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Abstract— Robust pose graph optimization is essential for
reliable pose estimation in Simultaneous Localization and Map-
ping (SLAM) system. Due to the nature of loop closures, even
one spurious measurement could trick the SLAM estimator
and severely distort the mapping results. Existing methods to
avoid this problem mostly focus on ensuring local measurement
consistency by evaluating measurements independently, often
requiring parameters that are difficult to tune. This paper
proposes a cluster-based penalty scaling (CPS) method to ensure
both the local and global consistency by first evaluating the edge
quality locally, and then integrating this information into the
optimization formulation.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) [1] has
been widely studied in the robotic community during the past
decade. By providing a global and evolving representation
of the environment, SLAM is a key component for true
autonomy of robotic platforms.

The architecture of state-of-the-art SLAM pipelines can
be divided into two components: the front-end and the back-
end. The front-end extracts geometrical information from raw
measurements of various sensor modules, such as cameras
or lidar systems, and the back-end performs inference on
the front-end results by solving a Maximum A Posteriori
(MAP) estimation problem. Pose graph optimization (PGO)
is a compact formulation of this MAP estimation problem.
Information from the front-end typically consists of a pose
graph with two types of edges: odometry edges link sequen-
tial poses, while loop closures edges link arbitrary poses
identified to be in the same location by a place recognition
algorithm. Each edge represents the transformation between
two poses with a covariance term, which accounts for uncer-
tainty. When solving the MAP problem, both transformation
and covariance contribute to a cost term in the objective
function. Due to the sparsity of the matrices involved in
PGO, local optimization techniques [2], [3], [4] such as
Gauss-Newton can be used to efficiently solve the problem.
However, the long-term data association that generates loop
closure edges has to deal with higher noise and it is more
susceptible to mistakes. We refer to these incorrect loop
closure edges as outliers, and correct loop closure edges as
inliers in this paper.

Outliers could appear for different reasons: as an example,
a low threshold could cause false positives during place
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recognition. This false positive would in turn cause two
very different images (or scans) to be used for motion
estimation, generating outliers with high uncertainty. This
type of outliers can be easily handled since the covariance
matrix serves as a set of weights to scale the residual
error. A much more difficult type of outliers occur due to
perceptual aliasing, which happens when two different places
appear similar. Since loop closure detection has generally no
information about the global graph structure when computing
the covariance, it relies only on the similarity of two images
or scans. This type of outliers would have a low covariance
matrix, encouraging the optimizer to close the loop. The
problem is exacerbated by the fact that perceptual aliasing
tends to create large numbers of mutually-consistent outliers,
which further increase the incentives for optimizer.

Numerous studies [5], [6], [7], [8], [9], [10], [11], [12]
have proposed robust pose graph optimization techniques
to handle spurious measurements from the front-end. Some
works [6], [7], [10], [13] examine and remove loop clo-
sure edges according to their consistency with other mea-
surements while some [5], [8], [12] modify the objective
function to encourage intelligent behaviours from the op-
timizer. To specifically target the clustered nature of out-
liers from perceptual aliasing, Latif et al. [6] proposed to
generate spatial clusters by collecting topologically related
loop closure edges. Lajoie et al. [9] modelled perceptual
aliasing explicitly in the objective function and solved for
binary variables that accounts for the cluster nature. De-
spite the clear evidence that cluster-based methods handle
perceptual aliasing favourably, clustering techniques remain
understudied. Another difficulty of applying robust pose
graph optimization techniques lies in the parameter tuning.
Many existing methods share a core idea: there exists a
maximum admissible error for individual cost terms during
optimization. By hand-picking a threshold, cost terms that
exceeded this threshold would be tuned down (referred as M-
estimation in some literature). However, setting this threshold
is far from trivial and tuning parameters in different methods
determines the threshold in various indirect ways.

