
Environment-Aware Grasp Strategy Planning in Clutter
for a Variable Stiffness Hand

Ashok M. Sundaram1, Werner Friedl1, Máximo A. Roa1

Abstract— This paper deals with the problem of planning
grasp strategies on constrained and cluttered scenarios. The
planner sequences the objects for grasping by considering
multiple factors: (i) possible environmental constraints that can
be exploited to grasp an object, (ii) object neighborhood, (iii)
capability of the arm, and (iv) confidence score of the vision
algorithm. To successfully exploit the environmental constraints,
this work uses the CLASH hand, a compliant hand that can
vary its passive stiffness. The hand can be softened such that
it can comply with the object shape, or it can be stiffened to
pierce between the objects in clutter. A stiffness decision tree is
introduced to choose the best stiffness setting for each particular
scenario. In highly cluttered scenarios, a finger position planner
is used to find a suitable orientation for the hand such that the
fingers can slide in the free regions around the object. Thus, the
grasp strategy planner predicts not only the sequence in which
the objects can be grasped, but also the required stiffness of
the end effector, and the appropriate positions for the fingers
around the object. Different experiments are carried out in
the context of grocery handling to test the performance of the
planner in scenarios that require different grasping strategies.

I. INTRODUCTION

Humans have the ability to interact with complex envi-
ronments and grasp from clutter with ease, but a similar
performance is difficult to achieve with robotic manipulators.
Robotic grasping from cluttered or restricted environments
(e.g. a bin or a shelf with small compartments) poses
several challenges, including: (i) objects are enclosed within
a narrow space, (ii) objects are placed close to each other,
and (iii) the hand has little room to maneuver and grasp the
objects.

Typical approaches for robotic grasping rely on the syn-
thesis and evaluation of grasps for a given object and hand.
Two main categories of grasp synthesis algorithms exist
[1]: analytical approaches, based on geometric or kinematic
formulations, and empirical or data-driven approaches that
rely on data sampling and/or human observations. To rank
multiple grasp options and choose the best possible grasp
for a given object, multiple quality metrics have been pro-
posed, with the largest minimum resisted wrench being the
most common one [2]. Most of these traditional approaches
consider only the object and hand in isolation, and their
direct applicability to situations such as grasping in clutter
is not feasible. Additional planning is required to consider

*This work was supported in part by the Bavarian Ministry of Eco-
nomic Affairs, Regional Development and Energy, within the project
SMiLE2gether (LABAY102).

1All the authors are with the Institute of Robotics and Mechatronics,
German Aerospace Center (DLR), 82234 Wessling, Germany. Contact:
ashok.meenakshisundaram@dlr.de.

Fig. 1: Overview of the experimental setup used to evaluate the grasp
strategy planner. The different hardware components are labeled in red.

other important factors such as which objects are graspable
from a bin or shelf, which objects are hindering the grasp
process, or what pre-manipulation actions are possible within
the constrained narrow space of the bin. We refer to a planner
of this kind as a grasp strategy planner.

Grasping from clutter has received increased attention
lately, especially using learning-based approaches [3], [4],
[5]. While these algorithms have proved applicable to grasp
random objects to clear a pile or empty a bin, they lack for
strategies to grasp specific objects of interest in the clutter.
Moreover, they are mostly restricted to planar (top) grasps,
which might not be applicable to generic scenarios. Exploita-
tion of and interaction with the environment or surrounding
objects is in general not considered so far. For instance, a
book lying on its cover and having a width great than the
gripper opening is not suitable for a planar grasp, but it is
possible to pierce along the side of the book by restricting
its movement with the help of other objects and grasp it,
since the thickness of the book is smaller than the gripper
opening. Such pre-grasp interactions are important but often
neglected within the learning-based approaches. The clutter
can be rearranged using push actions in order to grasp a
desired object, as presented in [6]. In [7], the robot grasps
from clutter while simultaneously moving away objects in
the path toward the desired object. Explicitly sequencing
the grasping order is rarely considered. The dexterity of the
arm in the grasping region is also neglected in the planning
process. Planning the grasping order in clutter is tackled in
[8] for unknown objects, therefore the properties of the object
are not considered. The sequence of grasping is important to
de-clutter the bin efficiently and therefore increase the overall
success of the system.

