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Abstract— Co-simulation of complex robotic systems allows
the different components to be modelled and simulated in-
dependently using methods and tools tailored to their na-
ture and time-scale, which makes the implementation process
more modular and flexible. Some applications require the use
of non-iterative coupling schemes for optimal performance,
such as real-time interactive environments and human and
hardware-in-the-loop setups. Stability of non-iterative schemes
is challenging due to the restricted and delayed information
that is exchanged between subsystems, and robust prediction
of interface variables is key. Here, we propose a framework
for exchanging model information between mechanical systems
with contact, where reduced-order models approximate the
interface dynamics of the subsystems. Effective mass and force
terms are formulated using a reduced representation of the
model, which can then be exchanged between subsystems and
integrated in their simulation. The analysis of several simu-
lations of challenging robotic contact tasks, such as grasping
and insertion with jamming, shows that model-based coupling
allows for stable co-simulation with larger interface stiffness
values, resulting in stronger coupling and higher simulation
accuracy.

I. INTRODUCTION

The analysis and simulation of robotic contact tasks is
an important element in design, control and training of
robotic systems. The increasing complexity and level of
detail demanded from the simulation of robotic mechanical
systems can be addressed using co-simulation as an efficient
approach for dealing with subsystems with different proper-
ties and time-scale. In co-simulation, subsystems are mod-
elled independently and simulated using numerical methods
tailored to them. Many applications of industrial interest can
benefit from the use of co-simulation techniques. Notably,
railway systems [1], hydraulic machinery [2], and automotive
applications [3].

Robotic tasks can give rise to complex mechanical models.
Decomposing such models into subsystems can have various
advantages. For example, some subsystems can be modelled
as articulated bodies, and simulated using efficient recursive
algorithms. Contact tasks, on the other hand, require for-
mulations that can deal with many unilateral contacts and
friction efficiently. Simulating all these subsystems using a
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3CM Labs Simulations, Montréal, Canada marek@cm-labs.com

monolithic formulation may be possible in some cases, but
co-simulation is often a better choice from an implementation
standpoint. Specific solvers for each subsystem can be cou-
pled together in a co-simulation setup, which can improve
the implementation process, making it more modular and
flexible.

Subsystem coupling is critical for a robust and stable co-
simulation, and the selection of interface variables plays
an important role. The best choice for the interface vari-
ables is usually not obvious, and it may depend on model
characteristics as well as implementation details [2]. Sub-
systems exchange data at discrete communication points,
and the time interval between them is known as macro
time-step. Simulation of each subsystem is then carried out
independently using different integration methods and step-
sizes, also known as micro time-steps. Therefore, a predic-
tion of the interface variables during the macro time-step
is needed. Some schemes determine those values through
iteration [4], [5], while others use extrapolation techniques.
Iterative schemes are more stable than non-iterative ones [6],
but at a higher computational cost that can be prohibitive for
real-time applications. Furthermore, they cannot be used with
subsystems that do not allow for state resetting, especially
those that involve physical systems such as in human and
hardware-in-the-loop simulation. This motivates the interest
in developing stabilization methods for non-iterative co-
simulation schemes.

Generally, coupling methods provide a prediction of the
input variables of a subsystem. On the one hand, signal-
based methods rely on past interface data and do not ac-
count for subsystem dynamics. Such methods commonly use
extrapolation and filtering techniques to approximate future
coupling variables. On the other hand, model-based methods
account for the internal structure of subsystems in order
to emulate subsystem dynamics and represent input/output
relations (see, Fig. 1). The cornerstone of such methods is
the characterization of reduced-order models, which can be
obtained via model-order reduction [7]. Alternatively, system
identification techniques can be used to characterize these
models, which may require a learning phase to identify
model parameters [8].