Contribution: In this paper, we develop a novel clustering
technique that leverages the objective function change in
incremental SLAM and proposed a cluster-based formulation
to scale the cost terms accordingly. Our clustering technique
aims at extracting both the topological structure and the local
consistency information. By strategically admitting intra-
consistent clusters into the optimization formulation, we
can maximize the global consistency even when odometry
measurements are very noisy.
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II. RELATED WORK

A. Robust Pose Graph Optimization

Many researchers have attempted to achieve robust pose
graph optimization (PGO), either by mitigating the effect
of outliers through revising the objective function of the
non-linear least squares (NLS) problem [5], [8], or by
removing outliers during preprocessing of the pose graph [6].
Sunderhauf et al. [8] introduced additional variables to allow
the loop closures that produce large errors to be switched off
during optimization:

x̂ = argmin
x

(

J∑
j=1

eTj (x)W−1j ej(x)

+

I∑
i=1

s2i eTi (x)W−1i ei(x) +

I∑
i=1

(λi − si)2σ−1s )

(1)
where ej and ei are the residual errors of odometry and
loop closure edges, respectively. Wj is the covariance matrix
of the jth odometry measurement and Wi of the ith loop
closure measurement. The additional variable si scales the
cost term for the ith loop closure measurement. The term
(λi − si)2σ−1s works as a penalty when si varies from its
initial value λi. By introducing s, the optimizer is provided
with another gradient direction to minimize the objective
function instead of closing the loop. And which direction to
move in the solution space depends on the balance between
eTi (x)W−1i ei(x) and σ−1s . Agarwal et al. [5] leveraged this
insight and proposed a revised form of equation (1) to
explicitly scale the covariance according to the residual error.
Additional variables s were eliminated, but σs is still used.
Intuitively, σs should reflect the threshold on the admissible
residual error. However, there is no mathematically rigorous
way to set its value.

A second line of work [6], [7] exploits the probabilistic
interpretation of the objective function, a χ2 distribution
under Gaussian noise assumption. Latif et al. [6] conducted
χ2 tests on spatially clustered loop closures aiming to find a
set of consistent measurements. However, when the spatial
clustering algorithm produces a heterogeneous cluster of loop
closures, Latif’s method tends to be too conservative since
it would reject the whole cluster upon failing the χ2 test. In
addition, since the algorithm solves the pose graph optimiza-
tion problem after including a cluster of measurements, the
resultant χ2 error could pass the χ2 test due to high quality
measurements compensating for poor quality measurements.
Additional results are presented in Section IV-B.

Another line of work originated from a different per-
spective: many researchers attempted to avoid convergence
to local minimum by performing convex relaxation on the
original formulation. Carlone et al. [11] formulated the mea-
surement selection problem as a `0 minimization problem
and performed `1 relaxation to remove the non-convexity
and avoid the combinatorial complexity. Semidefinite relax-
ation [12] has also been used to handle the formulation that
models heavy-tailed measurement noise. Regarding outlier

mitigation, Lajoie et al. [9] proposed a novel formulation
to model perceptual aliasing. The authors introduced binary
variables to switch on or off the loop closure cost terms and
a correlation term was added between subsets of the binary
variables, which penalizes mismatched variables from one
cluster. While showing promising results with semidefinite
relaxation and a convex solver, the authors acknowledged
that a heterogeneous cluster of loop closures (containing both
inliers and outliers) would cause the algorithm to perform
poorly, and they did not explore strategies for clustering.
The authors also pointed out the importance of setting the
threshold on maximum admissible residual error.

B. Incremental Outlier Rejection

The works described above assume the complete graph
is known when trying to decide the nature of a loop closure
edge. This type of edge selection cannot be used online since
future data is not available at the time of the estimation.
Incremental outlier mitigation techniques such as [6] and [7]
perform evaluations after adding new measurements. Both
studies use a χ2 test on a subset of the pose graph after
solving the optimization problem. Bai et al. [13] proposed
a metric to predict the objective function change in an
incremental pose graph optimization scheme without actually
solving the problem. Instead of checking for inconsistencies
after adding a measurement, Bai et al. predicted the quality of
the specific measurement before including it and empirically
validated their metric as a good approximation in an online
incremental setting. Despite showing promising results, the
authors acknowledged the objective function change alone
has its limitations: when the optimization problem is strongly
nonlinear, the solution could change dramatically while the
objective function barely changes [14]. With long trajectories
and densely connected pose graphs, a naive use of this metric
is not sufficiently robust (see Section IV).