While traditional grasping frameworks (including

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 9377

learning-based approaches) for clutter try to avoid contacts
with the environment or surrounding objects and aim directly
to place the fingers around the object [9], an analysis of
human grasping demonstrates that we extensively rely on
contacts with the environment for most grasping tasks. A
taxonomy of how humans make use of the environment and
how this is relevant for robotic grasping is presented in [10].
The environment can be described in terms of environmental
constraints (ECs), e.g. elements like a table top, wall, edge,
or corner that can be used to successfully grasp objects
that would be very difficult to grasp otherwise (e.g. a thin
ticket or piece of paper). In [11], grasp planning strategies
to use the environmental constraints are discussed and
demonstrated by grasping an object in different scenarios
using various ECs. Comparing grasps that exploit different
ECs and deciding among them which one is optimal for the
current scenario has not been considered so far.

The active exploitation of contacts with the environment
requires also a different paradigm for the design of robotic
hands. Most robotic hands have been designed up to now
using rigid links and connections; a detailed review can be
found in [12]. Soft or variable stiffness hands have inherent
passive compliance and can easily adapt to the environment
and absorb unexpected collisions [13]. The recently devel-
oped DLR CLASH hand (Compliant Low Cost Antagonistic
Servo Hand) [14], whose main feature is its variable stiffness,
allows withstanding collisions with the environment and also
to change the passive stiffness to adapt to the object or
perform pre-manipulation actions. The variable stiffness of
the hand can be exploited for a wide spectrum of tasks, from
grasping highly fragile objects such as fruits and vegetables,
to grasping rigid and heavy objects.

This paper proposes a grasp strategy planner that exploits
environmental constraints with a variable stiffness hand for
grasping specific objects in cluttered or restricted scenarios.
To solve this problem, this paper provides:

• a generic grasp-centric world model that analyzes and
lists all objects with their possible grasps, ECs, and pose
constraints for each EC

• a grasp sequence planner that returns the best object and
EC grasp to execute for the current restricted scenario

• a finger stiffness decision tree for the pre-grasp inter-
action that considers the object fragility and position
uncertainty

• a local finger position planner for highly cluttered
scenarios to increase the grasp success probability

Section II describes the various components that form the
grasp strategy planner. The hardware setup, other supporting
software, and the system integration are discussed in Sec-
tion III. In Section IV the results of different experiments that
show the capabilities of the grasp strategy planner and the
complete system are presented. Finally, Section V includes
the concluding remarks and future work.

II. GRASP STRATEGY PLANNER

The grasp strategy planner comprises three sub-planners:
(i) grasp sequence planner, which returns the order in which

Fig. 2: GUI interface for the object database, showing details for one object.

the objects should be grasped for a better success rate,
(ii) finger stiffness planner, which returns the appropriate
finger stiffness for the pre-grasp interaction with the object,
(iii) finger position planner, which returns the appropriate
hand rotation such that the fingers have free regions around
the object to slide during pre-grasp motions. A grasp-centric
world model coordinates these components and keeps track
of the possible actions for the current scenario. The compo-
nents are detailed in the following sub-sections.

A. Grasp-Centric World Model

The grasp-centric world model is the foundation for the
grasp strategy planning framework, and describes the current
environment and the set of relations and actions applicable to
the scenario. The root node of the graph is the robot, which
has an associated reachability/capability map [15]. The first
layer of nodes attached to the robot node represent the objects
in the scenario, which are connected to the robot node via a
relation that describes their relative pose. A suitable vision
algorithm is used to localize all objects. Various other nodes
can be attached to the object nodes, including neighbor nodes
representing neighboring objects, pose nodes representing
required poses for pre-manipulating the object, and grasp
nodes representing different grasping actions applicable to
the associated object. The different nodes and relationships
and the properties they hold are listed in Table I.

TABLE I: Elements of the grasp-centric world model.

Type Name Properties Representation
Root Node Robot Capability map

Object Pose, Fragility index, Vision score
Pose Reachability index

Node
Grasp

Grasp pose, Pre-grasp pose,
Fragility index, Vision score,
Capability index, MPV magnitude

Pose Pose
Neighbor MPV magnitudeRelationship
Reachable Reachability index

!

The object node in the world model saves the following
properties: object’s relative pose with respect to the robot,
its fragility index, related to the maximum force that can
be applied on the object, and its vision score, which is a
confidence score given by the vision algorithm used to detect
the object. The object-specific properties are retrieved from
an underlying object database [16]. This database includes
information on the object dimensions, fragility, shape prim-
itive, and applicable grasp types. The GUI interface of the
object database is shown in Fig. 2.

