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Abstract— Reinforcement learning algorithms have shown
great success in solving different problems ranging from playing
video games to robotics. However, they struggle to solve delicate
robotic problems, especially those involving contact interactions.
Though in principle a policy directly outputting joint torques
should be able to learn to perform these tasks, in practice we see
that it has difficulty to robustly solve the problem without any
given structure in the action space. In this paper, we investigate
how the choice of action space can give robust performance
in presence of contact uncertainties. We propose learning a
policy giving as output impedance and desired position in joint
space and compare the performance of that approach to torque
and position control under different contact uncertainties.
Furthermore, we propose an additional reward term designed
to regularize these variable impedance control policies, giving
them interpretability and facilitating their transfer to real
systems. We present extensive experiments in simulation of
both floating and fixed-base systems in tasks involving contact
uncertainties, as well as results for running the learned policies
on a real system (accompanying videos can be seen here:
https://youtu.be/AQuuQ-h4dBM).

I. INTRODUCTION

Many interesting robotic applications necessitate complex
physical interactions with the environment. During loco-
motion, intermittent contacts and force modulation enable
the robot to keep balance and move forward. Multi-contact
interactions are also central to the efficient manipulation of
objects. Establishing and breaking contact is especially hard
because it causes a switch in the dynamics of the system
which can rapidly lead to failures if not controlled properly.
Unforeseen changes in the contacts location and properties
(friction, stiffness, etc) can also dramatically degrade the
robot behavior and remain a fundamental challenge in robotic
manipulation and locomotion.

Deep reinforcement learning has shown a lot of promise
in recent years for robotic applications. However, in an effort
to learn end-to-end policies the focus has often been on the
complexity in the observation part of the task, specifically
vision, and not necessarily on the physical interaction part
of the problem. One important aspect, that we investigate in
the paper, relates to the choice of a policy parametrization
that affords efficient learning of policies robust to contact
uncertainties.

It was shown that position control with fixed pre-tuned
gains can have better learning performance than pure torque
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outputs [1], and such policies have been successfully trans-
ferred to physical robots interacting with the environment
[2]. These results are achieved by guiding properly the
exploration using desired position and stabilizing the system
around that using pre-tuned feedback gains. However, previ-
ous work has demonstrated the importance of some form of
force control when learning interaction tasks, either explicitly
[3] or by learning time-varying control gains [4], [5], [6], [7],
state-varying feedforward and feedback gains [8], or unified
motion and gains varying strategy [9], [10], [11].

Recent results [11], [12] suggest that learning impedance
schedules in task space can significantly speed up learning
of manipulation tasks. The operational space representation
used in those works has the advantage of abstracting the
robot kinematics, but with the potential drawback of fixing
the redundancy resolution scheme which can limit the range
of possible behaviors. Indeed, the ability to vary nullspace
resolution schemes is critical to enable the concurrent execu-
tion of several tasks necessary to achieve complex behaviors,
e.g. avoiding an obstacle while reaching for an object or tak-
ing a step while maintaining balance [13], [14]. One can also
argue that methods that require solving an inverse problem
suffer from numerical instability near singularity, or rule out
a significant space of possible motions achievable without
pre-defining a task-space. Moreover, there is evidence that
the best choice for a task-space may vary across and within
tasks [15]. For these reasons, in this paper we focus on joint
space policy learning despite potential training speedup that
can be achieved by doing the same in a predefined task space.

The main goal of this paper is to investigate the ef-
fect of policy parametrization on reinforcement learning
for robotic tasks involving complex contact interactions
and hard impacts. We provide empirical evidence that con-
trol policies concurrently generating desired positions and
joint impedance tend to produce more robust behaviors.
We present both extensive numerical simulations and real
hardware experiments. In particular, we find that the resulting
policies are robust to various types of contact uncertain-
ties (friction, stiffness and contact location). Additionally,
we propose a reward term regularizing these variable gain
policies and giving them interpretability, allowing for direct
transfer to a real robot. We perform an extensive analysis
on two very different systems: a single-leg hopper (floating-
base) creating intermittent contacts with hard impacts on the
ground and a manipulator (fixed-base) performing a delicate
force control task. In both cases we show that variable gain
control outperforms a wide range of learned fixed gain or
direct torque control policies, especially in the presence of
contact uncertainty.