III. METHODOLOGY

In this section, we present a cluster-based approach that
leverages existing works [6], [8], [9], [13]. We first generate
intra-consistent clusters based on their local consistency and
then model this local consistence in a cluster-based robust
formulation, balancing local and global consistency.

A. Clustering

We start with the spatial clustering techniques proposed by
Latif et al. [6] to extract topologically related loop closures.
By setting a clustering threshold γ on the pose index of
loop closures, the spatial clustering technique groups loop
closures according to their togological closeness. The larger
γ, the farther the edges on the graph will form a cluster. This
operation provides a set of spatial clusters, each containing
the loop closure edges that link the same portions (index
wise) of the trajectory. We use the following notation to
represent the edge E between two poses, the ordered set
L of edges, the set LC of loop closure edges, the set OD



of odometry edges, and the set of spatial clusters, C:

E = (from, to), from, to ∈ [1, N ]

L = {Ek| Ek = (fromk, tok), k ∈ [1,K]}
LC = {Ei| Ei = (fromi, toi), i ∈ [1, I]}
OD = {Ej | Ej = (fromj , toj), j ∈ [1, J ]}
C = {Cm| Cm ⊆ LC, m ∈ [1,M ]}

where N is the number of poses, I is the number of loop
closures, J is the number of odometry edges, K the total
number of edges (i.e. K = I + J), and M is the number of
spatial clusters. We assume L is sorted by the to index.

We then examine the incremental consistency of each
cluster by computing the predicted change of the objective
function ∆f proposed in [13]. The estimation problem
before adding a loop closure edge is considered as a primal
nonlinear least-squares (NLS) problem, while the estimation
after adding a loop closure edge is an augmented NLS
problem. Given the solution x? of the primal NLS problem,
without solving the augmented NLS problem, the change in
objective function when adding the loop closure i can be
computed as:

∆f = eTi (x?) · [Ji(x?)Mi(x?)JTi (x?) + Wi]
−1 · ei(x?) (2)

where eTi (x?) refers to the residual error vector for loop
closure i at the state x?; Ji(x?) refers to the Jacobians of
loop closure measurement with respect to individual poses;
Mi(x?) refers to the marginal covariance matrix of the two
poses constructing loop closure i; Wi refers to the covariance
matrix of loop closure edge i. To determine the validity of
a measurement according to the objective function change,
we use the χ2 difference test following [13], a variation of
the χ2 test applied to the difference of χ2 error and the
change in degrees of freedom. In the 2D case, after adding
a loop closure edge, the increase in χ2 error is ∆f , and the
degree of freedom (DOF) of the graph increase by 2. Then
the validity of ∆f can be examined with the χ2

α(2) test,
where α, the confidence probability, is ususlly set to 0.95.

We note a difference between [13] and our method: Bai
et al. [13] aim at either accepting or rejecting an individual
edge after evaluating it on its own merits, the quality of
which is determined from its consistency with the odometry
edges and all the previously accepted loop closures; on the
contrary, our method aims at exploiting local consistency by
examining a spatially coherent cluster.

As shown in Algorithm 1, we incrementally examine the
loop closures from one spatial cluster. If the loop closure
passes the χ2 difference test, indicating it is consistent with
the odometry edges and the loop closure edges that have
come before the current time step, it is considered as an
inlier and added into the optimizer; otherwise, it is rejected
and labelled as an outlier. After processing one cluster, we
examine how many inliers and outliers have been produced.
If there are more inliers than outliers, the inliers are returned
as a pro-odometry cluster, with a binary quality indicator set
to 1. If there are more outliers than inliers, we perform a

Algorithm 1: consistency check within the spatial
cluster

Input: A spatial cluster Cm

Output: A intra-consistent cluster with its quality indicator
1 for Ek in L do
2 if Ek ∈ OD then
3 Add Ek into Optimizer
4 else
5 if Ek ∈ Cm then
6 Optimize and Compute ∆f
7 if ∆f ≤ χ2

0.95(DOF ) then
8 inlierSet← {inlierSet, Ek}
9 Add Ek into Optimizer

10 else
11 outlierSet← {outlierSet, Ek}

12 if inlierSet.size() > outlierSet.size() then
13 quality = 1
14 return inlierSet, quality

15 else
16 return Algorithm 2(outlierSet)

consistency check (Algorithm 2) on the against-odometry
cluster, consisting of all the outliers from Algorithm 1.