9378

(a) Top grasp (b) Wall or edge grasp
Fig. 3: Minimum push vector for different environmental constraints.

To determine the neighbors of an object, a 2D collision
check between the hand interaction region of the object
and the other objects or environmental constraints (e.g. a
wall) in the bin is performed. The hand interaction region
is defined around the object and depends on the robotic
hand; it accounts for the space the hand needs around the
object to interact, for instance to grasp or move the object to
an EC. For grasping with the 3-fingered CLASH hand, the
length of the hand interaction region is the distance between
the thumb and the opposing fingers in a predefined pre-
grasp configuration. The width of the region is the distance
between the two opposing fingers. All the colliding objects
and ECs are added in the world model as children of the
object with neighbor relationship. We also compute the
minimum push vector (MPV), which indicates the distance
a neighbor object has to be moved to be able to perform a
collision-free interaction with the desired object (Fig. 3a).

An object node also has associated grasp nodes. For each
object, the object database provides a list of possible grasp
types useful for grasping that object. A grasp node is attached
to the object node only if it is feasible in the current scenario.
For a top grasp, for instance, the grasp node is added only
if it is reachable by the robot. The reachability is evaluated
using a capability map [15], which is computed offline for
a given robot kinematics. For a given hand pose, a query of
the reachability map indicates if the pose is reachable or not.
If the top grasp node is added, it also stores the capability
index associated with the grasp pose; this index is an indirect
measure of local dexterity. The capability of the robot arm in
the bin region for our evaluation setup is shown in Fig. 4, and
it clearly indicates that some regions of the bin have better
dexterity compared to others. More details on reachability
and capability analysis can be found in [15].

The top grasp node also stores information related to how
cluttered the environment is around the given object; for this,
the MPV magnitudes of all the neighbors are added and this
total MPV score is also saved as a property of the grasp
node. Other properties stored for all grasp nodes include the
required grasp pose, pre-grasp pose, vision score, and object
fragility index.

For a wall or edge grasp type (EC-grasp), it is important
to know how far is the required EC (wall or edge) from the

Fig. 4: Capability of the robot arm in the grasping region. The colors
correspond to the HSV scale, with blue and red being the highest and lowest
local dexterity, respectively.

Fig. 5: Collision-free region required to perform wall or edge grasp.

object. The MPV in this case is calculated as the distance
between the object and the EC (depicted in Fig. 3b), and
it corresponds to the distance the object must be moved to
perform the grasp. This MPV along with the neighborhood
MPV is stored for the corresponding grasp node. For these
ECs, the feasibility check has some additional conditions.
First, the space from the object toward the EC is required to
be collision-free. Additionally, the wall grasp strategy needs
an interaction region for the arm/hand within the bin to
perform the grasp, which should also be collision-free. A
pictorial representation of both cases is shown in Fig. 5.

In order to check reachability for an EC-grasp type, the
path toward the EC is divided into equal intervals (5cm is
used in this work). If one of the poses in the path is not
reachable, or if the path toward the EC is not collision-free,
or if the arm/hand interaction region for the grasp is not
collision-free, then the EC-grasp is considered not feasible
and the grasp node for that grasp type is not added for the
object in the world model. If the EC-grasp is feasible and the
grasp node is added, the associated capability index for the
node is the average capability index of all the intermediate
poses and the EC-grasp pose.

A typical example for the world model is shown in Fig. 6.
This world model corresponds to the experiment discussed
in Section IV-A.1; the position of the objects in the bin
is shown in Fig. 9a. Since all the objects in the bin need
to be grasped in this case, all objects are included in the

9379

Fig. 6: World model created during the top grasp experiment (Section IV-
A.1). The elements of the world model are listed in Table I.

world model. The neighbors for each object are also added.
A wall grasp node is created only for cucumber, as it is
the only object that satisfies all the feasibilities discussed
above. The intermediate poses to move the object toward
the wall constraint can also be seen in the model, connecting
the object node (cucumber) to the wall grasp node. It must
be noted that only one wall of the bin is designated as a
wall constraint suitable for grasping (highlighted in Fig. 1)
in order to demonstrate the features of the planner in a simple
way. However, all four walls of the bin are considered for
collision checks to determine object neighbors.