In our previous work [9], [10], we proposed a model-
based coupling using the effective mass and effective force
terms of a multibody system for the interfacing of subsystems
with faster dynamics in multi-rate co-simulation setups,
such as hydraulic subsystems. This also included a reduced
model formulation for multibody systems with unilateral
contact. In this current paper, we extend the model-based
coupling concept for mechanical-mechanical co-simulation
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Fig. 1. Co-simulation of two mechanical subsystems with signal-based
coupling (top) and model-based coupling (bottom).

of subsystems with contact. We propose a framework where
the subsystems exchange model data (i.e., effective mass
and effective force terms) to formulate and integrate reduced
models of other subsystems into their simulation. Simulation
of complex robotic contact tasks and phenomena such as
jamming illustrate the advantages of the proposed method.

II. MODELS FOR SYSTEMS WITH CONTACT

Contact between elements in a system can be modelled
with unilateral constraints, which represent contact detach-
ment via inequalities in the constraint equations. Coulomb
friction in contacts can also be modelled with constraints,
where friction forces are subjected to inequalities. It is
challenging to formulate contact and friction constraints
in a systematic and efficient manner. In this section, we
describe the main elements in complementarity formulations
for systems with contact and friction.

Let us consider a constrained mechanical system
parametrized by a set of p dependent generalized coordinates
q and n dependent generalized velocities v, which can be
related as q̇ = Nv, where N(q) is the p× n transformation
matrix between the two parametrizations, and p ≥ n in
general. Constraints in the system can then be characterized
by a set of r constraint velocity components

η = Av (1)

where A(q, t) is the r×n constraint Jacobian matrix. In addi-
tion, holonomic constraints can also be defined at the position
level by a set of r constraint coordinates Φ(q, t) such that
Φ̇ = Av−b, where b(q, t) = −(∂Φ/∂ t) are the prescribed
constraint velocities; often b = 0. Contact distances can be
used as unilateral constraint coordinates, but such coordinates
cannot be defined for friction constraints since tangential
velocity components are generally nonholonomic.

The equations of motion of the system can be written as

Mv̇ = f+ATλ (2)

where M(q) is the n× n mass matrix, f is the n× 1 array
of generalized forces, which also include the Coriolis and

centrifugal terms, and λ is the r× 1 array of constraint
interaction forces. Then, by incorporating the constraint
acceleration η̇, the dynamics equations of the constrained
system become [

M −AT

A 0

][
v̇
λ

]
=

[
f

η̇−g

]
(3)

where g(q,v) = Ȧv.
If all constraints are bilateral, then η̇ is given and the

system in Eq. (3) can be solved, which has a unique solution
if constraints are not redundant. On the other hand, unilateral
constraints in Eq. (3) formulate a mixed linear complemen-
tarity problem (LCP) by introducing the complementarity
condition [11]

0 6 λn ⊥ η̇n > 0 (4)

where λn are the normal contact force components, η̇n are
the normal contact acceleration components of closed contact
points, and ⊥ denotes component-wise complementarity, i.e.,
λn jẇn j = 0, ∀ j.

In general, the dynamics equations for systems with
contact and Coulomb friction formulate a mixed nonlinear
complementarity problem (NCP) [12]

M −AT
b −AT

n −AT
t

Ab 0 0 0
An 0 0 0
At 0 0 0




v̇
λb
λn
λt

=


f

η̇b−gb
η̇n−gn
η̇t−gt


0 6 λn ⊥ η̇n > 0

0 6 σt(λn,λt) ⊥ γ̇t > 0
κt(λn,λt, η̇t, γ̇t) = 0


(5)

where λb are the bilateral constraint forces, λn and λt
are the normal and tangential contact force components,
respectively, and ηb = Abv, ηn = Anv, and ηt = Atv, are
the associated constraint velocity components. Friction sat-
urations σt(λn,λt) define the limits of the Coulomb fric-
tion force [13]. The saturation for a contact point can be
interpreted as the distance to the friction cone, which equals
zero when the contact force is on the surface and positive
inside the cone. For the j-th contact point, σt j = µ2

j λ 2
n j
−

λ 2
t j,1
− λ 2

t j,2
> 0, where µ j is the friction coefficient. The

slack velocities γt are complementary to the saturations, and
together with κt = 0, they ensure that the sliding velocity
opposes the kinetic friction force [12].

