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Abstract— We address the problem of controlling a partially
constrained trajectory of the manipulation frame–an arbitrary
frame of reference rigidly attached to the object–as the desired
motion about this frame is often underdefined. This may be
apparent, for example, when the task requires control only
about the translational dimensions of the manipulation frame,
with disregard to the rotational dimensions. This scenario
complicates the computation of the grasp frame trajectory,
as the mobility of the mechanism is likely limited due to
the constraints imposed by the closed kinematic chain. In
this letter, we address this problem by combining a learned,
object-agnostic manipulation model of the gripper with Model
Predictive Control (MPC). This combination facilitates an
approach to simple vision-based control of robotic hands with
generalized models, enabling a single manipulation model to
extend to different task requirements. By tracking the hand-
object configuration through vision, the proposed framework
is able to accurately control the trajectory of the manipulation
frame along translational, rotational, or mixed trajectories. We
provide experiments quantifying the utility of this framework,
analyzing its ability to control different objects over varied
horizon lengths and optimization iterations, and finally, we
implement the controller on a physical system.

Index Terms— Dexterous Manipulation, In-hand Manipula-
tion, Manipulation Planning

I. INTRODUCTION
Dexterous manipulation is often characterized as the abil-

ity to reposition or reorient the object frame with respect
to the hand frame [1]. Much work has addressed such
an issue, providing generalized models that describe object
frame trajectories given joint actuation velocities [2]. In many
cases, however, the object frame is not necessarily the point
on the object in which is desired to control. For example, in
the task of handwriting, the position of the marker tip, which
we denote as the manipulation frame, generally defines the
precision of the inscribed character. In such a scenario,
the controlled dimensions of the manipulation frame are
purely translational, where we can largely relax the rotational
constraint of the marker tip as to extend the task workspace.
In other contexts, it may be required that purely rotational
or even mixed trajectories are desired for task completion.

In this letter, we build off the observation that many tasks
require control about a partially constrained manipulation
frame trajectory. In such cases, object (or grasp) frame
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Fig. 1. Partially constrained trajectories of the manipulation frame, e.g.
∈ R3, leave uncertainties in grasp frame planning since the mobility of the
mechanism is subject to constraints imposed by the closed kinematic chain.
The proposed framework utilizes Model Predictive Control to solve for a
valid grasp frame trajectory with any underconstrained reference.

trajectories in SE(3) can be either difficult or impossible to
analytically compute due to the absence of a one-to-one map-
ping, especially in an underactuated system where the hand’s
joint configuration is subject to both, kinematic and energy
constraints. We propose an MPC-inspired control framework
that utilizes an object-agnostic manipulation model and an
energy-based propagation (or system dynamics) model of the
hand. We differentiate between the controlled dimensions and
the free dimensions of the manipulation frame, which can be
any combination of dimensions in SE(3).

Given a desired manipulation frame trajectory, a bidirec-
tional initialization assumes the mobility of the hand is suffi-
cient for the grasp frame to mimic the transformed trajectory
for the next timestep, while leaving the free dimensions con-
stant. By querying the learned model with this initialization,
the resultant output is evaluated in a system propagation
model. We repeat this process through a receding horizon to
build the initial control trajectory. During this initialization,
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it is likely that the trajectory is inaccurate due to the limited
mobility imposed on the mechanism by the closed kinematic
chain. This issue is accounted for by optimizing grasp frame
reference velocities in order to minimize trajectory error.
We evaluate executions of various trajectories (translational,
rotational, and mixed) with different control horizons and
optimization iterations, and compare the results. In this work,
we largely disregard object stability analyses due to the use
of a compliant mechanism.

The contributions of this letter are twofold. First, we
propose an optimization approach that extends the control
capabilities of a generalized manipulation model, bypassing
the need for task-specific training or modeling. Secondly,
we underscore the advantage of using MPC for in-hand
manipulation, which allows the system to recover from
inaccurate system models or unmodeled contact scenarios.