B. Grasp Sequence Planner

The grasp sequence planner calculates a grasp score and
sorts all the grasp nodes in the world model. The grasp
with the highest score corresponds to the best grasp (higher
success probability) to be executed first. The algorithm for
this planner is listed in Alg. 1. The grasp score is calculated
based on three different scores embedded in the individual
grasp nodes: (i) magnitude of the MPV , (ii) capability
index, and (iii) vision confidence score. First, the three
scores for each grasp node are collected in separate lists
to find the maximum score in each category. Since the
individual scores are represented in different magnitudes,
they are normalized by dividing them by the corresponding
maximum score in that category, so that the maximum
score in each category is 1.0. This way of normalization
ensures that the proportionality between the scores in each
category is preserved. The three normalized scores of each
grasp node are combined using geometric (multiplicative)
aggregation, with all scores having equal weight. The scores
that encourage the grasp success are multiplied, and the
scores that hinder it are used as divisors. In this case, better
capability and vision confidence are good to have, whereas a
high MPV magnitude is due to clutter and is used as divisor.
The geometric aggregation helps in overcoming the bias

towards grasp nodes with very high or very low score in one
category. Additional discussion for the chosen normalization
and aggregation method can be found in [17]. After the
score aggregation, the grasp nodes are sorted based on the
combined score, and the best grasp node is considered for
execution.

Algorithm 1 Grasp sequence planner
Given: World model W
Output: Sorted list of grasp nodes G
1: collect all grasp nodes from W in G
2: init mpv list, capab list, vision list, and grasp score list as []
3: for each grasp node gi in G do
4: mpv list.append(gi[0mpv magnitude0])
5: capab list.append(gi[0capability index0])
6: vision list.append(gi[0vision score0])
7: end for
8: for each grasp node gi in G do
9: mpv = mpv list[i]/max(mpv list)

10: capability = capab list[i]/max(capab list)
11: vision score = vision list[i]/max(vision list)
12: grasp score = (capability ⇤ vision score)/mpv
13: grasp score list.append(grasp score)
14: end for
15: sort grasp score list in descending order and save the indices as

sorted indices list
16: reorder G as per sorted indices list and return G

C. Finger Stiffness Planner

In order to take advantage of the variable stiffness property
of the CLASH hand, a suitable planner is required to decide
the best finger stiffness for interacting with the object in a
given scenario. To address this, we propose a decision tree
(shown in Fig. 7) for pre-grasp interaction stiffness based on
three factors:

(i) Object position uncertainty, categorized based on the
confidence score provided by the vision module,

(ii) Object fragility, retrieved from the object database,
(iii) Clutter around the object, categorized based on the

MPV score for the object node.
We simplify the decision process by considering only three
possibilities for each factor: low, medium, or high. The
resulting finger stiffness is also set to low/medium/high,
which is translated into a stiffness value based on the stiffness
range achievable with the hand.

The decision tree encodes key decisions for the grasp
success. In case of high object position uncertainty, the
stiffness is never set to high so that the fingers can try to
comply as much as possible to the object lying in the vicinity
of the hand. For an object with low or medium position
uncertainty, the decision is based on fragility and clutter.
For high clutter, it is ensured that high or medium stiffness
is used depending on the object fragility, so that the fingers
can pierce along the sides of the object with certain force.
For a highly fragile object, it is ensured that a high stiffness
is never used irrespective of the clutter. In most situations,
pre-grasp compliance with the object or environment results
in better grasp success. Therefore, low or medium stiffness
are given more preference compared to high stiffness. A

9380

Fig. 7: Finger stiffness decision tree for pre-grasp interaction.

high stiffness is chosen only in one case with low position
uncertainty, low fragility, and high clutter.

Due to the simple and direct structure of the decision
tree, the planning time is negligible. As discussed in the
experiments presented in Section IV-B, the choice of stiffness
based on this decision tree proves to be simple, fast, and
effective.

D. Finger Position Planner

Experiments show that grasping from a full or almost
full bin is very difficult due to the constrained space for
placing the fingers around the object. The stiffness decision
tree helps to tackle this situation, but it is not a complete
solution for grasping in high clutter. For instance, if the
objects are heavy or very fragile it would not be possible
to pierce along sides of the object with high stiffness. In this
case, an additional local planner for finger placement can
greatly improve the success rate of top grasps. The finger
position planner is invoked only if 80% of the bin is filled
with objects (evaluated based on depth image analysis), or if
the object neighbor MPV magnitude is above 90% of the
length of the hand interaction region (Fig. 3a).