Alternatively, the friction cone can be approximated with
a pyramid to formulate a mixed LCP [13], [14] Linear
problems are preferable than nonlinear ones and many solver
algorithms with guaranteed convergence are available in the
literature [15]. Further details on the numerical methods to
solve Eq. (5) are described in Section V.

III. CO-SIMULATION OF MECHANICAL SYSTEMS

In this section, we describe the co-simulation of mechan-
ical systems and the two most commonly used coupling
methods: force-based and kinematics-based coupling.

Figure 2 shows a robotic system in a co-simulation setup.
Let us consider two systems with n1 and n2 generalized
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Fig. 2. Coupling methods for co-simulation of robotic systems with contact.

velocities in v1 and v2, as well as p1 and p2 generalized
coordinates in q1 and q2, respectively. The interface be-
tween the two systems can be characterised by a reduced
parametrization with two sets of m1 and m2 velocities for
each subsystem which can be written as

w1 = B1v1 and w2 = B2v2 (6)

where B1(q1) and B2(q2) are the m1×n1 and m2×n2 Jaco-
bian matrices of the transformation, respectively. In addition,
a set of coordinates s1(q1) and s2(q2) can also be related
to the interface velocities as ṡ1 = R1w1 and ṡ2 = R2w2.
Such parametrizations generally represent the motion of the
elements at the interface, such as bodies or nodes that interact
with other subsystems. Moreover, the kinematics and forces
of these parametrization are meant to be exchanged in a
co-simulation setup as inputs and outputs, thus m j � n j in
general.

Interaction between the subsystems can be parametrized
by a set of ri interface velocities, which can be written in
terms of the reduced parametrization as

ηi = G1w1 +G2w2 (7)

where G1(s1,s2) and G2(s1,s2) are the interface Jacobian
matrices. Interface velocities can also be written in terms of
the global parametrization as

ηi = G1B1v1 +G2B2v2 (8)

Additionally, a set of ri interface coordinates Φi(s1,s2) can

also be defined for the holonomic velocity components in ηi
such that Φ̇i = ηi.

The set of m interface forces βi can then be introduced
into the equations of motion of each subsystem in Eq. (2) as

M1v̇1 = f1 +AT
1λ1 +BT

1 GT
1βi (9)

M2v̇2 = f2 +AT
2λ2 +BT

2 GT
2βi (10)

where M1(q1) and M2(q2) are the mass matrices, f1(q1,v1)
and f2(q2,v2) are the generalized forces, A1(q1) and A2(q2)
are the constraint Jacobian matrices, and λ1 and λ2 are
the internal constraint forces of each subsystem respectively,
which can also represent contact and friction as discussed
in Section II. The dynamics of each subsystem formulate a
complementarity problem if contact and friction are present
(see Eq. (5)), which cannot be solved without an estimation
of the interface variables (e.g., interface force βi or interface
kinematics ηi and Φi).

Constraints do not require any knowledge about the con-
stitutive properties of the system and are commonly used
to model interactions between elements of a system. In co-
simulation, however, constraints cannot be imposed between
subsystems in a systematic manner, mainly because the
simulations run independently and only exchange restricted
information. Formulating the subsystem dynamics with in-
terface constraints such as

ηi = 0 (11)

results in algebraic loops in the system [6]. Thus, constraint
equations require iterative co-simulation schemes to solve for
algebraic loops, such as predictor–corrector schemes [16].

Non-iterative co-simulation schemes for mechanical sys-
tems often exchange interface forces in order to remove
algebraic loops from the system. Then, interface forces can
be determined in one of the subsystems and then applied to
the other subsystem as an input. Forces can be determined in
one subsystem through the kinematic constraints imposed by
the motion of the other subsystem. However, deciding which
subsystem imposes its motion to another can largely affect
the stability of these kinds of schemes [17], which often
require constraint relaxation [5], [18]. Therefore, interface
forces can be defined through a constitutive relation using
the interface kinematics as

βi =−KiΦi−Diηi (12)

where Ki and Di are the interface stiffness and damping
matrices, respectively. This expression can be used with any
of the subsystems to determine the interface force, but the
choice is difficult to generalize. Alternatively, a preliminary
interface solve at the beginning of each macro time-step
can determine the interface force to be applied to both
subsystems, but that generally reduces the stability [19].