IEEE Robotics and Automation Letters (RAL) paper presented at the
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

Copyright ©2020 IEEE



II. CONTROL POLICY PARAMETRIZATION

In this work, we compare several ways to parameter-
ize control policies when using reinforcement learning in
robotics tasks. For each examined control parametrization
we represent the policy with a neural network. The inputs
of the network stay the same in each case (the state of the
system, ξ), while the output corresponds to the parameters
of the individual controller (torque, desired positions, gain
parameters, etc). Based on these parameters the controller
produces the torque, τ , that is then applied to the system.
We now present each of the controller parametrization that
will be examined.

Direct torque control. In the first parametrization, the
neural network directly outputs desired torque commands
(Figure 1(a)) and the resulting control law is simply:

τ = τ (ξ) (1)

This parametrization imposes no structure, which provides
some benefits. As there is no imposed structure, any control
that is a function of the variables present in the state can be
expressed using this parametrization, given that the neural
network is capable of approximating it. Additionally, such
control parametrization may have a more direct control of
interaction forces than position controllers and may provide
benefits in that respect, at least in static contact situations.

However, having no imposed structure also has several
downsides. With this parametrization, the function to be
learned may be unnecessarily complex. For example, for a
motion task, the policy needs to learn something akin to PD
control as well as a part that generates desired positions, all
inside one function. This representation does not explicitly
separate the feedback (how to correct from errors) from
the feedforward (what is the desired behavior) pathways.
Further, small variations in commanded torques can lead
to very different movements and therefore to different task
costs. This will also raise issues for generating meaningful
exploration, which might be more difficult than doing the
same in the space of desired joint positions.

Fixed gain PD control. The second parametrization con-
siders a PD controller with fixed gains. In this case, the policy
outputs desired joint positions and torques are computed
using a PD controller with some pre-defined gains (Figure
1(b)). The control law is then

τ =Kp(qdes(ξ)− q)−Kdq̇ (2)

Again, there are positive and negative aspects to such a
parametrization. It is often easier to find solutions in this
setup [1], due to a simpler action space to explore and a
policy easier to encode. Indeed, small variations in desired
positions lead to small variations in task execution, at least in
contact-free motions. It is in fact, as we will also see in our
experiments later, the best choice for tasks involving only
free space motions.

On the other side, achieving a desired behavior in interac-
tion with the environment becomes more difficult, especially
when uncertainties are present, even when the gains are well

tuned for the specific task. The policy can to some extent
control the interaction with the environment by changing
desired joint positions, but as we will see later, finding such
solutions becomes increasingly difficult.

Variable gain PD control. The last parametrization is a
PD controller with variable gains, i.e. the policy modulates
both the desired position and impedance of each joint (Fig-
ure 1(c)). The control law is written as

τ =Kp(ξ)(qdes(ξ)− q)−Kd(ξ)q̇ (3)

Note: In our experiments, we use a single output to control
both Kp and Kd by imposing a fixed relationship between
damping and stiffness, similar to the scaling of critical
damping. The neural network outputs the Kp gain and Kd

is varied with the square root of that value.
In contrast to the previous two controllers, we have

introduced an extra degree of freedom (the gain modulation)
for each joint. In theory, this added degree of freedom allows
for an explicit separation between the feedforward path, i.e.
the desired behavior encoded in the desired position, and the
feedback path, i.e. the response to unforeseen events encoded
in the feedback gain.

This parametrization will preserve the ease of exploration
characteristic of PD control with fixed gains. Moreover, with
additional control dimensions to use, the functions the policy
needs to learn may become even simpler than in the pure
position control case. Finally, key to contact sensitive tasks
we are particularly interested in, the policy has finer control
over contact interactions with the environment. Robustness
to environment uncertainty might be easier to encode in
the feedback path while preserving the feedforward one to
encode the ideal, unperturbed, behavior.

An obvious drawback is that we doubled the size of the
action space the policy is acting in. But, as we will see later,
this rarely causes loss in learning performance.

Remark: Both fixed and variable gain PD control we
discuss in this work are different than the ones commonly
used in robotics, where the control follows a predefined time-
based trajectory [2]. All controllers we examine are state-
based without any notion of time, and as such are capable
of handling uncertainty in contact location and time.

III. EVALUATION PROCEDURE

Evaluation goals. In our evaluations we focus on setups
where proper interaction with the environment is crucial for
task success. In contact sensitive problems, planning and
optimization-based approaches often struggle and reinforce-
ment learning has the potential to generate solutions which
cannot be easily found otherwise.

