D). Since a small ε will result in a large number
of cones in C, while a large ε can over populate CMIS, we set
ε = 10◦ (rcover = 2.5 meters), which offers a good trade-off
between computational time and coverage footprint.

For each subgroup of cones, we use TSP-GA 1 to compute
a TSP tour that visits the center of a maximal independent
set CMIS of the cones. To avoid occlusion, cone heights and
apex angles will be modified to fit the free space in narrow
regions, which is also explained in Section V-D. For the
trajectory to be valid, if any point on the trajectory is inside
an obstacle, a closest point on the boundary of the obstacle
will be used instead. We compare our method with three
different baseline method quantitatively on a set of buildings
simulated in matlab. We test the trajectory length and run-
time of all, where we modify the scale of the city (50 to 500
buildings) and the orientation of each building. We evaluate2

our method in a photo-realistic rendering software “Unreal
Engine” [36] to show the coverage quality.

A. Comparison methods

The first baseline method “TSP-Grid” (TG) generates a
grid of view points for each surface of the city. The viewing
distance for each viewpoint is fixed to dv and the grid
resolution is fixed to rcover. A final TSP tour is then estimated
using TSP-GA method.

For a large number of discrete viewpoints, this method is
too expensive. Therefore, we also present a second baseline
method “TSP-Grid-Fast” (TGF) that uses the same set of
discrete viewpoints. Instead, TGF estimates a TSP tour using

1https://www.mathworks.com/matlabcentral/fileexchange/13680-
traveling-salesman-problem-genetic-algorithm

2Evaluation with an I5-4460 CPU and 8GB of ram.

50 buildings 250 buildings 500 buildings
mean |J| STD mean time mean |J| STD mean time mean |J| STD mean time
(105 m) (105 m) (s) (105 m) (105 m) (s) (105 m) (105 m) (s)

[π/4,10]

TG 1.79 0.14 3841 7.69 0.26 16037 32.4 0.21 36023
TGF 1.81 0.17 685 8.69 0.24 1978 29.6 0.35 3982
TO 1.83 0.12 192 8.53 0.23 403 28.9 0.24 1201

Ours 1.76 0.11 215 5.12 0.28 564 13.2 0.32 1342

[π/4,15]

TG 1.64 0.11 3027 7.43 0.22 9436 31.5 0.26 21023
TGF 1.72 0.13 509 8.13 0.25 1652 24.6 0.42 3669
TO 1.63 0.14 147 8.02 0.21 469 22.8 0.35 948

Ours 1.30 0.13 169 4.58 0.24 454 11.8 0.36 1190

[π/8,10]

TG 3.12 0.35 6427 9.21 0.53 20315 ∼ ∼ ∼
TGF 2.29 0.31 923 9.43 0.57 2658 30.5 0.74 4573
TO 2.78 0.36 341 9.23 0.56 778 27.9 0.69 1862

Ours 2.74 0.28 357 6.43 0.58 744 14.7 0.71 1634

[π/8,15]

TG 3.07 0.33 6839 ∼ ∼ ∼ ∼ ∼ ∼
TGF 2.65 0.29 509 9.19 0.51 2975 28.3 0.68 4617
TO 2.61 0.28 452 8.92 0.49 825 29.2 0.69 1869

Ours 2.35 0.30 416 5.68 0.53 814 13.8 0.74 1741

TABLE I: A comparison of the trajectory length |J| (105m) and the run-time (s) with apex angle and cone height shown in
the first column. The building orientations are fixed to k = 5. ∼ means that the computation time is far too large.

k = 9 k = 13 k = 17
mean |J| STD mean time mean |J| STD mean time mean |J| STD mean time
(105 m) (105 m) (s) (105 m) (105 m) (s) (105 m) (105 m) (s)

TG 1.74 0.15 3134 1.69 0.17 3215 1.81 0.20 3154
TGF 1.83 0.21 584 1.79 0.22 595 1.91 0.19 568
TO 1.71 0.16 179 1.82 0.23 239 1.83 0.25 267

Ours 1.36 0.14 184 1.41 0.19 205 1.53 0.21 243

TABLE II: A comparison of the trajectory length |J| (105m) and the run-time (s) with k = [9,13,17], 50 buildings, and
[α = π/4,dv = 15].