The purpose of this second check is to prevent rejecting
all the loop closures that are inconsistent with odometry
edges, in case of noisy odometry measurements. In a scenario
where a specific cluster attempts to close long loops without
information on the smaller loops that support the same
inference, the second test would save it from being rejected
immediately. Algorithm 2 has similar logic as Algorithm 1,
except that the first loop closure is always accepted into the
optimizer. This would change the system state based on the
first loop closure so that outliers from Algorithm 1 could turn
out to be inliers now. After processing the against-odometry
cluster, we again examine the quantity of inliers and outliers.
If there are more inliers than outliers, the inliers are returned
with a quality indicator of value 0, which means although
intra-consistent, these edges are not consistent with the
odometry edges. Otherwise, the new outliers are processed
again. By iteratively executing Algorithm 2, we isolate
an intra-consistent against-odometry cluster. Intuitively, our
clustering techniques combs through the spatial clusters and
untangles the interdependence between edges by extracting
only the majority set after every iteration of consistency
checks. Compared with the intra-cluster consistency check
techniques in [6], our method preserves more inliers as
shown by experimental results in Section IV-B.

B. Cluster-based Penalty Scaling

Inspired by [8] and [9], we propose a robust optimization
formulation as (3). The objective function for minimization
includes four types of cost terms: odometry edges, scaled
loop closure edges, prior constraints for the scale s, and clus-
tering constraints that bind the scales of the edges belonging
to similar clusters. The first cost term in the optimization,
which corresponds to odometry edges, remains unchanged
from the classical formulation. The following scaled loop



Algorithm 2: consistency check within the against-
odometry cluster

Input: A set of loop closure edges Cm

Output: A intra-consistent cluster with its quality indicator
1 for Ek in L do
2 if Ek ∈ OD then
3 Add Ek into Optimizer
4 else
5 if Ek ∈ Cm then
6 if no loop closure in Optimizer then
7 inlierSet← {inlierSet, Ek}
8 Add Ek into Optimizer
9 else

10 Optimize and Compute ∆f
11 if ∆f ≤ χ2

0.95(DOF ) then
12 inlierSet← {inlierSet, Ek}
13 Add Ek into Optimizer
14 else
15 outlierSet← {outlierSet, Ek}

16 if inlierSet.size() ≥ outlierSet.size() then
17 quality = 0
18 return inlierSet, quality

19 else
20 return Algorithm 2(outlierSet)

closure term and prior term have the same interpretation as
in [8]. The prior term accounts for the penalty of tuning
downa loop closure cost term and σi is constant for all
loop closure edges in [8], i.e. the admissible error thresholds
are the same for all loop closure edges. To overcome this
limitation, we scale σi for different loop closures depending
on the quality provided by the clustering process.

x̂ = argmin
x

( J∑
j=1

eTj (x)W−1j ej(x)︸ ︷︷ ︸
Odometry

+

I∑
i=1

s2i eTi (x)W−1i ei(x)︸ ︷︷ ︸
Scaled Loop Closure

+

I∑
i=1

(λi − si)2σ−1i︸ ︷︷ ︸
Prior

+

M∑
m=1

∑
Ei,Ei′∈Cm

Ei 6=Ei′

(si − si′)2σ−1m

︸ ︷︷ ︸
Clustering

)

(3)

σi =

{
12 if Ei ∈ Cm & qualityCm

= 0
0.12 if Ei ∈ Cm & qualityCm

= 1
(4)

As explained in previous section, two types of intra-
consistent clusters are produced by Algorithms 1 and 2,
the pro-odometry and against-odometry clusters. For the
optimizer to favor the former, we decrease the standard
deviation

√
σ of the noise model for the prior constraint by

ten times so that the penalty of tuning down these edges is

increased, as in (4). The recommended value for variance σi
in [8] is 1.