The idea behind the finger position planner is to find a
suitable rotation for the hand such that the fingers in the
pre-grasp configuration are aligned with free regions around
the object, and they can then slide in easily around the object.
First, the bounding box (BB) of the object is obtained using
the depth image. An expanded BB around the object is then
considered, by extending the original one by three times the
finger width in all dimensions. The depth image is cropped
using this expanded BB, and it is preprocessed (binarized,
eroded, and dilated) to remove any noise. The positions of
the three fingers in the initial grasp pose are checked against
the preprocessed image to verify if they fall on free spots.
If there is some collision, then the mirrored positions (i.e.

Fig. 8: Finger position planner results for the clutter experiment (Section IV-
B.2). Initial and planned finger positions are shown as red and green circles.

180o rotation of the hand) are checked. If this is also not
free, then the planner starts incrementing the hand rotation
in steps of 1o until a free region is found for all three
fingers. Depending on the shape primitive of the object, the
allowed rotation range is different. There is no limitation for
objects with spherical shape primitive, but for objects with
cylindrical or cubical primitive, a maximum of 10o rotation is
allowed, to prevent the fingers from aligning with the major
axis of the object, leading to a non force-closure grasp. If
there is no solution for any hand rotation, the metacarpal
joints of the hand are opened further (by 2o in each iteration)
to push the initial finger positions further apart. These new
positions are checked for all hand rotations until a free region
is found. The planner stops after three such iterations of
hand openings and checking all rotations in each iteration.
In case of no solution, the initially planned grasp is executed
with the appropriate hand stiffness. As an example, Fig. 8
shows the output of the finger position planner for a bin
completely filled with mangoes. This result corresponds to
the experiment discussed in Section IV-B.2. The RGB image
of the bin in this case can be found in Fig. 10a.

III. SYSTEM OVERVIEW

The hardware setup (Fig. 1) consists of the DLR Light-
Weight Robot arm (LWR) and the CLASH hand. The robot
arm controller runs on a Linux realtime machine. The other
software components are executed in a separate Linux PC
with Intel Xeon E5-1630 v4 CPU @ 3.70GHz. It also has a
NVIDIA Quadro K620 GPU used by the vision algorithm.
An Asus Xtion RGB-D sensor is used to perceive the
environment. A shopping GUI provides the possibility to
order items that need to be grasped from the bin. It is also
used to update the user with the current state of the robot
actions. The world model is created using a Neo4j graph
database.

The LWR robot arm provides interfaces for both Cartesian
and joint impedance control. A simple RRT-based motion
planner is used for the arm. The CLASH hand also provides
interfaces to control the passive finger stiffness and joint
positions independently. The grasps provided by CLASH are
adaptive, i.e. the metacarpal joints close until a contact with
the object is achieved, and then the distal joints start closing
around the object. In this way, the object is caged between
the fingers, and by increasing the passive hand stiffness the
objects can be grasped without applying excessive force on

9381

(a) Bounding box detection (b) 6D pose estimation
Fig. 9: Learning-based object detection, and 6D pose estimation.

(a) RGB image (for reference) (b) Segmentation on depth image
Fig. 10: Segmentation of objects using watershed algorithm.

them. In addition, the CLASH hand provides grasp success
observers based on finger torque monitoring and a proximity
sensor in the palm. More details on the CLASH hand and
its error recovery capabilities can be found in [14], [18].

The single shot multi-box detector [19], which uses a
single deep neural network, is used for detecting object
bounding boxes in the RGB image. The detections are
provided with a confidence score. To estimate the 6D pose
of the object, the bounding box from the RGB image is
used to crop the depth image. After basic pre-processing
and noise removal, the orientation of the object is computed
using the eigenvector of the depth data in the cropped image.
The distance of the object with respect to the camera is
calculated from the central region of the bounding box in
the depth image. The camera calibration matrix is used
then to find the 3D position of the object. The results of
bounding box detection and 6D pose estimation are shown
in Fig. 9. This vision solution works well for most cases, but
for highly cluttered scenes (Section IV-B.2) the performance
is not satisfactory. So only for the scope of high-clutter
experiments, a simple segmentation of objects in the depth
data is done using watershed algorithm (Fig. 10). Here there
is no classification of objects, therefore all detected segments
are assumed to be of the same type (unmixed bins). The 6D
pose is estimated in the same fashion as the above method.