TSP-GA for each building. To connect all the buildings, a
minimal spanning tree of the buildings is computed using the
closest distance between buildings as metric. A depth-first-
search strategy on the minimal spanning tree gives a visiting
order for all the buildings. To compare with existing methods,
we also implemented “Time-optimal” (TO) method [15],
which uses a spiral motion to cover each building separately.
The field-of-view for this method is set to 90◦ with the
same viewing distance to our method. The experiments are
repeated 30 times for each set of comparison and the standard
deviations for the trajectory length are shown in Table I
and Table II. The computation time standard deviations are
negligible and are not shown in the tables.

B. Quantitative comparison

We compare our method with three baseline methods in
a simulated city environment. For each building, the size of
the buildings are sampled from a uniform distribution ranges
from [20 ∼ 50] meters independently for width and length.
The building’s height is sampled from a uniform distribution
ranges from [50 ∼ 100] meters. We randomly distribute
[50,250,500] buildings in a 1500× 1500 environment with
a minimum street width of 15 meters. The comparisons are
also among varying apex angle and cone height [α,dv] as
shown in Table I. It is clear that our method out-performs
the three baseline methods in most cases.

We also assign different surface normals to evaluate the
effectiveness of our method. We distribute 50 buildings with

at most 3 different orientations where k = [9,13,17]. The
resulting comparison is shown in Table II. Our method
also out-performs the baseline methods in most cases. More
importantly, the trajectory length using our method does not
diverge much for different k.

C. Qualitative comparison

To demonstrate our strategy, we implement our method
in a photo-realistic rendering engine called “Unreal En-
gine” [36]. For better visualization, we only show the top tra-
jectories for the four different methods as shown in Figure 5.
Our method is more efficient because it allows coverage of
multiple surfaces from a single view (Algorithm 2 Line 9),
whereas other methods dedicate a single view for each patch.
To show the detailed coverage quality, we also register the
depth image with RGB color data to show the completeness
and consistency comparing to the original structure as shown
in Figure 4. For a real scene, the street width is not consistent.
Therefore, we ignore sides where the street width is smaller
than 5 meters.

VIII. CONCLUSION

This paper studies the problem of visual coverage path
planning of a large scale urban environments. We present a
polynomial time O(1

tan(α) max([LB,HB,WB])) approximation
algorithm for the generalized cone-TSPN problem for the
case where the apex locations of the cones can lie on multiple
planes. Our method provides a strategy to cover a large

scale urban environment efficiently. The resulting algorithm
returns a solution that is at most O(k

tan(α) max([LB,HB,WB]))
of the optimal trajectory. The algorithm is well-suited for
large scale environments since it runs in polynomial time
with a constant memory consumption. To demonstrate the
performance of our method, we compare it with two base-
lines methods with varying city scale (50 buildings to 500
buildings), view quality cone geometry (α and dv), and
building surface orientations (k = [5,9,13,17]). Our method
outperforms the other methods in both run-time and trajec-
tory length. To evaluate our method in a realistic setting, we
also demonstrate it in a city scene that contains more than
70 buildings using a photo-realistic rendering software. The
resulting reconstruction quality is comparable to the original
scene.

ACKNOWLEDGMENT

The authors would like to thank Shan Su, Wenbo Dong,
Selim Engin, and Nicolai Haeni for their valuable discus-
sions.

REFERENCES

[1] W. R. Scott, G. Roth, and J.-F. Rivest, “View planning for automated
three-dimensional object reconstruction and inspection,” ACM Com-
puting Surveys (CSUR), vol. 35, no. 1, pp. 64–96, 2003.