The last term in Equation (3) accounts for the clustering,
which encourages the scale variables that correspond to
edges within one cluster to move in the same direction in
the solution space. After replacing the detailed Mahalanobis
distance form with the symbol ψ2

i for simplicity, ψ2
i =

eTi (x)W−1i ei(x), we can express the cost terms correspond-
ing to all loop closure edges in cluster Cm as:

Cost(Cm) =
∑

Ei∈Cm

s2iψ
2
i +

∑
Ei∈Cm

(λi − si)2σ−1i

+
∑

Ei,Ei′∈Cm

Ei 6=Ei′

(si − si′)2σ−1m .
(5)

To determine the value of σm, we examine the cost terms
corresponding to edge Ei from cluster Cm:

Cost(Ei) = s2iψ
2
i + (λi − si)2σ−1i +

∑
Ei′∈Cm

Ei′ 6=Ei

(si − si′)2σ−1ii′

(6)
Both the prior term and clustering term contribute to the
penalty of tuning down edge Ei. We can observe that when
si = si′ , the clustering term is zero, and therefore it has
no effect on the penalty. When si 6= si′ , to let the penalty
representative of the prior constraint and clustering constraint
have similar weights in the formulation, we assert:

σii′ = (Dm − 1)σi (7)

where Dm represents the number of edges in cluster Cm.
When accumulating all the cost terms for cluster Cm, each
clustering term will show up twice since each of them is
related to two edges, leading to

Cost(Cm) =
∑

Ei∈Cm

s2iψ
2
i +

∑
Ei∈Cm

(λi − si)2σ−1i

+2
∑

Ei,Ei′∈Cm

Ei′ 6=Ei

(si − si′)2σ−1ii′ .
(8)

Comparing equation (5) and (8), we obtain:

2σ−1ii′ = σ−1m . (9)

By substituting equation (7) into (9), the variance of cluster-
ing terms can be determined as

σm =
(Dm − 1)σi

2
. (10)

This way, we have formulated a cluster-based objective
function that scales the penalty intelligently. It can be in-
terpreted on a factor graph as shown in Fig. 1. Factors that
link to the switchable variables vary depending on their local
consistency and topological relation with other edges.

The clustering algorithms are implemented with the
SLAM++ [15] optimizer due to its state-of-art marginal
covariance recovery implementation, and the robust formula-
tion is implemented within the RTABMAP [16] framework.
Code is available at https://github.com/MISTLab/
Cluster-based-Penalty-Scaling.
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Fig. 1: Factor graph representation of the proposed formulation (factors of
similar color but different sizes hint at their various weights)

IV. EXPERIMENTS

A. Datasets

2D pose datasets have been routinely used to validate
outlier mitigation techniques and it is common practice to
evaluate different methods by comparing their performance
on the same dataset. However, to the best of our knowledge,
there has not been a single “winner” on all datasets and there
is no clear indication of which characteristics of the datasets
affect the performance of outlier mitigation techniques. In-
spired by the analysis in [17], [18], we purposefully selected
datasets that vary in graph sparsity, trajectory length and
odometry noise to test our approach, as listed in Table I. With
the exception of the Manhattan dataset, all other datasets
are real datasets. Only the Bicocca dataset has real outliers
that are generated by the front-end while others are “clean”
datasets, into which we inject synthetic outliers for our
experiments. We used a script provided by Sunderhauf et
al. [8] and made improvements to generate the covariance of
synthetic outliers by averaging the covariance of all inliers.
Besides the number of poses and loop closures, we also
computed the average node degree (ND) and relative pose
error (RPE). Khosoussi et al. [18] have validated that the
average node degree, defined as 2K/N , reflects the accuracy
of the estimation when no outliers are present. The mean
values of RPE between ground truth and the initial graph
reflect the odometry noise [19].