A. Force-Based Coupling
If the interface force β In

i is given as an input to subsys-
tem 1, it can be introduced into the equations of motion as
an applied force

M1v̇1 = f1 +AT
1λ1 +BT

1 GT
1β

In
i (13)



The local position s In
2 is also given to compute the Jacobian

matrices G1(s1,s In
2 ), which ultimately define the geometry of

the interface force. Then, by adding the internal constraints,
the dynamics formulation in Eq. (3) becomes[

M1 −AT
1

A1 0

][
v̇1
λ1

]
=

[
f1 +BT

1 GT
1β

In
i

η̇1−g1

]
(14)

Instability issues in this formulation come from the fact that
no specification is made on the interface kinematics, which
are often used as output variables in some formulations,
i.e., wOut

1 and sOut
1 are not constrained. Therefore, the motion

of the elements at the interface is independent from that
of the other subsystem, leading to significant error in the
interface kinematics ηi and Φi, as well as undesired high-
frequency oscillations.

B. Kinematics-Based Coupling

If the kinematics of subsystem 2 is given as input to
subsystem 1 (i.e., s In

2 , w In
2 and ẇ In

2 ), constraints can be
used to define the interface kinematics. Differentiation of the
interface velocity in Eq. (7) yields the interface acceleration

η̇i = G1ẇ1 +G2ẇ In
2 +g In

i (15)

where g In
i (s1,w1,s In

2 ,w In
2 ) = Ġ1w1 + Ġ2w2 are nonlinear

terms that also depend on the input kinematics.
The dynamics equations of the constrained subsystem 1

can be written as M1 −AT
1 −BT

1 GT
1

A1 0 0
G1B1 0 0

 v̇1
λ1
βi

=

 f1
η̇1−g1

η̇i−g In
i −G2ẇ In

2


(16)

where the motion of the interface ηi must be specified either
by equalities or inequalities, in case of contact. Furthermore,
the input local configuration s In

2 and velocity w In
2 can be

extrapolated using the input acceleration ẇ In
2 along with

the time integration of subsystem 1 during the macro time-
step. As a result, simulation of subsystem 1 determines the
interface constraint force βOut

i , which can then be passed to
subsystem 2.

Unfortunately, interface constraints are usually not stable
and they require some relaxation. Thus, the interface force
βi can be written in terms of the interface kinematics using
the expression in Eq. (12), so that the equations of motion
can be written as

M1v̇1 = f1 +AT
1λ1 +BT

1 GT
1βi(s1,w1,s In

2 ,w In
2 ) (17)

which can be solved implicitly using constraint regulariza-
tion, for instance.

IV. MODEL-BASED COUPLING

The main idea behind model-based coupling is to obtain
a reduced-order model of a subsystem that can emulate its
dynamics at the co-simulation interface. Reduced models can
provide an approximation of the subsystem outputs in terms
of the inputs, which can be used to extrapolate the coupling
variables [8] or even replace the subsystem during a macro
time-step [9]. Here, we formulate the dynamics equations

of the reduced model using the local parametrization w in
Eq. (6). Contact and friction within the subsystem are taken
into account by satisfying constraint complementarity, as
in [10]. Then, we exchange the dynamic equations of the
reduced model with other subsystems and integrate them in
their simulation.

Let us then select local parametrization w2 = B2v2 to
formulate the dynamics of subsystem 2 as [9]

M̃2ẇ2 = f̃2 +GT
2βi (18)

where M̃2(q2) is the m2 × m2 effective mass matrix of
subsystem 2 in the local parametrization w2, and f̃2(q2,v2)
is the m2×1 effective force.