For the overall system, the execution process is controlled
with a state machine that starts after an order is received
in the shopping GUI. Then, the vision algorithm is used to
detect the various objects in the scene. The location of the
environmental constraints (wall and edge) is always fixed
(not detected automatically). The world model is then created
including all the ordered objects, and the grasp sequence
planner returns the best object to grasp first. The stiffness
setting for the pre-grasp interaction is also computed at this
stage. The finger position planner is employed in case of
high clutter. After the planning stage, the preferred grasp
is executed and the object is moved to the delivery bin. In
case of grasp failure or if there are ordered objects still to be
retrieved, the state machine reiterates starting from the object

detection stage. The state machine ends when all ordered
objects are retrieved and placed in the delivery bin, or if a
grasp attempt was made at least three times on all ordered
objects and there is no further option to retrieve them.

IV. EXPERIMENTAL EVALUATION

This section presents a number of experiments to vali-
date the proposed grasp strategy planning framework under
different circumstances. Although the proposed planner is
generic, it is discussed in the context of a grocery handling
use case as an example. Six different fruits and vegetables
are arranged in a structured clutter in a narrow bin. Specific
items ordered by the customer need to be grasped and moved
to a different bin for delivery. The attached video shows real-
time execution of these experiments.

A. Experiment I: Environmental Constraints
This first set of experiments was designed to show that

the planner is not biased and can choose all kinds of grasps,
depending on the current circumstances.

1) Top Grasp: Fig. 9a shows the position of the objects
in the bin for this experiment. All the objects are selected
in the shopping GUI for grasping. The world model for this
scenario is shown in Fig. 6. The wall grasp node is added
only for the cucumber, as it is the only object having a
collision-free path to the wall constraint (the position of the
wall constraint is highlighted in Fig. 1). Since there is no
edge constraint in this scenario, no edge grasp nodes are
added. All the objects can be grasped with top grasps. The
planner in this case ranked the top grasp on the cucumber as
the first choice, as it is the only object with no neighbors, and
also it is located in a region with acceptable arm dexterity.
The wall grasp on cucumber is not the preferred choice since
the EC (wall) is far from the current object position.

2) Wall Grasp: Fig. 11a shows the position of the objects
in the bin for this experiment. The scenario is quite similar
to the previous one, except that the cucumber is now very
close to the wall rather than in the middle of the bin. For
this scenario, the planner ranked the wall grasp on cucumber
as the first choice. In fact, the top grasp for cucumber is no
longer a good choice, as the wall is a very close neighbor
hindering the top grasp. However, the object is very close to
the EC (wall), and the bin region in the middle (required for
the hand-arm interaction region) is collision-free. The robot
performing a wall grasp on cucumber is shown in Fig. 11b.

3) Edge Grasp: Fig. 12a shows the position of the objects
in the bin for this experiment. The goal is to grasp both the
banana and the ticket. A small table is now placed inside
the bin in order to have an edge constraint, which is defined
only on one side of the table. The ticket can only be grasped
using an edge grasp according to the semantic information
recovered from the object database. In the first iteration, the
world model is updated only for the banana (Fig. 13a), as
the edge grasp is not feasible for the ticket because the
banana is blocking the path required for this grasp. The
planner returns the only choice of top grasp on banana as
the preference. After the grasp on banana is successful, in

9382

(a) RGB image (b) Robot performing a wall grasp
Fig. 11: Wall grasp experiment (Section IV-A.2).

(a) RGB image (b) Robot performing a edge grasp
Fig. 12: Edge grasp experiment (Section IV-A.3).

the second iteration the edge is free and therefore the world
model includes now the ticket object with the edge grasp
node (Fig. 13b). The planner now returns the edge grasp
on ticket as the preference; the robot performing this grasp
is shown in Fig. 12b. This experiment shows also how the
feasibility check corresponding to each object and grasp type
is carried out before updating the world model.

B. Experiment II: Variable Stiffness Hand
The benefits of using a variable stiffness hand and appro-

priate stiffness planning are demonstrated in the following
experiments.

1) Object position uncertainty: Fig. 14 shows the position
of the apple in the bin for this experiment. After the object
pose is estimated by the vision algorithm, an error of 3 cm
is artificially introduced in one axis (along the longest side
of the bin). The confidence score of the vision algorithm is
also lowered. Based on the stiffness decision tree (Fig. 7), an

(a) Iteration I: Banana (b) Iteration II: Ticket
Fig. 13: World models created during the edge grasp experiment.