TABLE I: Information on the datasets used

Dataset
Source/
Outliers Poses

Loop
Closures

Node
Degree RPE(m)

Bicocca Real /Real 8357 446 2.11 0.0005

CSAIL Real /Syn 1045 128 2.24 0.004

Manhattan Syn /Syn 3500 2099 3.20 0.014

Intel Real /Syn 1228 256 2.42 0.019

We compare our work with four other outlier mitigation
methods: Switchable Constraints (SC) [8], Dynamic Covari-
ance Scaling (DCS) [5], Objective Function Change Check-
ing (OFCC) [13], and Realizing, Reversing, and Recovering

(RRR) [6]. For SC, DCS and RRR, we used the original
implementation provided by the authors. Since authors of
OFCC did not provide their code, we implemented the
method with the SLAM++ [15] optimizer.

B. Measurement Selection: Admit or Deny

We aim to select as many inliers as possible during the
clustering process. Intuitively, this would later allow the
optimizer to make better decisions on which edges to tune
down and therefore improve accuracy. As detailed in the
previous section, we leverage the spatial clustering technique
from RRR. To validate the superior performance of our
method in admitting more inliers, we conducted experiments
by injecting different number of synthetic outliers into the
CSAIL, Intel, and Manhattan datasets so that the resulting
datasets have an increasing percentage of outliers: 10%, 20%,
30%, 40%, and 50%. To analyze the effect of the clustering
threshold γ on performance, we tested three different con-
figurations: γ = 10, γ = 50, γ = 100. Each configuration is
repeated 10 times with randomly generated outliers and the
averaged results are shown in Fig. 2.

We can make three observations: first, all methods reject
more inliers as the number of outliers increase. This is
expected since all methods aim to admit only consistent
clusters of edges, despite using different metrics.

Second, regardless of the clustering threshold, RRR re-
jected almost half of the inliers when the number of outliers
is high. Especially for the Intel and Manhattan datasets,
which have noisier odometry, RRR rejected as much as 80%
of the inliers when 50% outliers are present. By comparison,
our method consistently admitted more inliers.

Third, considering the effect of γ, RRR (γ = 10) per-
formed significantly better than the other two configurations
on the Manhattan dataset. While RRR (γ = 10) performed
slightly better than RRR (γ = 50) on the Intel dataset, the
opposite can be said on CSAIL. This makes the choice of
γ particularly difficult for RRR. On the contrary, CPS (γ =
10) performed consistently better than other configurations,
admitting 98.9% of inliers in the worst case scenario. We
use γ = 10 for all other experiments.

C. Accuracy

To evaluate the overall performance of outlier mitigation,
we compare with three methods: SC [8] with different pa-
rameters (σs = 1.0, 0.1), DCS [5] with different parameters
(Φ = 1, 5) and OFCC [13]. We injected CSAIL, Intel and
Manhattan with different numbers of synthetic outliers so
that 10%, 20%, 30%, 40%, and 50% of outliers are present.
We repeated each configuration 10 times and averaged the
results for analysis.

We used three metrics in this section: absolute translation
error (ATE), inlier acceptance rate, and outlier acceptance
rate. Please note the difference between the edges admit-
ted in the previous section and edges accepted here: after
preprocessing (i.e. RRR or the clustering step of CPS), an
admitted edge has its corresponding cost term in the objective
function for optimization. An accepted edge has to pass the



(a) CSAIL (b) Intel

(c) Manhattan

Fig. 2: Comparison plot between CPS and RRR

preprocessing step (in the case of SC and DCS, there is
no preprocessing) and correspond to a cost term with scale
s larger than 0.5 at the end of optimization. A rejected
edge could be eliminated during the preprocessing step, or
tuned down during the optimization step. We emphasize the
difference using different terminology because an edge that
was first admitted during preprocessing and then tuned down
during the optimization step still affects the optimization
results, while an initially rejected edge has no effect on the
optimization process. Our method aims to admit as many
inliers as possible during the preprocessing step, even though
this also means admitting more outliers. By providing a
quality indicator for each cluster, the optimizer has more
information to decide which edge should be tuned down.

For CSAIL, all outliers have been rejected for all trials
except SC (σs = 0.1), which performed much worse than
other methods by accepting outliers even when the number
of outliers is only at 10%. ATE and inliers acceptance rate are
plotted in Fig. 3. Overall, all methods performed reasonably
since the highest ATE value is 0.10m. We can see that CPS
manages to achieve the lowest ATE due to its capability to
accept more than 99% of the inliers even when 50% of the
loop closures are outliers. DCS (Φ = 1) and SC (σs =
1) achieved slightly higher ATE because they rejected more
inliers. DCS (Φ = 5) has lower ATE than DCS (Φ = 1) by
accepting more inliers.