The effective mass depends on the configuration of the
subsystem as well as the interactions of the elements within
that subsystem. By decoupling the interface motion from the
subsystem motion compatible with the internal constraints,
an expression for the effective mass can be obtained as [9]

M̃2 =
(

B2(I−P2)M−1
2 BT

2

)−1
(19)

where P2(q2) is an n2 × n2 matrix that accounts for the
internal constraints and the constrained motion, and I is
the identity matrix. In the absence of internal constraints,
P2 = 0 and the effective mass M̃2 =

(
B2M−1

2 BT
2
)−1 [20].

On the other hand, if all internal constraints are bilat-
eral (η̇ = 0) the projector matrix can be written as P2 =

M−1
2 AT

2
(
A2M−1

2 AT
2
)−1 A2 [9].

However, unilateral contact and friction may violate the
constraint equation η̇ = 0 due to complementarity in Eq. (5)
if the force limit is reached, e.g., a contact can detach if the
force is zero. Therefore, constraints with force limits must be
treated differently [21]. Closed contacts (η̇n = 0) and static
friction (ηt, η̇t = 0) can be considered as constraint forces,
we call them active constraints [21]. Open contacts and
kinetic friction are not constraints any more. We remove open
contact from the effective mass formulation and consider
kinetic friction as an applied force.

Hence, the projector operator [10]

P2 = M−1
2 ÂT

2
(
Â2M−1

2 ÂT
2
)−1 Â2 (20)

where Â2 is the Jacobian matrix of the active constraints
(i.e., bilateral, closed contacts, and static friction). Likewise,
the effective force can be written as [10]

f̃2 = M̃2

(
B2(I−P2)M−1

2 (f2 + ĀT
2 λ̄2)+ Ḃ2v2 +B2P2v̇2

)
(21)

where Ā2 is the Jacobian matrix of the constraints removed
from the active set (i.e., sliding contacts) and λ̄2 are the
kinetic friction force components.

The reduced model of subsystem 2 in Eq. (18) may then
be combined with subsystem 1, such that the dynamics
equations of the combined system can be written as

M1 0 −AT
1 −BT

1 GT
1

0 M̃ In
2 0 −GT

2
A1 0 0 0

G1B1 G2 0 0




v̇1
ẇ2
λ1
βi

=


f1

f̃ In
2

η̇1−g1
η̇i−gi

 (22)



where M̃ In
2 and f̃ In

2 are the input of subsystem 1 and updated
every macro time-step. In addition, the reduced parametriza-
tion s2 and w2 is updated every micro time-step, and it
evolves according to the dynamics of both subsystem.

The main advantage of this formulation is that the interface
constraints are solved inside the subsystem. This allows us to
use constraint regularization for the interface constraints and
ultimately improve the stability of mechanical–mechanical
subsystem coupling in co-simulation.

V. NUMERICAL FORMULATION

The dynamics of systems with contacts are often formu-
lated at the impulse–momentum level for a more consistent
treatment of the nonsmooth dynamic equations [11]. The
system dynamics equations are then discretized in time and
the generalized acceleration can be approximated by a finite
difference of the generalized velocity as

v̇ =
vk+1−vk

h
(23)

where vk is the known velocity at the beginning of the
time-step, vk+1 is the unknown velocity at the end of the
times-step, and h is the simulation micro step-size. Thus,
the dynamics equations in Eq. (3) can be written as [10][

M −AT

A 0

][
vk+1

λ̂k+1

]
=

[
pk

ηk+1

]
(24)

where pk(qk,vk) = M(qk)vk +hf(qk,vk) is the known gener-
alized momentum, M and A are the known mass and Jaco-
bian matrices evaluated with the known coordinates qk, and
λ̂k+1 is the unknown constraint impulse over the micro time-
step, which can be related to the unknown constraint force
as hλk+1. Here, the constraint velocity η = Av represents
the internal subsystem constraints η1 and η2, as well as the
interface constraints ηi.

