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Abstract— We present a novel motion planning strategy for
the manipulation of elastic rods with two robotic arms. In
previous work, it has been shown that the free configuration
space of an elastic rod, i.e., the set of equilibrium shapes of
the rod, is a smooth manifold of a finite dimension that can be
parameterized by one chart. Thus, a sampling-based planning
algorithm is straightforward to implement in the product space
of the joint angles and the equilibrium configuration space of
the elastic rod. Preliminary results show that planning directly
in this product space is feasible. However, solving for the
elastic rod’s shape requires the numerical solution of differential
equations, resulting in an excessive and impractical runtime.
Hence, we propose to pre-compute a descriptor of the rod,
i.e., a roadmap in the free configuration space of the rod that
captures its main-connectivity. By doing so, we can plan the
motion of any dual-arm robotic system over this roadmap
with dramatically fewer solutions of the differential equations.
Experiments using the Open Motion Planning Library (OMPL)
show significant runtime reduction by an order of magnitude.

I. INTRODUCTION

Industrial manipulation of rigid objects has been auto-
mated for quite a long time, while the handling of deformable
objects is usually done manually due to the lack of fea-
sible motion planning algorithms. Indeed, motion planning
algorithms have mainly focused on the manipulation of
rigid bodies by one or more robots. Much less attention
has been given to motion planning for the manipulation of
deformable objects in general, and elastic rods in particular.
The term elastic rod refers to thin deformable wires or
cables. Hence, the ability of robots to manipulate elastic
rods would be practical in many applications. For instance,
cable routing is one of the few operations done manually in
automotive production lines [1]. Other applications include
surgical suturing [2], knot tying [3], and automated handling
of flexible material such as sheet metal parts [4].

In this paper, we focus on path planning for two robotic
arms to manipulate an elastic rod (Figure 1). The rod is
required to move between start and goal configurations while
remaining in static equilibrium and avoiding self and obstacle
collisions. We rely on previous work by Bretl and McCarthy
[5] who showed that the configuration space of a Kirchhoff
elastic rod [6], i.e., the set of all equilibrium configurations,
is a six-dimensional smooth manifold parameterized by a set
A ⊂ R6. Given a point in A, it can be used as the initial
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condition for solving a system of ordinary differential equa-
tions to find the corresponding shape of the rod. Bretl and
McCarthy also provided a computational test to distinguish
between stable and unstable equilibrium configurations.

Fig. 1. Illustration of the Baxter
robot manipulating an elastic rod.

A sampling-based algo-
rithm for solely planning
in A is now simple to im-
plement. However, prac-
tical applications require
planning of the robot’s
motion to manipulate the
rod from one configuration
to another. In other words,
the configuration space of
the system should incorpo-
rate the robot’s joint space
and the rod’s configuration space A. However, planning in
this extended configuration space presents more challenges.
A feasible path must satisfy a set of constraints, i.e., satisfy
joint limits, ensure stability of the rod and be collision-free.
In addition, grasping a rod in a desired configuration by
its endpoints with two robotic arms requires that a closed
kinematic chain constraint be satisfied. The configuration
space of the closed chain system is a lower-dimensional
subset of the ambient space satisfying the closure constraint
[7]. The sampling-based strategy proposed in this work
finds paths that lie strictly on the closure constraint while
satisfying joint limits and are collision-free.

In this work, we discuss an approach to planing a fea-
sible motion of the system using standard sampling-based
planners. However, we will show that the use of standard
planners results in a large amount of time spent in solving
the differential equations describing the shape of rod and
therefore have high computational costs. To tackle this
problem, we propose a pre-computation strategy where a
roadmap in A is stored in memory along with the solutions
for the shape of the rod. This roadmap encodes the main
connectivity in the stable and collision-free subspace of A.
Thus, we leave the expensive computations to an offline step,
thereby saving a significant amount of time in the process of
planning the motion of any dual-arm robotic system over the
roadmap. To construct the roadmap and, more importantly,
to rapidly connect to it during planning, we use the scale
invariance property previously presented by Borum and Bretl
[8]. Borum and Bretl have shown that the free configuration
space of the rod is path connected. That is, a stable analytical
path in A can easily be computed between any two stable
configurations. We extend this notion and show that there are
two-dimensional submanifolds in A, termed slices, formed
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by any two stable configurations and the origin, where any
path in the slice is stable and free of self-collisions. With
this notion, we can obtain an upper bound on the number
of numerical solutions of differential equations that must
be computed. Therefore, paths in these slices can rapidly
connect the start and goal configurations to the roadmap.