Experimental results on Manhattan are shown in Fig.
5. We can see that OFCC and SC (σs = 0.1) failed by
accepting outliers even when only 10% of the loop closures
are outliers. Both DCS (Φ = 1) and DCS (Φ = 5) performed
reasonably when the number of outliers are low, but soon
deteriorated as the number of outliers increased. SC (σs = 1)
achived the lowest outlier acceptance rate and highest inlier
acceptance rate, however, its ATE at 50% outliers is slightly
larger than CPS. This is because CPS, even when accepting
outliers, tends to only accept outliers that cause minimal

Fig. 3: Comparison of different outlier mitigation methods on CSAIL dataset

local distortions, due to its explicit penalty scaling based
on cluster structure and quality. This is also confirmed by
the comparison between DCS (Φ = 1) and CPS: despite
having a higher outlier acceptance rate, CPS achieved a much
lower ATE. Typical scenarios when DCS, SC, CPS accepted
outliers are shown in Fig .4.

(a) Ground truth (b) Switchable Constraints [8]

(c) Dynamic Covariance Scaling [5]
(d) Cluster-based Penalty Scaling

Fig. 4: Comparison of different outlier mitigation methods when they
accepted outliers on the Manhattan dataset: blue lines indicate the optimized
graph, and red lines indicate the accepted outliers

The Intel dataset has the highest odometry noise out of
all the datasets we used for our experiments. The ATE,
inliers acceptance rate and outliers acceptance rate are plotted
in Fig. 5. We can see that SC (σs = 1) failed in this
dataset by being too conservative, rejecting all the outliers
however also rejecting too many inliers. The threshold on
the admissible error is apparently too low. SC (σs = 0.1)
performed significantly better by making good compromise,
accepting more outliers but also more inliers. DCS (Φ = 1)
performed well when the number of outliers is relatively low,
and its performance deteriorated as the number of outliers
increased. DCS (Φ = 5), OFCC and CPS performed well by
accepting most inliers. The ATE of CPS is slightly lower than
OFCC when 50% of outliers are present due to its capability
of rejecting more outliers.

We also experimented with group outliers and all the
results are summarized in Table II. More details on group
outlier generation and analysis on the results can be found
in the supplementary material, https://mistlab.ca/
papers/ClusterBasedPenaltyScaling/.



TABLE II: Evaluation of ATE (m): we marked the proposed method in green and highest ATE for each dataset in red

Random (mean/max) Group (mean/max)

Bicocca Csail Manhattan Intel Csail Manhattan Intel

SC(σs = 1.0) 2.871/- 0.027/0.030 0.245/ 7.375 8.961/ 10.224 0.028/ 0.030 0.413/ 15.317 6.967/ 10.309

SC(σs = 0.1) 1.120/- 0.062/ 1.008 13.071/ 26.794 0.634/ 2.952 0.040/ 0.584 13.567/ 27.151 0.621/ 3.687

DCS(Φ = 1) 2.818/- 0.027/0.027 3.212/15.480 0.659/ 9.504 0.027/ 0.027 3.243/ 15.336 0.253/ 7.871

DCS(Φ = 5) 0.986/- 0.023/ 0.024 7.453/ 17.370 0.028/ 0.936 0.023/ 0.023 6.839/ 20.005 0.005/ 0.006

CPS 1.102/- 0.003/0.007 0.219/1.196 0.070/ 0.133 0.003/ 0.007 2.076/ 14.591 0.056/ 0.089

OFCC 10.531/- 0.051 /0.051 22.856 /38.010 0.099/ 0.371 0.243/ 1.827 19.524/ 35.218 0.117/ 0.964

Fig. 5: Comparison of different outlier mitigation methods on the Manhattan
and Intel datasets (Manhattan on the left column, Intel on the right)

D. Timing Analysis

We performed all experiments on a laptop with an Intel
4-core processor and plotted the average processing time
for different configurations in Fig. 6. We can observe that
preprocessing steps, such as RRR and clustering in CPS,
are generally more expensive than the NLS solving. As a
result, SC and DCS are faster than RRR and CPS. Processing
time of RRR increases significantly as the node degree
increases, seen in the Manhattan dataset. By comparison,
CPS maintained reasonable performance. Its overall timing
can be further reduced by multithreading the preprocessing
step since each cluster is examined independently.