II. RELATED WORK

1) Analytical Modeling for Manipulation: Many works
have approached dexterous manipulation with various levels
of analytical modeling–from contact models [3] and finger-
pad curvature models [4], to hand kinematic models [5]
and whole hand-object system models [2]. Many powerful
relationships have been formulated with such mathematical
rigor. Although, the accuracy and efficacy of these models
is highly subject to model parameters, which may be known
a priori in structured settings, or may need to be estimated
during manipulation via sensors on the hand, e.g. to leverage
slip [6]. Some of these problems are nullified when using
underactuated, adaptive hands that inherently reconfigure to
uncertainties such as noisy control inputs or modeling errors
[7]. Nevertheless, dexterous manipulation with such hands
remains difficult to model as the output space is typically of
higher dimension than the input space.

2) Learning for Manipulation: To overcome uncertainties
in the analytical models, learning for manipulation–both
model-based [8], [9] and model-free approaches [10]–has
become popular as this approach is able to intrinsically
estimate model parameters without user intervention. Conse-
quentially, data for such approaches generally becomes too
large to collect physically and must be done in simulation
[11]. This caveat can be mitigated by relaxing the control
dimensionality and constraints of the task, e.g. using a soft,
compliant, or underactuated hand. While these hands are
difficult to explicitly model, various works have introduced
methods for closing the control loop through vision [12], [13]
or through tactile sensing [14]. These works, however, focus
mainly on the motion of the object/grasp frame and not on
a generalized manipulation frame attached to the object.

3) Control for Manipulation: Control for manipulation
has been similarly approached from various avenues–with
methods based purely on kinematics [15], tactile sensing
[16], and visual servoing [17], [18]. It is also possible to
combine sensing modalities for additional control, e.g. for
grasp adaptation [19]. However, each control approach is
contingent on which sensing modalities are available. For
example, underactuated hands are typically not equipped

with joint encoders or tactile sensors, therefore, vision has
become popular. In [20], joint configuration estimation was
achieved through the use of particle filters and vision, there-
fore allowing more advanced control without the need for
joint encoders. Regardless of these previous approaches, no
works have embedded MPC with learning for controlling
spatial trajectories with an underactuated hand.

III. LEARNING THE MANIPULATION MODEL

In this section, we present an approach to learning the
manipulation model of an underactuated hand through an
energy-based perspective [12]. Throughout this letter, we
assume all hand and object motions are quasistatic and
the weights of the objects used are negligible–disregarding
the need to explicitly model dynamics or object-specific
properties, e.g. inertias. Moreover, we leverage a compliant
end effector as these mechanisms are beneficial for maintain-
ing stability of the hand-object system during manipulation,
mitigating concerns of losing contact [7], [20].

A. The Grasp Frame

The establishment of the grasp frame generalizes the
geometric properties of an arbitrary object within a grasp
[21]. Fundamentally, it portrays the local geometry of the
object and standardizes the representation of the object frame
(Fig. 1, 2). We will reference the object frame as being one
in the same as the grasp frame, as we expect object weights
to be negligible. Assuming a single non-rolling contact is
maintained on each fingertip of a hand with k fingers, let us
define contact points P = p1, . . . , pk where pi ∈ R3,∀i ∈
{1, . . . , k} with respect to the hand frame. Noteworthily,
with non-rolling contacts, any 3 points in P can explicitly
define the grasp frame. For simplicity, let’s assume p1, p2,
and p3 are used. Then, we can define the grasp frame pose,
X ∈ SE(3), by Gram-Schmidt orthogonalization,

X = [Gx,Gy,Gz|Go] ∈ SE(3)

Go =
1

3
(p1 + p2 + p3)

Gx =
p2 − p1
||p2 − p1||2

Gz =
(p3 − p2)× Gx

||(p3 − p2)× Gx||2
Gy = Gz × Gx

(1)

In this formulation, Gx,Gy , and Gz represent the directional
vectors about the x, y, and z axes, respectively, with refer-
ence to the origin, Go. Using the same object contact points,
we can calculate the contact triangle relationship,

T = (||p1 − p2||2, ||p2 − p3||2, ||p3 − p1||2) ∈ R3 (2)

representing the distance between fingertips in contact with
the object, where T = (T1, T2, T3). It is important to note
that this formulation generalizes object geometry but not
necessarily object dynamics. Additional generalization of
object dynamics will be addressed in future work.