(a) Position Uncertainty (b) Clutter
Fig. 14: Use of variable stiffness for grasping (Section IV-B).

object with high object position uncertainty and low clutter
requires a low finger stiffness. Thanks to this setting, the
hand approaches the object and the fingers can adapt to its
shape. Fig. 14a shows that the object is not in the middle of
the hand, but still the thumb was able to accomodate due to
the low stiffness, resulting in a successful grasp.

2) Clutter: A bin full of mangoes (Fig. 10a) is used for
this experiment. The mangoes used in this experiment are 3D
printed, but have similar dimensions and weight compared
to a real mango. A watershed algorithm is used here to
segment and estimate the pose of all mangoes in the bin
(Section III). The finger position planner is also invoked in
this case, as the bin is completely full; the results of this
planner at different stages of the experiment are shown in
Fig. 8. The computation time for the finger position planner
in this experiment is around 600 milliseconds. Based on the
stiffness decision tree (Fig. 7), for a low object position
uncertainty, with medium object fragility and high clutter,
the finger stiffness is set to medium. With this stiffness,
the hand has the ability to pierce between the objects. The
grasp sequence planner in this case decides the best object
primarily based on the capability index, since all the objects
have a similar set of neighbors. But after each grasp a free
spot is created, and in the next iteration the sequence planner
prefers mangoes with a nearby free spot. By combining the
results of both the finger position planner and finger stiffness
planner, the robot was able to successfully grasp multiple
mangoes from the full bin (Fig. 14b).

C. Experiment III: System Evaluation
In this experiment, the full capability of the system is

tested. The bin is filled with 12 objects randomly placed
(60% of the bin is occupied), and a request to grasp five
objects is made through the shopping GUI. The experiment
is repeated 10 times, and the complete system had a 90%
success rate. However, failures come from different elements
in the overall system, not specific to the grasp strategy
planner. In most cases the failure is due to the limitation
of the vision algorithm to precisely classify and estimate the
pose of objects in such cluttered scenes. Failures also occur
due to the open loop execution of moving the objects towards
the EC. The outcome of the grasp sequence planner while
considering the cumulative score (capability, neighborhood,
and vision), compared to considering only the capability or

9383

(a) Overall (b) Capability (c) Neighborhood
Fig. 15: Grasp sequence returned by the planner.

neighborhood, is shown in Fig. 15. The computation time
for the creation of grasp-centric world model and grasp
sequence planning in this experiment is around 500 ms, or
approximately 40 ms per object in the bin.

V. CONCLUSION

This paper introduced a grasp strategy planner that can
exploit environmental constraints for grasping objects from
a bin. The planner can consider multiple ECs and can
process them equally in the decision making process. The
decision process for choosing the best object to grasp and
the EC to use is made after considering multiple factors
such as neighborhood, arm capability and vision confidence
score. The decision on what object to pick up first in
a cluttered scenario is especially critical, considering that
there is reduced space around the objects to be picked.
After each object is picked, the clutter diminishes, and
different grasp strategies, such as given by the finger position
planner or exploitation of an appropriate EC, can be possible.
Grasping in this complex bin picking tasks was possible
also due to CLASH hand and its variable stiffness property.
Various experiments showed that the different components
of the planner helped in successfully grasping objects in
diverse scenarios. A direct comparison with other bin picking
solutions is not meaningful since they do not consider the
exploitation of ECs in the decision making process. Although
objects like a thin ticket or a very broad book can be grasped
by a suction gripper, such a gripper is not ideal for many
manipulation tasks. Therefore, it is important to consider
EC in the grasp decision making process in order to enable
standard mutipurpose mutifingered grippers to grasp wide
variety of objects in everyday scenarios.

In this work, a simple traditional grasp planner that returns
a single grasp along the major axis of the object for each EC
is used as an input to the grasp strategy planner. If a different
grasp planner that returns multiple grasp possibilities for each
EC is used, the proposed framework requires no changes.
Instead of comparing one grasp per EC per object, the object
sequence planner would compare multiple grasps per EC
per object. Except for the planning time there would be no
difference whatsoever.