[2] J. I. Vasquez-Gomez, L. E. Sucar, R. Murrieta-Cid, and E. Lopez-
Damian, “Volumetric next-best-view planning for 3d object recon-
struction with positioning error,” International Journal of Advanced
Robotic Systems, vol. 11, no. 10, pp. 159–172, 2014.

[3] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon” next-best-view” planner for 3d exploration,” in
international conference on robotics and automation. IEEE, 2016,
pp. 1462–1468.

[4] S. Isler, R. Sabzevari, J. Delmerico, and D. Scaramuzza, “An infor-
mation gain formulation for active volumetric 3d reconstruction,” in
International Conference on Robotics and Automation. IEEE, 2016,
pp. 3477–3484.

[5] X. Fan, L. Zhang, B. Brown, and S. Rusinkiewicz, “Automated
view and path planning for scalable multi-object 3d scanning,” ACM
Transactions on Graphics (TOG), vol. 35, no. 6, pp. 1–13, 2016.

[6] A. Xu, C. Viriyasuthee, and I. Rekleitis, “Efficient complete coverage
of a known arbitrary environment with applications to aerial opera-
tions,” Autonomous Robots, vol. 36, no. 4, pp. 365–381, 2014.

[7] A. Nedjati, G. Izbirak, B. Vizvari, and J. Arkat, “Complete coverage
path planning for a multi-uav response system in post-earthquake
assessment,” Robotics, vol. 5, no. 4, pp. 26–41, 2016.

[8] Y.-H. Choi, T.-K. Lee, S.-H. Baek, and S.-Y. Oh, “Online complete
coverage path planning for mobile robots based on linked spiral
paths using constrained inverse distance transform,” in International
Conference on Intelligent Robots and Systems. IEEE, 2009, pp. 5788–
5793.

[9] C. Peng and V. Isler, “View selection with geometric uncertainty
modelling,” in Robitcs: Science and Systems, 06 2018, pp. 1–11.

[10] P. Cheng and I. Volkan, “Adaptive view planning for aerial 3d
reconstruction,” in 2019 International Conference on Robotics and
Automation (ICRA), May 2019, pp. 2981–2987.

[11] M. Roberts, D. Dey, A. Truong, S. Sinha, S. Shah, A. Kapoor, P. Han-
rahan, and N. Joshi, “Submodular trajectory optimization for aerial 3d
scanning,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 5324–5333.

[12] B. Hepp, M. Nießner, and O. Hilliges, “Plan3d: Viewpoint and
trajectory optimization for aerial multi-view stereo reconstruction,”
ACM Transactions on Graphics (TOG), vol. 38, no. 1, pp. 1–17, 2018.

[13] A. Bircher, M. Kamel, K. Alexis, M. Burri, P. Oettershagen, S. Omari,
T. Mantel, and R. Siegwart, “Three-dimensional coverage path plan-
ning via viewpoint resampling and tour optimization for aerial robots,”
Autonomous Robots, vol. 40, no. 6, pp. 1059–1078, 2016.

[14] W. Jing, J. Polden, P. Y. Tao, W. Lin, and K. Shimada, “View
planning for 3d shape reconstruction of buildings with unmanned
aerial vehicles,” in 2016 14th International Conference on Control,
Automation, Robotics and Vision (ICARCV). IEEE, 2016, pp. 1–6.

[15] P. Cheng, J. Keller, and V. Kumar, “Time-optimal uav trajectory
planning for 3d urban structure coverage,” in International Conference
on Intelligent Robots and Systems. IEEE, 2008, pp. 2750–2757.

[16] P. A. Plonski and V. Isler, “Approximation algorithms for tours of
height-varying view cones,” The International Journal of Robotics
Research, vol. 38, no. 2-3, pp. 224–235, 2019.

[17] C. H. Papadimitriou, “The euclidean travelling salesman problem is
np-complete,” Theoretical Computer Science, vol. 4, pp. 237–244,
1977.