Fig. 2. Left: The tendon transmission of an underactuated finger is
dependent on pulley and spring parameters. Right: Object geometry can be
generalized by evaluating the triangle relationship, T , between the contacts,
and offsetting the manipulation frame, M, from the grasp frame, X .

B. Learning from the Energy Model
Underactuated systems can be modeled in terms of energy,

where the joint configuration, q ∈ R
∑k

i=1 ji , of a hand
that has ji joints per finger, equilibrates such that the
internal energy of the system is minimized. We represent
the actuation position as a, where dim(a) < dim(q) in an
underactuated system. Given an actuation velocity, ȧ, and
the grasp frame, Xt, at time t, the energy-based propagation
model (or system dynamics model) provides a prediction for
the next step of the grasp frame pose, Xt+1. This transition
is calculated given a tendon transmission constraint,

raiȧi = rpiq̇pi + rdiq̇di (3)

and the contact triangle constraint, Tt = Tt+1. Thus, we can
find the equilibrated joint configuration of the hand, q∗ by,

q∗ = argmin
∑
i

Ei(qi) s.t. (2), (3) (4)

where Ei is the potential energy of the ith finger,

Ei(qi) =
1

2
(kpq

2
pi + kdq

2
di) (5)

Here, rpi, rdi, and rai are the radii of the pulleys on the
proximal joint, distal joint, and actuator, respectively, on
finger i (Fig. 2). Similarly, ˙qpi, ˙qdi, and ȧi are the rotational
velocities about the same joint on the same finger.

This energy-based propagation model enables efficient
data collection in simulation, and has shown to easily transfer
to a physical system [12]. By predefining various contact
relationships in T and applying a random actuation input, ȧ,
we observe the grasp frame transition from Xt to Xt+1, thus
calculating Ẋ ∈ se(3) by taking the element-wise difference.
With a 15-dimensional input feature, sn = (Xn, Ẋn, Tn), and
an output feature, ȧn, we build the training set,

S = {sn}n=1:N , R = {ȧn}n=1:N

where N denotes training sample size. With these action-
reaction pairs, we create a Random Forest Regression model,

g : (X , Ẋ , T ) −→ ȧ (6)

that maps the current pose of the grasp frame, the desired
grasp frame velocity, and the contact triangle relationship
to an actuation velocity. This learned model will be further
utilized in the proposed control framework.

IV. CONTROL FRAMEWORK

For the continuation of this work, the main control process
is illustrated in Fig. 3 and is notated as follows:

• t denotes the current time and t + n denotes n steps
into the future (e.g.Mt+3 is the predicted manipulation
frame ∈ SE(3) in three timesteps)

• dotted variables represent the change from t, one
timestep forward (e.g. Ẋ = [Xt −Xt+1] ∈ se(3))

• barred variables represent the initialization guess during
the bidirInit(·) process, which has not yet been exe-
cuted by the propagation model (e.g. X̄t+1 ∈ SE(3))

• primed variables have been executed by the propagation
model and are the resultant configuration after (iter)
optimization iterations (e.g. M′

t+3(25) if iter = 25)

A. Model Predictive Control

The proposed control framework utilizes Model Predictive
Control (MPC) with an optimizer based on Stochastic Hill
Climbing as to extend the task workspace. MPC is advanta-
geous for manipulation, as the next control input is optimized
after each system step. This property helps mitigate error
caused by inaccurate propagation models or when unmodeled
contact scenarios occur, e.g. rolling or slip.

MPC evaluates the cost of an input over a user de-
fined prediction/control horizon, kp. This horizon dictates
how far in advance the controller evaluates its trajectory,
while maintaining integrity on any system constraints, e.g.
actuation constraints or energy constraints. In this work,
we seek to control a subset of the manipulation frame’s
dimensions (referenced as the controlled dimensions) while
allowing the free dimensions to move as to satisfy the system
constraints. The manipulation frame,M∈ SE(3), is a frame
of reference rigidly attached to the grasp frame, X , which
would typically be affixed to a feature on the object. Let’s
define our desired reference trajectory as r, comprised of
m waypoints in the controlled dimensions. We can define
the controlled dimension set as c ⊂ (x, y, z, θR, θP , θY ),
which can be any combination of translational and rotational
components for a desired trajectory. We denote the controlled
dimensions of the manipulation frame as Mc.