E. Real Datasets with Real Outliers

For further validation, we also performed experiments on
real datasets with real outliers. Latif et al.[6] provided the
Bicocca dataset with varying confidence parameter for the

(a) CSAIL (b) Intel

(c) Manhattan

Fig. 6: Comparison plots on processing time (CPS-pre refers to the prepro-
cessing time for clustering, and CPS-nls refers to the NLS solving time)

front-end place recognition system, and the number of loop
closures ranged from 446 to 23. Here we use the dataset with
lowest confidence parameter, Bicocca-000, which contains
446 loop closures and is plotted in Fig. 7a. We can observe
that outliers are present in this dataset, however we do not
have ground truth on which edges are outliers, so we used
only ATE for the evaluation on this dataset. The ground truth
trajectory is obtained by solving a clean dataset generated
with high confidence parameter for the front-end [6], using a
non-robust solver. In Fig. 7, we compare the resulting graphs
and present the mean of ATE in Table II. It is apparent
that OFCC failed to reject all the outliers and the optimized
graph is severely distorted. We can see that CPS and DCS
with the tuning parameter Φ set to 5 performed similarly
while DCS with Φ = 1 (and SC) had larger errors. We
used Φ = 5 for DCS because its authors proposed using
this value for the Bicocca Dataset. Despite producing good
results, needing a specific value to produce good results for
a dataset with low odometry noise is unwanted. Another
interesting phenomenon is that DCS with Φ = 1 works well
for CSAIL and fails for Bicocca, despite both datasets having
low odometry noise and similar node degrees. This further



(a) Initial graph (b) CPS (c) DCS (Φ = 1)

(d) DCS (Φ = 5) (e) OFCC (f) SC

Fig. 7: Comparison plot between ground truth and optimized graph (in 7a,
blue lines indicate the odometry while red lines indicate the loop closures;
in the rest of plots, green lines indicate ground truth and red lines indicate
the optimized results)

confirms the difficulty in parameter turning for DCS.
To validate our method on 3D datsets, we processed the

KITTI-00 and KITTI-02 sequences using RTABMAP [16]
and tuned the front-end parameters to produce more loop
closures. As a result, we produced 101 loop closures for
KITTI-00, which consists of 453 poses. For KITTI-02, we
produced 36 loop closures with respect to its 464 poses.
The initial graphs are plotted in Fig. 8a and Fig. 8b. After
using the proposed method to mitigate the effect of outliers,
we achieved the optimized graph in Figs. 8c and 8d, which
show that all outliers have been rejected.

(a) 00-initial (b) 02-initial (c) 00-opti (d) 02-opti

Fig. 8: Initial and optimized graphs of the KITTI datasets (3D datasets
are projected onto the horizontal plane for clarity; blue lines indicate the
trajectory while red lines indicate the loop closures)

In total, we evaluate five methods on four datasets with five
levels of outlier ratios. As shown in Table II, CPS performed
well on all datasets. By comparison, OFCC failed on Bicocca
and Manhattan dataset. SC failed on Intel dataset. DCS (Φ =
1) produced much higher ATE than CPS on Bicocca and
Manhattan datasets.

V. CONCLUSIONS AND FUTURE WORK

Without fine tuning the parameters, our methods perform
better than other state-of-the-art outlier mitigation methods
on data sets with varying odometry noise, trajectory length,
and graph sparsity. For future work, we will perform in-
depth analysis of the convergence behaviour of proposed
method. We also plan to adapt the proposed method for
online outlier mitigation. In addition, current research on the
front-end and back-end is mostly in isolation: we will explore
tighter integrations to study the effect of poorly estimated
covariances on outlier mitigation.
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