[18] M. de Berg, J. Gudmundsson, M. J. Katz, C. Levcopoulos, M. H.
Overmars, and A. F. van der Stappen, “Tsp with neighborhoods of
varying size,” Journal of Algorithms, vol. 57, no. 1, pp. 22–36, 2005.

[19] S. Safra and O. Schwartz, “On the complexity of approximating tsp
with neighborhoods and related problems,” computational complexity,
vol. 14, no. 4, pp. 281–307, 2006.

[20] C. S. Mata and J. S. Mitchell, “Approximation algorithms for geomet-
ric tour and network design problems,” in Proceedings of the eleventh
annual symposium on Computational geometry, 1995, pp. 360–369.

[21] T.-H. H. Chan and K. Elbassioni, “A qptas for tsp with fat weakly dis-
joint neighborhoods in doubling metrics,” Discrete & Computational
Geometry, vol. 46, no. 4, pp. 704–723, 2011.

[22] H. L. Bodlaender, C. Feremans, A. Grigoriev, E. Penninkx, R. Sitters,
and T. Wolle, “On the minimum corridor connection problem and other
generalized geometric problems,” Computational Geometry, vol. 42,
no. 9, pp. 939–951, 2009.

[23] A. Dumitrescu and C. D. Tóth, “The traveling salesman problem for
lines, balls, and planes,” ACM Transactions on Algorithms (TALG),
vol. 12, no. 3, pp. 1–29, 2016.

[24] A. Dumitrescu and C. D. Toth, “Constant-factor approximation for tsp
with disks,” in A Journey Through Discrete Mathematics. Springer,
2017, pp. 375–390.

[25] N. Stefas, P. A. Plonski, and V. Isler, “Approximation algorithms for
tours of orientation-varying view cones,” in 2018 IEEE International
Conference on Robotics and Automation. IEEE, 2018, pp. 1–6.

[26] G. Papadopoulos, H. Kurniawati, and N. M. Patrikalakis, “Asymp-
totically optimal inspection planning using systems with differential
constraints,” in 2013 IEEE International Conference on Robotics and
Automation. IEEE, 2013, pp. 4126–4133.

[27] A. Bircher, K. Alexis, U. Schwesinger, S. Omari, M. Burri, and
R. Siegwart, “An incremental sampling-based approach to inspection
planning: the rapidly exploring random tree of trees,” Robotica,
vol. 35, no. 6, pp. 1327–1340, 2017.

[28] P. Kafka, J. Faigl, and P. Váňa, “Random inspection tree algorithm
in visual inspection with a realistic sensing model and differential
constraints,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2016, pp. 2782–2787.

[29] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon
cellular decomposition,” in Field and service robotics. Springer, 1998,
pp. 203–209.

[30] E. U. Acar, H. Choset, A. A. Rizzi, P. N. Atkar, and D. Hull,
“Morse decompositions for coverage tasks,” The international journal
of robotics research, vol. 21, no. 4, pp. 331–344, 2002.

[31] V. J. Lumelsky, S. Mukhopadhyay, and K. Sun, “Dynamic path
planning in sensor-based terrain acquisition,” IEEE Transactions on
Robotics and Automation, vol. 6, no. 4, pp. 462–472, 1990.

[32] M. Wei and V. Isler, “Coverage path planning under the energy
constraint,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 368–373.

[33] C. Di Franco and G. Buttazzo, “Coverage path planning for uavs
photogrammetry with energy and resolution constraints,” Journal of
Intelligent & Robotic Systems, vol. 83, no. 3-4, pp. 445–462, 2016.

[34] H. González-Banos, “A randomized art-gallery algorithm for sensor
placement,” in Proceedings of the seventeenth annual symposium on
Computational geometry, 2001, pp. 232–240.

[35] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations research, vol. 21, no. 2, pp.
498–516, 1973.

[36] UnrealEngine, “Unreal Engine 4,” https://www.unrealengine.com/
en-US/blog, 2017.