While accounting for kinematic, energy, and actuation
constraints, we seek to minimize the error between Mc,t

and r[wt], where wt is the waypoint on r currently closest
toMc,t. Additionally, we impose an extra penalty on how far
Mc,t is from the goal position, rend. We therefore formulate
the cost function J ,

J =

kc∑
i=1

γ||r[wt+i]−Mc,t+i||2+ . . .

σ||rend −Mc,t+i||2+λ||ȧt+1||2

(7)

where γ, σ, and λ are weightings that are tuned heuristically
to penalize the trajectory error, trajectory length, and the
actuation input, respectively. In tuning, for example, if it
is desired to increase execution speed, increasing σ and
decreasing γ and λ will do this with the trade-off of likely
decreasing trajectory accuracy.



Fig. 3. A.) The manipulation frame, Mt, can be represented by a rigid transformation, T , from the grasp frame, Xt. In Alg. 2 a bidirectional guess
initializes the model’s input variables by assuming that the next grasp frame pose, X̄t+1, has the same velocity, ˙̄Xt+1, as the underconstrained manipulation
frame trajectory transitioning Mt to M̄t+1, which is located on the next trajectory waypoint rm[wt + 1]. B.) While this bidirectional guess serves well
for initialization, kinematic and energy constraints likely limit mobility and may not allow the grasp frame to move desirably. Thus, the resultant pose
evaluated in the propagation model, M′

t+1(0), does not follow the path. The optimization then perturbs the grasp frame velocities of the best trajectory
iter times and evaluates the result in propagation model. This depicts a trajectory convergence with a horizon kp = 3. C.) After optimization, the first
actuation input of the best evaluated trajectory is executed, providing our true next grasp frame pose Xt+1 and our next manipulation frame pose Mt+1.

B. The Manipulation Controller

Using this cost-minimization approach, we formulate the
control process as illustrated in Fig. 3 and as outlined in
Alg. 1. We attempt to optimize a controlled trajectory, Ci, to
closely follow r. These controlled trajectories are constructed
with a chain of kp + 1 nodes, where kp is the prediction
horizon. Each node is referenced in the trajectory chain
with zero-based indexing, so, Ci.n[2] is the third node. Each
node has 3 properties–the current grasp frame (X ), the grasp
frame velocity input evaluated in the previous node (Ẋ ), and
the actuation velocity used by the propagation model in the
previous node (ȧ). Each Ci therefore has a cost defined by
(7) that can be used to compare the utility of each trajectory.

1) Initializing the Trajectory: Given r, which has the
same dimensionality as c–that can be any combination of
dimensions in SE(3)–the control process begins by con-
structing the initial trajectory, Cbest. This process is outlined
in lines 1-11 of Alg. 1 and is depicted in Fig. 3.A.

To formulate the first trajectory, we rely on a bidirectional
initialization presented in Alg. 2. This procedure initializes
a first guess for the grasp frame velocity, ¯̇Xt+1, by assuming
that the kinematic constraints of the hand allow for identical
movement about the grasp frame as that of the manipula-
tion frame. This process begins by computing the closest
waypoint, r[wt], from Mt to the reference trajectory. We
make a guess that the manipulation frame would like to
move to the next waypoint r[wt + 1] while attempting to
keep the free dimensions constant. Through this notion, we
calculate a guess for the next state of the manipulation frame,
M̄t+1 ∈ SE(3). A transformation, T , can then be computed
relating Xt toMt. This process becomes bidirectional as we
apply the inverse of T to M̄t+1 to obtain a guess for the
next state of the grasp frame, X̄t+1. The grasp frame velocity
guess, ¯̇Xt+1, is finally estimated by taking the element-wise
difference between Xt and X̄t+1.