This planning framework can be improved in several ways.
For instance, the finger stiffness was planned with fixed
rules, but other techniques such as using machine learning

approaches for setting this stiffness can be explored. The
current framework does not have the ability to isolate objects
by using pre-grasp manipulation actions, e.g. pushing other
objects, in order to make the object of interest graspable.
Since the framework already provides information on neigh-
bors and which objects hinder the path to a desired grasp,
extending it with pre-grasp actions is a next step. Grasping
from a clutter pile is also a natural extension to this work. To
achieve this, the MPV computation for neighboring objects
and the collision free path to move the object to the EC must
be tackled in 3D.

REFERENCES

[1] A. Sahbani, S. El-Khoury, and P. Bidaud, “An overview of 3D
object grasp synthesis algorithms,” Robotics and Autonomous Systems,
vol. 60, no. 3, pp. 326–336, 2012.

[2] M. A. Roa and R. Suárez, “Grasp quality measures: review and
performance,” Autonomous robots, vol. 38, no. 1, pp. 65–88, 2015.

[3] M. Laskey, J. Lee, C. Chuck, D. Gealy, W. Hsieh, F. Pokorny,
A. Dragan, and K. Goldberg, “Robot grasping in clutter: Using a
hierarchy of supervisors for learning from demonstrations,” in IEEE
Int. Conf. on Automation Science and Engineering - CASE, 2016, pp.
827–834.

[4] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and
large-scale data collection,” Int. J. Robotics Research, vol. 37, no. 4-
5, pp. 421–436, 2018.

[5] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours,” in IEEE Int. Conf. on
Robotics and Automation - ICRA, 2016, pp. 3406–3413.

[6] M. Dogar and S. Srinivasa, “A framework for push-grasping in clutter,”
in Robotics: Science and Systems, 2011.

[7] M. Dogar, K. Hsiao, M. Ciocarlie, and S. Srinivasa, “Physics-based
grasp planning through clutter,” in Robotics: Science and Systems,
2012.

[8] B. Sauvet, F. Lévesque, S. Park, P. Cardou, and C. Gosselin, “Model-
based grasping of unknown objects from a random pile,” Robotics,
vol. 8, no. 3, 2019.

[9] D. Berenson and S. S. Srinivasa, “Grasp synthesis in cluttered envi-
ronments for dexterous hands,” in IEEE-RAS Int. Conf. on Humanoid
Robots, 2008, pp. 189–196.

[10] F. Heinemann, S. Puhlmann, C. Eppner, J. Álvarez-Ruiz, M. Maertens,
and O. Brock, “A taxonomy of human grasping behavior suitable
for transfer to robotic hands,” in IEEE Int. Conf. on Robotics and
Automation - ICRA, 2015, pp. 4286–4291.

[11] C. Eppner and O. Brock, “Planning grasp strategies that exploit envi-
ronmental constraints,” in IEEE Int. Conf. on Robotics and Automation
- ICRA, 2015, pp. 4947–4952.

[12] C. Piazza, G. Grioli, M. Catalano, and A. Bicchi, “A century of robotic
hands,” Annual Review of Control, Robotics, and Autonomous Systems,
vol. 2, pp. 1–32, 2019.

[13] S. Wolf, G. Grioli, O. Eiberger, et al., “Variable stiffness actuators:
Review on design and components,” IEEE/ASME Trans. on Mecha-
tronics, vol. 21, no. 5, pp. 2418–2430, 2015.

[14] W. Friedl, H. Höppner, F. Schmidt, M. Roa, and M. Grebenstein,
“CLASH: Compliant low cost antagonistic servo hands,” in IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems - IROS, 2018, pp. 6469–
6476.

[15] O. Porges, T. Stouraitis, C. Borst, and M. A. Roa, “Reachability
and capability analysis for manipulation tasks,” in ROBOT2013: First
Iberian Robotics Conference, 2014, pp. 703–718.

[16] D. Leidner, C. Borst, and G. Hirzinger, “Things are made for what they
are: Solving manipulation tasks by using functional object classes,” in
IEEE-RAS Int. Conf. on Humanoid Robots, 2012, pp. 429–435.

[17] C. Tofallis, “Add or multiply? a tutorial on ranking and choosing with
multiple criteria,” INFORMS Trans. on Education, vol. 14, no. 3, pp.
109–119, 2014.

[18] W. Friedl and M. A. Roa, “CLASH -a compliant sensorized hand for
handling delicate objects,” Frontiers in Robotics and AI, vol. 6, 2019.

[19] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in Europ. Conf. on
Computer Vision - ECCV, 2016, pp. 21–37.

9384