As discussed in Section II, contact and friction can be
described by limits in the constraint forces λ. Linear force
limits can be generally written as

λlow 6 λk+1 6 λupp (25)

where λlow and λupp are the lower and upper limits of the
constraint forces, respectively. Unilateral constraints describ-
ing normal contact forces λn are characterized by the limits
λlow

n = 0 and λupp
n =+∞, whereas bilateral constraint force

limits can be set to infinity, i.e. λlow
b =−∞ and λupp

b =+∞.
Limits in Coulomb friction forces, on the other hand, need
to be linearised in order to formulate an LCP, which can be
written component-wise as λlow

t =−µλk
n and λupp

t =+µλk
n,

where µ is a matrix with friction coefficients, and λk
n is

the known normal contact force from the previous time-step.
This description of the friction force bounds represents a
linear approximation of the friction cone by a polyhedra,
also known as box friction model [10].

The force limits in Eq. (25) can be enforced by two sets
of non-negative saturation impulses

σ̂low = λ̂k+1− λ̂low > 0

σ̂upp = λ̂upp− λ̂k+1 > 0

}
(26)

which are complementary to the slack velocities γ low > 0 and
γupp > 0, respectively. Slack velocities define the constraint
velocity as

ηk+1−bk = γ low−γupp (27)

where bk(qk, tk) is the prescribed constraint velocity. Contact
and friction constraints require the slack velocities to enforce
the force limits defined by the saturations, but bilateral
constraint equations can be simply written as ηk+1

b = bk
b.

The unknown velocities vk+1 can be eliminated from
Eq. (24), and by introducing the slack velocities in in Eq. (27)
and the complementarity conditions between slack velocities
and slack forces in Eq. (26), a mixed (or bounded) LCP can
be formulated as(

AM−1AT
)
λ̂k+1 + z = γ low−γupp

0 6 γ low ⊥
(
λ̂k+1− λ̂low

)
> 0

0 6 γupp ⊥
(
λ̂upp− λ̂k+1

)
> 0

 (28)

where z = AM−1pk−bk is known.
Once the constraint impulses λ̂k+1 are determined, the

velocity at the end of the step can be obtained from Eq. (24)
as

vk+1 = M−1(pk +ATλ̂k+1) (29)

and the position from the relation q̇ = Nv as

qk+1 = qk +hN(qk)vk+1 (30)

which is a semi-implicit integration scheme.
A unique solution to the mixed LCP in Eq. (28) exists if

the matrix AM−1AT is a P-matrix (i.e., all principal minors
are positive) [22], which is the case for symmetric positive-
definite matrices. However, constraint redundancy produces
low-rank Jacobian matrices, and consequently, positive semi-
definite LCP matrices. Thus, constraint forces are not unique
if constraints are redundant. Moreover, solver algorithms
converge poorly if the matrix is ill-conditioned or close to
singular.

VI. CONSTRAINT REGULARIZATION

Regularization (or relaxation) can improve numerical sta-
bility and convergence of solver algorithms [23] as well
as co-simulation schemes [5]. We define constraint forces
through a constitutive relation

λk+1 =−KΦk+1−DΦ̇k+1 (31)

The constraint coordinate and velocity can be approximated
by the following finite differences Φk+1 =Φk +hΦ̇k+1, and
a new expression for the constraint equation can be obtained
as

Φ̇k+1 +Cλ̂k+1 +ϕk = 0 (32)

where C = (h2K+hD)−1 and ϕk = (hI+K−1D)−1Φk con-
tain the so-called regularization terms. Stiffness and damping
matrices are usually diagonal, since they are usually defined
by the analyst.

As in Eq. (27), slack velocities can be used to define
the constraint violation Φ̇k+1 = ηk+1 − bk − (γ low − γupp)



in Eq. (32). Then, the new formulation with the regularized
constraint equations can be written as[

M −AT

A C

][
vk+1

λ̂k+1

]
=

[
pk

bk−ϕk +γ low−γupp

]
(33)

which can be reduced, as in Eq. (28), to(
AM−1AT +C

)
λ̂k+1 + z = γ low−γupp (34)

where z = AM−1pk − bk + ϕk. The coefficient matrix
AM−1AT +C will never become rank deficient due to the
term C, which can also improve the matrix condition number.