After the bidirectional initialization guess, ¯̇Xt+1 is evalu-

Algorithm 1 MPC with Stochastic Hill Climbing Optimiza-
tion
Input: Xt, r, c, kp, T , iter, ε
Output: ȧ

1: Cbest ← Trajectory() . initialize first trajectory
2: Cbest.addNode(Xt, Ẋ0 = 0, ȧ0 = 0) . start node
3: for t = 1 to kp do . prediction horizon
4:

¯̇Xt+1 ← bidirInit(Cbest.n[t].X , r, c) . Alg. 2
5: ȧt+1 ← g : (Cbest.n[t].X , ¯̇Xt+1, T ) . (6)
6: X ′

t+1(0)← Hand.evaluate(ȧt+1) . (4)
7: Ẋ ′

t+1(0)← diff(Cbest.n[t].X ,X ′

t+1(0))

8: Cbest.addNode(X
′

t+1(0), Ẋ ′

t+1(0), ȧt+1)

9: Mt+1(0)← Hand.manipFrame(X ′

t+1)
10: if ||Mc,t+1(0)− rend||2< ε then
11: break . reached goal
12:
13: for i = 1 to iter do . optimization iterations
14: Ci ← Trajectory() . initialize new trajectory
15: Ci.addNode(Xt, Ẋ0 = 0, ȧ0 = 0)
16: for t = 1 to kp do
17: Ẋ ′

t+1(i)← perturb(Cbest.n[t+ 1].Ẋ ) . Alg. 3
18: ȧt+1 ← g : (Ci.n[t].X , Ẋ ′

t+1(i), T ) . (6)
19: X ′

t+1(i)← Hand.evaluate(ȧt+1) . (4)
20: Ci.addNode(X

′

t+1(i), Ẋ ′

t+1(i), ȧt+1)

21: Mt+1(i)← Hand.manipFrame(X ′

t+1(i))
22: if ||Mc,t+1(i)− rend||2< ε then
23: break . reached goal
24: if Cost(Ci) < Cost(Cbest) then . (7)
25: Cbest = Ci . better trajectory
26:

27: return Cbest.n[1].ȧ



ated in the learned model g(·), given the current pose of the
node. This resultant actuation velocity, ȧt+1, is executed in
the propagation model, providing the next state grasp frame
pose, X ′

t+1(0). The true grasp frame velocity, Ẋ ′

t+1(0) is then
calculated by taking the difference between Xt and X ′

t+1(0).
These variables are then added to the trajectory, Cbest and the
entire process is repeated over the entire length of the control
horizon, or until the distance between the manipulation frame
and the endpoint of the trajectory is less than a threshold, ε.

Algorithm 2 bidirInit(·)
Input: Xt, r, c
Output: ¯̇Xt+1

1: Mt ← Hand.manipFrame(Xt)
2: wt ← nearestWaypoint(Mc,t, r)
3: for l in [x, y, z, θR, θP , θY ] do
4: if l ⊂ c then
5: M̄l,t+1 ← r[l, wt + 1]
6: else
7: M̄l,t+1 ←Ml,t

8: T ← getTransform(Xt,Mt)
9: X̄t+1 ← applyInvTransform(M̄t+1, T )

10:
¯̇Xt+1 ← diff(Xt, X̄t+1)

11: return ¯̇Xt+1

2) Trajectory Optimization: Once the first trajectory is
generated, initialized as Cbest, we construct iter temporary
trajectories that attempt to reduce the cost as defined by (7).
Here, iter represents the number of optimization iterations
we intend to compute. This process is depicted in Fig. 3.B
and references lines 13-25 of Alg. 1.

Given the grasp frame velocity of the node in timestep
(t+1) of the best trajectory, Cbest, we perturb its value with
a normal distribution of predefined interval limits. This result,
Ẋ ′

t+1(i), where i is the current value of iter, is calculated
in perturb(·)–Stochastic Hill Climbing’s exploration method
(Alg. 3). The learned model then evaluates this grasp velocity
to form the actuation velocity, ȧt+1. We execute ȧt+1 in
the propagation model to determine the next grasp frame
state X ′

t+1(i) at optimization iteration i. The resultant node
is then added to Ci and the process continues over the entire
prediction horizon. If the manipulation frame is found to
have reached within some distance threshold, ε, the loop
breaks prematurely. Once a trajectory of kp + 1 in length
is computed, we compare the costs of the best trajectory,
Cbest, with the cost of the current trajectory, Ci. If this cost
is smaller, we replace Cbest with Ci and continue this loop
until the number of desired iterations is satisfied.