A central aspect of this work is to evaluate how controller
parametrizations influence task performance in presence of
different contact uncertainties in the environment. This is
an important aspect in order to generate motions that can
transfer to real physical systems. To be able to successfully
transfer policies from simulation to real systems we need to
find solutions that are capable of handling variation in critical
environment parameters. Therefore, the parametrization best



Fig. 1: Structures for the three control policies used.

(a) (b) (c)

Fig. 2: Evaluation environments used: A floating-base sys-
tem: a hopper jumping on a surface in simulation (a) and
on real hardware (b); A fixed-base system: a manipulator
interacting with the environment in simulation (c).

able to find solutions in such cases is more likely to produce
good results when applied on the physical system.

Evaluation environments. To study these aspects, we
use two different environments, a single leg hopper which
is a floating-base system and a manipulator fixed to the
ground. We seek to show that our results are consistent across
two very different environments, with contact interactions of
completely different nature. The manipulation task requires
fine interaction while the hopping task requires soft, reactive
landing and quick force exertion. Both contain movements
that alternate between free-space motions and contact in-
teraction phases. The simulations are implemented in the
PyBullet simulator [16]. We also show direct transfer of
the learned policy for the hopping environment to the real
system.

Reinforcement learning algorithm. For training the con-
trol policies we use Deep Deterministic Policy Gradient
(DDPG, [17]). We chose an off-policy algorithm to reduce
the issue of local minima, especially present here arising
from combination of learning to control in joint space, dis-
continuities in the dynamics arising from contact interaction,
and complex, multi-part reward functions. However, we do
not make use of any particularities of DDPG in our approach.
We therefore expect that the results we present here will
remain consistent when using other learning algorithms.

IV. CONTROLLING A FLOATING-BASE SYSTEM

A. Task description

Setup. The first setup we use in our evaluations consists of
a floating-base robot hopper with a two degrees of freedom
leg [18] and a solid surface beneath it. We restrict the

base to only move along the Z-axis which eliminates the
falling down effect while still capturing the base motion and
intermittent contacts during continuous jumping.

Task. The task is to achieve stable periodic hopping
motions. We penalize hard impacts on the ground, as it is not
something that would be acceptable on the real system. We
are interested in motions where the system smoothly lands
and pushes off, without any discontinuities in its velocity. To
produce policies that are robust to contact switch uncertainty
we randomly change ground surface height during episode
execution in a range between −5 cm and 5 cm. This corre-
sponds to ground variations of 31% of the total hopper height
in the fully stretched configuration (32 cm).

We set the state of the system to consist of the joint
positions and velocities for the two leg joints as well as
position and velocity of the base. We do not explicitly
provide to the system any information about contact.

Reward function design. To generate hopping motions
we intentionally keep the reward function as simple as pos-
sible. The main part of the reward is based on the height of
the robot base at every timestep, with an increase for values
that cannot be reached without leaving the ground. This term,
on its own, is enough to produce consistent hopping motions.
However, regardless of the controller design, policies trained
on such a reward produce exactly the excessive impacts on
the ground we are looking to avoid. In order to prevent
impact forces that can produce damage on the real system
we penalize large forces applied to the robot. Finally, to
avoid high frequency control command we introduce a torque
smoothness penalty.

Even though in this case we are dealing with a comparably
simple system, this reward design creates a challenging
learning problem. It is relatively easy for policies to get
stuck in a local minima where the system is just held upright
with its leg fully extended and not reach any hopping motion
in their exploration. The addition of the large force penalty
makes the problem even more difficult as initial hopping
motions found during training are bound to result in penalty
for bad landings larger than the reward received for jumping.

B. Simulation results

Quantitative comparison. We run several training in-
stances for each of the three controller parametrization. For
fixed gains control we examine performance over a range of
different gains. In Figure 3(a) we show final scores at the
end of each training. We can see that direct torque control
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(c) Final training scores (only those > 1000 shown)

Fig. 3: Results for training in simulation on the hopping
environment: (a) Final training scores for all controller
parametrizations. For the fixed gain policy results are shown
for a wide range of gain values; (b) Averaged learning curves
for the three controller parametrizations. Results are averaged
over 100 training instances for each parametrization; (c)
Closer look at the best performing policies at the end of
the training (only those with score greater than 1000).

policies completely fail to achieve the task. For fixed gain
control we can observe a drop in performance when gains
are too low and when they are too high, with a medium value
of Kp = 5.0 having the best average performance.