VII. EXAMPLES

Several numerical experiments in co-simulation setups
were carried out with a model of a 7-DOF robotic arm per-
forming two contact tasks in microgravity: payload grasping
task, and insertion task with jamming. We compare different
combinations of the coupling methods presented in this pa-
per: kinematics–force, model–force, and kinematics–model,
and model–model. The first coupling method corresponds to
subsystem 1 (i.e., end effector and environment), and the
second one to subsystem 2 (i.e., articulated arm).

The interface is the 6 DOF joint between the end effector
and the arm, and contact only occurs between the end effec-
tor and the environment. The motion of the bodies immedi-
ately after the interface define the local parametrizations with
6 velocities and 12 coordinates each (3 translation vector
components and 9 rotation matrix coefficients). Therefore,
the reduced models generated have a 6× 6 effective mass
matrix M̃, which are added into the simulation as additional
rigid bodies with a general mass matrix. Moreover, each link
of the arm is modelled as a 6 DOF rigid body (42 DOF for
the arm) and the joints between them remove 5 relative DOF
using constraints, which results in a significant reduction of
degrees of freedom in the reduced model.

Both micro and macro step-sizes are equal to 1 ms, and
the reference solution is a monolithic simulation of the entire
system with the same step-size. The co-simulation setup was
implemented in C++ using Vortex simulation software as the
multibody dynamics engine and contact detection algorithm,
and the Eigen library for linear algebra to preform efficient
sparse matrix and vector operations.

A. Grasping Task
A gripper attached to the end effector is used to grasp

a payload and displaces it with a translation (see, Fig. 3).
During the first second of the simulation, the gripper closes
its claws and grasps the fixture attached to the payload. Then,
the joints are actuated to move the load to a different location,
where it is kept stable until the end of the simulation.

Figure 4 shows the position and velocity of the griper
in the direction of the translation. For small values of the
interface stiffness, all coupling methods are in agreement.
However, for large stiffness values, simulation stability is
lost for all the methods except for model–model. Kinematics-
based coupling can keep the position stable in spite of high-
frequency oscillations in the velocity, while the force-based
coupling fails.

Initial configuration
(t = 0 s)

Interface

Gripper
(subsystem 1)

Arm
(subsystem 2) fixed base

payload

Final configuration
(t = 10 s)

translation

Fig. 3. Model of a robotic arm grasping a payload. The joint actuation
law follows a sine-square function with a peak velocity of 0.5 rad/s for the
first joint.
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Fig. 4. Position and velocity of the end effector during the grasping tasks
for two sets of interface stiffness Ki and damping Di values.

B. Insertion Task

The robotic arm performs the insertion of a connector
into a fixed socket (see Fig. 5). The connector is rigidly
attached to the end effector and has two parallel square-
section pins. The width of each pin is 100 mm, the play
between pin and hole is 4 mm, and the friction coefficient
is µ = 0.5. Two phases precede the insertion: a 90◦ rotation
to orient the connector followed by a translation to align
the connector with the socket. Then, the connector is pushed
inside the socket at a constant speed of 0.1m/s until it stops.
Jamming during the insertion phase was achieved by a small
misalignment of the connector control velocity of α = 2.5◦,
which caused the motion of the connector to stop before the
end of the insertion phase.
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Interface Arm
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Connector
(subsystem 1)

fixed
base
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Oriented configuration
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90◦
rotation

Aligned configuration
(t = 12 s)

translation

Jammed configuration during insertion
(t = 20 s)

section view

α

misaligned
insertion

Fig. 5. Model of a robotic arm performing an insertion task with jamming
of the connector in the socket.
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Fig. 6. Position and velocity of the end effector during the insertion task
for two sets of interface stiffness Ki and damping Di values.