The algorithm concludes by returning the first actuation
input of the best trajectory, Cbest.n[1].ȧ. This input is then
executed physically (Fig. 3.C) and results in the actual
system transition from Mt to Mt+1, and similarly, Xt to
Xt+1. Alg. 1 is repeated until the trajectory goal is reached.

It is important to note that the algorithm does not require
that each waypoint in r is passed through, as it may be the
case that some points along the trajectory are infeasible given

the constraints of the system. To account for this, only the
initialization step attempts to follow a waypoint, while the
optimization steps minimize the trajectory cost by staying
within a close distance and extending towards the end goal.

Algorithm 3 perturb(·)
Input: Ẋt
Output: Ẋ ′

t+1

1: δx, δy, δz ← translationalLimit
2: δθR , δθP , δθY ← rotationalLimit
3: for i in [x, y, z, θR, θP , θY ] do
4: Ẋt+1 ← Ẋt + rand.uniform(−δi, δi)
5: return Ẋ ′

t+1

V. EXPERIMENTATION

The proposed control framework was instantiated on a 3-
fingered underactuated Yale Openhand Model O. Physical
modifications to the readily available open source design
include a rounded fingertip and pulleys/bearings within the
finger as to reduce friction in the tendon’s transmission.
Each finger, composed of two links, is actuated by a single
Dynamixel XM-430 motor with return forces supplied by
springs at each of the joints (Fig. 2).

The learned model in (6) was trained with a dataset of size
300,000 over 50 different contact triangles, T , by evaluating
the input-output relationship after random actuation of the
energy model in (4). A Random Forest model of tree depth
10 and forest size of 30 was trained, which accounted for
joint limits and actuation constraints. Due to the different
values in T used for training, the learned model was able
to generalize over different object geometries, which is ben-
eficial as it enables adaption to undesired contact scenarios
where the relational geometry between the fingertips change,
e.g. rolling or slip, as previously presented in [12].

A. Translational Trajectory Control

We implemented translational control, i.e. c = (x, y, z), in
a simulated environment (Fig. 2) while varying the control
horizon and number of optimization iterations as to tune the
controller. This test, presented in Fig. 4, tracks the x, y, z
position of the manipulation frame over time in an attempt to
trace the letters ’GRABLAB’. Depicted in different colors,
three different-sized objects were used in experimentation,
with properties presented in Fig. 5. Each letter was 20mm in
height and 10mm in width and was written within the x− y
plane. Letters were comprised of a number of goal points–
squares (start), circles (intermediate), and stars (end)–with
50 waypoints in between each goal.

Fig. 4.A depicts a test correlating accuracy to varying
horizon lengths and optimization iterations. Generally, we
note that as the number of iterations increases (horizontal
axis), the accuracy of the manipulation frame trajectory
similarly increases. We note that it is likely that more
iterations are needed for longer control horizons. This ob-
servation is evaluated in Fig. 4.B, where we record similar



Fig. 4. Translation control, c = (x, y, z), of the manipulation frame depicting the reference trajectory in the x− y plane (Red), and the trajectories of
Obj. 1 (Green), Obj. 2 (Yellow), and Obj. 3 (Blue). A.) We trace the letters ’GRABLAB’ while varying control horizons and optimization iteration lengths.
As we increase the number of iterations, the manipulation frame trajectory becomes more accurate. We see that with fewer iterations, the manipulation
frame is not able to follow the desired trajectory. B.) When the control horizon increases, subsequently, the number of optimization iterations must as well
to realize similar trajectories. C.) Tracing the word ’GRABLAB’ with the most precise control horizon/iteration pair (horizon of 3 and 100 iterations).