For reliably comparing fixed and variable gain control
on this task we repeat the experiment using 100 training
instances for each controller parametrization, using the best
performing gain value for fixed gains control. In Figure 3(b)
we present learning curves averaged over all the experiments
for each controller parametrization. We can see that average
performance of variable gain control exceeds that of fixed
gain one, a result of more of those policies converging to
adequate solutions as well as doing so faster.

Being more likely to converge is important, as it allows us
to find policies we can use in a limited number of training
runs. However, at the end we are always going to pick
the best performing policy to deploy on the real system.

We are therefore interested in understanding how good the
best policies are. In Figure 3(c) we show the individual
final performances from the previous experiment for all the
policies above a score of 1000. Here we can see that it is not
only the case that the variable gain policies are more likely
to converge or that they do so faster on average, but that they
find solutions strictly better than any that are found with the
fixed gain parametrization.

Qualitative analysis. In Figure 4 we show sample of be-
havior of the best performing variable gain policy. Examining
the gain profiles, we can note that they go to lowest possible
value in advance of making contact, before spiking up to
allow the system to first slow down, and then push itself
off the ground. The torque values stay close to zero except
during landing and push-off when they go to maximum
values that can be exerted. The contact interaction is such
that the impact is absorbed and the force is smoothly applied
to first slow down and then accelerate the system upwards,
without losing contact at any point.

C. Experiments on the real system

Transferring policies to real systems. When learning in
simulation the policies can learn to exploit idealized rigid-
body dynamics. Indeed, simulations do not include robot
flexibility or difficult to model dynamic effects such as
Coulomb friction, drive train dynamics, etc. Furthermore,
they typically assume infinite bandwidth control authority,
without any delays, which is known to be an issue to compute
optimal policies [19], [2]. As a result, optimized policies can
quickly change control outputs which results in very good
behavior in simulation but excites the dynamics of the real
robot in problematic ways, for example creating unwanted
and possibly destabilizing oscillations in the motion. This is
an effect that we observed in our initial experiments.

An approach often taken in sim-to-real research is to ran-
domize robot parameters in the simulation to capture various
types of unmodeled dynamics [20]. However, there is no
guarantee that this randomization will capture the unmodeled
dynamics of interest since the simulation does not explicitly
capture this dynamics. Further, dynamic randomization might
prevent finding appropriate solutions that could transfer to
the real robot by generating samples that do not apply to the
real robot. In this paper, we explore a different approach that
exploits our control parametrization.

Trajectory tracking reward term. To address the afore-
mentioned issue, we introduce an additional reward term
during learning of the policies in simulation, which aims
to force the policy to generate desired positions that can be
effectively tracked. The reward term penalizes the difference
between the desired position given by the policy at time step
t, qtdes and the actual position achieved in the next time step
t+ 1, qt+1 as follows:

rtt = −k
∥∥qtdes − qt+1

∥∥2
With this reward term, we favor desired joint positions

that can be tracked by the closed loop system in simulation.
Without such a reward term, the variable gain policy can
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Comparing the effect on resulting trajectory and gains for the variable gain policy; (c), (d) Comparing the effect on resulting
trajectory in the case of fixed gain policy.

make a choice between various desired position and gain
pairs that results in the same applied torque at each time
step. For example, instead of generating desired positions
that can be meaningfully executed, it can just give desired
position values far from the actual robot trajectory with
smaller gains to achieve the same torques and therefore the
same behavior. However, this would lead to behaviors that
could be very sensitive to variations in the dynamics. As
an additional benefit, this term forces the policy output to
remain interpretable as desired position and feedback gains,
clearly separating feedback and feedforward control paths.

We should note the difference between this term and a
term penalizing desired positions that move away from the
current state of the system. In the second case any desired
position different than the current one receives some penalty
and the system is incentivized not to move. With the reward
term we propose here if the position is reached in the next
time step, zero penalty is given. Even in the case when the

desired position is not reached, penalty is only given on the
remaining distance to it. Only the desired values that cannot
be reached are penalized, all motions where the trajectory
can be tracked receive zero penalty.

In order to evaluate the effect of this addition to the
reward on the resulting policies, we repeat the training
process described previously with the trajectory tracking
penalty enabled for both fixed and variable gain policies.
We find that the best scoring policies for both these con-
troller parametrizations still generate hopping with similar
performance.