Figure 6 shows the vertical position and velocity of the
connector during the insertion task. For small interface
stiffness values, all the methods produce similar results, but
they disagree with the baseline in that jamming does not
occur. On the other hand, larger stiffness values allows the
model–model simulation to jam, while the other methods fail.
Interestingly, capturing complex contact phenomena such as
jamming requires a strong coupling between subsystems,
which was attained with model-based coupling and a large
interface stiffness.

VIII. DISCUSSION

Model-based coupling can substantially improve simu-
lation accuracy compared to other signal-based coupling
approaches. Large interface stiffness values reduced the error
several orders of magnitude while keeping the model–model
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Fig. 7. Root-mean-square (RMS) error of the position and velocity of
the arm’s end effector compared with the reference for different interface
stiffness values Ki. Proportional damping Di/Ki = 10−2 s was used in all
the simulations, and angular stiffness and damping values were reduced by
a factor of 10 compared to the linear ones.
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Fig. 8. Average computational time (wall-clock) of co-simulation steps
of size h = 1ms. Interface stiffness Ki = {104, 105, 106, 107, 108, 109}N/m
for each method, and the reference without co-simulation. The total time
is divided into: reduced model generation time (calculation of effective
mass and effective force terms), dynamics simulation time, and others
(subsystem data exchange, collision detection, etc.). Results were obtained
on an Intel Core i7-8750H CPU at 2.2 GHz with 16 GB of memory and
64-bit Windows 10.

simulation method stable (see Fig. 7). The purely signal-
based kinematics–force method shows the lowest stability
threshold value for the interface stiffness. In some cases,
introducing model-based coupling to only one of the sub-
systems can improve simulation stability and accuracy. But
the better choice between force-based and kinematics-based
coupling seems to be problem dependent.

The computational time needed to generate the reduced
model is a considerable fraction of the total simulation time
(Fig. 8). In the examples presented here, the reduced model
generation time is less than the dynamics solver time, and
the total time is still below the step size (1ms), which makes
it suitable for real-time applications. Thus, model-based
coupling can significantly improve simulation accuracy at a
fair computational cost. To further optimize the computation,
the reduced model could be generated in parallel with some
other tasks, such as with the collision detection.
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Fig. 9. Computational time (wall-clock) to generate the reduced model
in terms of the number of active constraints (left) and solve the system
dynamics in terms of the total number of constraints (right) of subsystem
1 (plug with socket) in the insertion task example (step data from failed
simulations are also included). Complexity-order lines are scaled and shown
as reference only.

Figure 9 shows a correlation between the model generation
time and the number of active constraints. The bottle neck
of this computation is the inverse matrix

(
Â2M−1

2 ÂT
2
)−1

in
Eq. (20), the size of which is the number of active constraints
(i.e., bilateral constraints, closed contacts, and static friction).
This operation was optimized using a sparse-matrix Cholesky
decomposition and solving for the columns of the right-
hand matrix, so that the inverse matrix does not have to be
calculated. The computational complexity appears to lie in
between O(n) and O(n2), and it shows some overhead for a
small number of constraints.

The proposed method improved simulation accuracy and
coupling stability. However, considering the properties of
reduced model constant within the co-simulation macro
step is a limitation of our method. Therefore, future work
could focus on how changes in the subsystems affect the
formulation of reduced models (e.g., contact detachment
and stick-slip transitions). Moreover, improvements to the
computational performance of the method and the scalability
in large-scale simulations can also be of interest for future
applications.

IX. CONCLUSIONS

Different coupling methods for co-simulation of mechan-
ical systems were discussed and analyzed. In addition, a
framework for model-based coupling of subsystems with
contact was put forward, where reduced-order models can
be exchanged between subsystems. These models are for-
mulated using effective mass and effective force terms,
and can be combined and simulated with other mechanical
systems. Numerical results of co-simulation setups of robotic
systems performing challenging tasks such as grasping and
insertion were used to illustrate the benefits of the proposed
method. Model-based coupling improved simulation stability
and allowed for larger interface stiffness, which resulted in
stronger coupling between subsystems and improved simu-
lation accuracy.
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