Obj. # T1 (mm) T2 (mm) T3 (mm) Tp (mm)

1 98.1 81.3 108.5 (0, 0, 50)
2 73.2 59.7 78.6 (-20, 0, 40)
3 65.2 59.1 71.2 (0, 15, 60)

Fig. 5. Properties for the three objects used in simulation. The transfor-
mation, T , assumes that the manipulation frame, M, and the grasp frame,
X , have the same orientation, but are offset by the positional vector Tp.

trajectory errors (0.72mm mean) while increasing the number
of iterations for longer horizons (5, 7, and 9). We then present
the best recorded accuracy for the tracing of ’GRABLAB’
in Fig. 4.C, with a horizon of 3 and 100 iterations.

Quantitatively, we tune the control parameters by evaluat-
ing manipulation frame trajectory accuracy while fixing the
horizon length to 3 and altering the number of optimization
iterations. We note that in the task of scripting, a trajectory
error of less than 2mm is sufficient for legibility. Testing up
to 100 iterations (0.45mm error), the results show that 50
iterations (0.95mm error) is sufficient to satisfy the accuracy
required by the task, presented in Fig. 6. For this reason, we
will proceed in the next sections by evaluating trajectories
with this configuration.

B. Rotational and Mixed Trajectory Control

In addition to a purely translational trajectory about the
manipulation frame, we test the control approach with other
partially constrained trajectories, namely, a purely rotational
trajectory c = (θR, θP , θY ), and a mixed trajectory, c =
(z, θR, θY ). This choice of trajectories further underscores

Fig. 6. With a prediction horizon of 3, the letters ’GRABLAB’ were traced
with three different objects while varying optimization iterations. The error
experienced during execution was recorded for each of the trajectories. We
identify an elbow point of 50 iterations satisfies the desired task accuracy.

the diversity of dimensional combinations which can be
inherently accounted for in this framework, after retuning
weighting parameters in the cost function and scaling the
controlled dimensions to characteristic length.

In each of these tests, the hand was initialized with the
same hand configuration as in Fig. 2, using Obj. 1. With a
horizon of 3 and with 50 optimization iterations, a goal tra-
jectory was formed transitioningM from its current state to
a goal configuration. Five trials were executed, resetting the
hand after each trial. We record the state of the manipulation
frame along the execution trajectory. As presented in Fig.
7, the trajectory of M was able to successfully follow the
desired control trajectory (0.52 ± 0.3◦ error for rotations).



Fig. 7. A single trajectory in Rotation Control (left) and a single trajectory
in Mixed Control (right) was executed for 5 trials. The controlled dimensions
(top) follow the trajectory as desired. The free dimensions (bottom) are
allowed to drift to any trajectory that adheres to the system constraints. The
start configuration is denoted with a square and the goal configuration (only
in the controlled dimensions) is denoted with a star.

During this execution, we illustrate how the free dimensions
are able to drift so long as system constraints are satisfied,
and thus do not need to follow the same trajectory each trial.
This concept is depicted in the bottom of the figure, where
we note a trajectory deviation between trials.

C. Physical Translation Control

We employed the devised control framework on a physical
system as to complete the tracing of letters ’RAL’ with
three different objects from the YCB Object and Modeling
Set (Objs. #23, 72, 77) [22]. In this case, we employed
translational controlled dimensions, c = (x, y), scripting in
the plane orthogonal to the palm as to maintain readability
of the completed manipulation. The three objects, depicted
in Fig. 8, were tracked by affixing 6-D pose AprilTags to the
object, serving as the manipulation frame. The pose of the
marker was then tracked by an overhead camera. The control
framework relies on knowing the current configuration of the
hand in order to compute the next actuation input, therefore,
we placed 3 additional cameras around the hand–developing
a 4-camera setup that is able to track the configuration of
each finger in addition to the configuration of the object (Fig.
9). Markers were placed on the back of each fingertip and a
transformation from the finger markers computes the contact
location, and thus the pose of the grasp frame.

Fig. 8. Top view of the apple, Rubik’s Cube, and drill from the YCB
Object and Model Set used for physical testing of the control framework.