The outputs of both policies, with and without trajectory
tracking reward, are shown in Figure 5. We can see that
before adding this penalty term the variable gain policy gives
desired position output far from the current trajectory when
realizing the force needed to push off from the ground.
However, when training with this new reward term the
desired positions for both joints track the actual trajectory
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Fig. 6: Example of a variable gain policy behavior on the
real system: (a) Push-off position on the ground; (b) Pushing
off the ground; (c) Reaching maximum height; (d) Getting
into position in preparation for the landing; (e) Landing and
starting the cycle again.
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Fig. 7: Jumping heights for fixed and variable gain policies
deployed on the real system. We use three ground positions
where the baseline is the normal ground height and the other
two (−5 cm, 5 cm) are the ends of the range over which the
policies are trained.

more closely. We can see that this also results in interpretable
gain results – going as low as possible before contact and
then spiking up to realize the force that is needed. On the
other hand the output of the fixed gains policy practically
does not change at all (the plots differ as a result of the
opposite knee orientation found between the two solutions).
When gains are fixed, the only manner to control a desired
contact force is to go off the trajectory with the desired
position values. On the other hand, the resulting force can be
controlled by varying the gains in the other parametrization.

Evaluating policies on the real system. We evaluated the
best performing policies in simulation for each gain value for
the fixed gain controller and the one best performing variable
gain policy. Torque control did not produce any sensible
policy worth evaluating on the real system. For the fixed
gain policies, having position gain values of Kp = 1.0 was
insufficient for hopping so that is omitted from the following
comparison. Gain values of Kp = 6.0 and higher resulted in
unstable behavior so those are omitted as well.

Apart from this, the transfer of policies trained in simu-
lation in the way we described to the real system is very
robust. Out of the 6 policies we evaluated all succeeded
in reasonable jumping performance, for many consecutive
jumps, on the first try. The achieved jump heights are
presented in Figure 7.

Importantly, the variable gain policy outperforms all of

the fixed gain ones, i.e. it is the policy that saw the least
decrease in performance. Moreover, the resulting jumping
height is higher than what was demonstrated using model-
based control in [18]. It is in fact the highest jumping we
were able to generate on this platform to date. Also, even
though its gains can, and do, go as high as Kp = 10.0
it shows none of the instability present in the fixed gain
policies with those same gain values. The reason for this
being that it increases the gains to maximum values only
when necessary (e.g. during push-off). Indeed, the maximum
admissible gains in contact will always be larger than during
the flying phase due to the changing reflected inertia at the
joints in loaded/unloaded conditions.

V. CONTROLLING A FIXED-BASE SYSTEM
A. Task description

Setup. We use a simulation of a 7 degree of freedom
KUKA LWR manipulator (Figure 2(a)). In all the simula-
tions, gravity is compensated with a feedforward term, which
is the default behavior on the real robot.

Task. The task we are interested in consists of doing a
circular motion with the endeffector touching a table in front
of it, while applying a desired constant vertical force. This
task is relevant for many applications that require sliding
contacts, such as cleaning a surface, using a tool on an object,
etc. Tasks involving sliding contacts are especially difficult
to optimize in general. The task is designed such that the
robot starts from a random initial position. It should be able
to reach the table, establish a safe contact and exert a desired
vertical force. We consider three types of uncertainties for
the table: stiffness (i.e. how soft is the contact), friction,
and height. These uncertainties are relevant for real-world
applications as changes in contact properties and location can
easily destabilize controllers and lead to failures. Moreover
contact stiffness and friction cannot be known precisely
before interaction in an unknown environment.

For this task, the states of the system consist in the
positions and velocities of all 7 joints of the arm, as well
as the total force measured by the endeffector.

Reward function design. To learn a policy for achieving
the desired task we define a reward function consisting of
several parts (1-5). We use two terms to drive the circular
motion along a desired trajectory: (1) the current distance
from the endeffector to the closest point on the circle and
(2) the difference between the current velocity vector and
the desired tangential velocity on the closest point on the
trajectory so as to achieve a motion with constant angular
velocity. The three other terms are: (3) a reward based on
the orientation of the endeffector, (4) a constant reward for
any interaction between the endeffector and the table and a
further reward based on the difference with desired contact
force and (5) a penalty term for any interaction between the
table and any part of the robot other than the endeffector.

While the reward function might seem complex, each term
directly encodes one aspect of the task and we pay particular
attention not to incentivize any specific behavior in solving
it. The apparent complexity is precisely the result of this, as



we use multiple terms to define the circular motion along
the trajectory, instead of simply having one specific point
to track, explicitly to ensure time-invariance of the resulting
policies.

B. Simulation results

Quantitative comparison. We examine the robustness of
our approach to variability present in the environment. We
consider in three separate simulations uncertainties on table
height, friction, and stiffness. For each of the three variables
we define a possible range of values and uniformly sample
a new environment in each episode during training. We vary
the table height in a 20 cm range from 0.8m to 1.0m and
Coulomb friction coefficients in a range from 0 (no friction)
to 1. We also vary the rigidity of the surface (which can
easily influence the stability of a controller) with stiffness
values from 50N/m to 500N/m.

We perform each policy training for a fixed, predefined
number of episodes. For each controller we repeat the
training 6 times, with different circular trajectories to track.
In Figure 8 we present the combined results, showing the
mean and standard deviation for the learning curves across
these individual trainings.

We can see that variable gain control outperforms both
of the other two parametrizations. Splitting the control into
motion and impedance parts makes it crucially easier for a
good behavior to be found. One control term can handle the
circular motion, while the other, depending on the experi-
ment, can manage contact location uncertainty or compensate
for unknown friction of the surface.

Qualitative analysis on contact transition. Further com-
parison between different cases in Figure 8 reveals that the
performance gap between the variable gain policies and the
other two (fixed gains and direct torque) is more obvious
when there is uncertainty in the contact location. Since the
dynamics of the system changes before and after contact,
transition between the two modes (i.e. free motion vs. in-
contact) has a critical impact on the task achievement.
Hence, the policy that is able to tolerate uncertainty in the
mode transition can outperform other ones drastically. To
investigate qualitatively the behaviour of different policies
in this case, we plotted the corresponding normal interaction
forces (Figure 9) for a representative experiment. We can
clearly see that the applied force from variable gain policy
is smooth without loosing contact. On the other hand, direct
torque control looses contact frequently and the fixed gains
policy generates forces with high frequency oscillations. The
variable gain policy leads to smoother contact forces which
could be realistically applied on a real robot.

VI. DISCUSSION

Trajectory tracking term. The trajectory tracking term
was crucial in our sim-to-real transfer, as it prevents the pol-
icy from varying the desired position with a high frequency.
In other words, the policy is incentivized to change the
desired position in a way that is consistent with the system
dynamics and constraints (as much as it does not degrade

achieving the desired task). As a side benefit, the trajectory
tracking term also gives interpretability to the output of the
policy, i.e. the sequence of desired positions over time can be
seen as the desired feasible trajectory and the multiplier to
the error replicates the feedback gains. As a result, if we have
a variable gain policy, we can find a desired trajectory and an
optimal set of feedback gains for that desired trajectory. This
interpretability can yield insight about the optimal impedance
modulation for contact-rich tasks, which is still an open
problem in the field.

Action space parametrization alternatives. When
proposing any new structure in the action space of the policy,
in addition to standard considerations on the control side,
we suggest to take into account two additional factors from
the learning perspective. First, good exploration is critical
for fast convergence and to avoid getting stuck in undesired
local minima. This is where position control based policies
come ahead of direct torque control, but they in no way
completely solve the problem and there is further research
to pursue in that area. Second, if we entirely decouple the
feedback path from the feedforward one (e.g. τ = τff (ξ)−
Kp(ξ)x−Kd(ξ)ẋ), the learned policy may realize the entire
control through a single term, mostly ignoring the other one
(our experiments with such control law formulations resulted
in precisely that type of behavior). This would also strip
the control law terms of any physical meaning we tried
to impose. When using any such control law in a policy
learning setting, where the same behavior can be produced
by different combinations of control terms, there needs to be
something incentivizing one choice over another. Only then
can the individual terms have the intended physical meaning,
giving us the interpretability we desire.

Stability of variable impedance policy. Varying
impedance as a function of state can cause instability of the
control. As discussed in [21], reasonable varying stiffness
profiles show no destabilization tendencies. In this paper, first
we found a range of joint stiffness and damping that does
not cause any instability on the real system for a wide range
of motions. Then we let the policy find a state-dependent
impedance within this range. With this strategy, we never
experienced any instability when we applied the learned
policy directly on the real robot.

VII. CONCLUSION

In this paper, we have investigated the effect of action
space representation on the performance and robustness
in contact-rich tasks in the presence of uncertainties. On
both a floating-base hopping task and a fixed-base table
wiping one we demonstrate that variable impedance control
allows us to find better performing policies and to do so
more reliably. Additionally, we showed how we can use a
regularization term to impose the original physical meaning
to desired trajectory and impedance, giving interpretability
to these policies. Finally, we demonstrated how the policies
can then directly be deployed on a real system, preserving
performance and robustness.
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