Fig. 9. A 4-camera tracking system records both, the pose of the grasp
frame and the pose of the manipulation frame via attached markers.

The markers were affixed to each object as follows: placed
on the stem of the apple, placed on the bottom of the handle
of the drill, and placed on the top (any) surface of the
Rubik’s Cube (Fig. 8). This generated initial contact triangle
relationships and transformations from the grasp frame to the
manipulation frame as presented in Fig. 10.

Obj. T1 (mm) T2 (mm) T3 (mm) Tp (mm)

Apple 67.9 57.4 65.7 (3.5, 5.1, 48.6)
Drill 64.9 50.1 66.2 (5.9, -8.2, 121.2)
Cube 63.6 57.1 64.1 (-2.3, -4.2, 37.9)

Fig. 10. Grasp and transformation properties of the apple, drill, and Rubik’s
Cube used in physical experimentation. Tp is the translational offset of the
grasp frame to the manipulation frame in x, y, z directions.

We employed a prediction horizon of 3 and set iter to
50. As presented in Fig. 11, each letter was comprised of a
set of goal points, which constructed a system of trajectories
approximately 20mm in height and 10mm in width. The task
started with the center of the manipulation frame marker in
the square starting position. At this point, a new trajectory
was formed with 50 waypoints providing the path from
the current start location to the first goal point. After the
actuation input was solved through the MPC framework, the
hand executed the result and evaluated how close it was to
the goal point. If the manipulation frame was within a 2mm
threshold, a new trajectory was formed and the manipulation
frame would attempt to move towards the next goal point
until completion. During this process and after each input
execution, the grasp frame X , the manipulation frame M,
and the contact triangle relationship T were updated as to
account for any undesired rolling or sliding of the contacts.

Each letter was traced with the three aforementioned YCB
objects and the execution times and average trajectory errors
were recorded. We noted that the greatest error was when
tracing of the letter ’A’, but was only slightly higher than
the letter ’R’. This is likely attributed to the cross-bar tracing
that stopped prematurely. Since we did not greatly penalize
the input actuation velocity, i.e. λ was small, we noted
large motions in physical execution, typically requiring 2-
3 actuation sequences to reach from goal point to goal
point. Overall, these executions resulted in clear, discernible
capitalized characters of ’RAL’.



Letter R A L

Goal Points 8 7 3
Avg. Time (s) 82.4 91.3 32.4

Avg. Err. (mm) 1.23±0.37 1.42±0.45 0.53±0.24

Fig. 11. The letters ’RAL’ were traced with the manipulation frame on
a physical system for 3 different objects (kp = 3, iter = 50). Top: Three
example executions of writing the letters R (traced with the apple), A (traced
with the Rubik’s Cube), and L (traced with the drill) are presented with their
associated goal points. Middle: The path following accuracy for all three
objects tracing letters ’RAL’. Bottom: The average time and trajectory errors
recorded during execution for all three objects.

VI. DISCUSSIONS AND FUTURE WORK

In this letter, we addressed the problem controlling par-
tially constrained trajectories about the manipulation frame
based on a planning-enabled MPC framework. This work ex-
tends the utility of generalized manipulation models as it is a
way to better satisfy trajectory requirements of various tasks.
We tested this approach by constraining different dimensions
of the trajectory–translational, rotational, and mixed–and we
showed that the controller was able to accurately follow the
controlled dimensions while allowing the free dimensions to
drift. We found that, generally, a horizon length of 3 with
50 iterations was sufficient for convergence that satisfied our
task requirements. This may not be the case, however, in
more complex tasks that typically operate at the boundary
of system constraints. In such cases, more sophisticated
parameter tuning and extension of the prediction horizon may
be necessary for a smooth transition to a valid configuration.

In future work, we are interested in further defining this
framework for maintaining hand-object stability–which was
largely disregarded in this work since mechanism compliance
generally provided stable grasps. Additional accuracy is also
likely possible while accounting for the mass-related dynam-
ics of the hand and of the object. By incorporating such
components, we believe this framework will be extremely
valuable for extending robot manipulation capabilities.
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