There are several contributions in our work. Previous
work on the manipulation of rods has focused solely on
the path planning of the elastic object. To the best of our
knowledge, our work is the first attempt to incorporate both
the configuration space A of the rod and the configuration
space of robotic arms in a path planning problem. Thus,
we propose a paradigm for planning the manipulation of
an elastic rod with two robots based on [5]. The paradigm
is based on the usage of standard sampling-based motion
planning algorithms over a pre-computed roadmap of the rod.
The structure of the roadmap depends only on the properties
of the rod, and is entirely independent of the robotic system
used to manipulate it. Thus, the roadmap solely describes
the rod and can be used to plan the motion of any dual-
arm robotic system. While some planning algorithms pre-
compute partial roadmaps [9], to the best of the authors’
knowledge, the notion of planning for different robotic sys-
tems over a precomputed roadmap of another system has not
been applied before. Finally, we propose a strategy to employ
a single-query planning algorithm in the configuration space
of the robotic arms over the roadmap.

II. RELATED WORK

The manipulation of deformable objects by two or more
robots has been extensively studied in the past few decades
[10]–[12]. In this work, we address the manipulation of thin
elastic rods, which have been of interest for centuries, begin-
ning with the study of planar rods by Euler and Bernoulli and
non-planar rods by Kirchhoff [13]. The configuration space
directly describing the shape of an elastic rod has infinite
dimension, where elements of this space are continuous
maps. In addition, a number of possible configurations of
the rod exist for a given placement of the grippers holding
the ends of the rod. These challenges have made the motion
planning of a rod a hard problem. The literature on path
planning for elastic rods suggests exploring the set of equi-
librium configurations indirectly, by sampling displacements
of grippers and using numerical simulations to approximate
their effect on the rod. This approach was developed in the
work of Lamiraux and Kavraki [14] and was applied by Moll
and Kavraki [15] to the manipulation of deformable linear
objects. Hermansson et al. [16] relaxed gripping point con-
straints along an elastic harness while planning a collision-
free path for a sphere around a predefined central grip point.
These approaches use computationally expensive numerical
methods that may limit their effectiveness in real-time motion
planning. Another approach used in [17] simplifies the model
of the deformed object by reducing it to a sequence of
rigid masses and springs. In this approach, the solution is
highly sensitive to the approximation, which in turn affects
the quality of the planning.

In all the cited approaches, a feasible procedure to derive
the free configuration space was not clear at that time. Bretl
and McCarthy [5] later showed that the configuration space
of the rod, i.e., the set of all equilibrium configurations,
is a six-dimensional smooth manifold. They also provided
a computational test to determine whether an equilibrium
configuration on the manifold is stable or not, and a collision
checking algorithm was used to find self-intersections. This
allowed for a sampling-based planning algorithm to be used
in which configurations of the rod could be sampled directly.
Further research following the work of Bretl and McCarthy
was published in [18] exploring additional planning proper-
ties in the free configuration space of the rod.

Bretl and McCarthy did not provide an insight into the
topological properties of the free configuration space or
guarantee that a feasible path from start to goal does ex-
ist. Moreover, the determination of whether an equilibrium
configuration is a member of the free configuration space
(i.e., is a stable configuration and free of self-collisions) is
rather computationally expensive. Hence, the later work of
Borum and Bretl [8] has provided the important insight that
the free configuration space is path-connected, and a semi-
analytical feasible path can easily be found. The checking
of stability for a configuration in A burdens sampling-based
planning algorithms, and the notion guaranteeing a feasible
path in A can reduce its extensive computational complexity.
However, the assured presence of a path is only viable while
solely observing the configuration of the rod. Extending the
problem for the planning of robotic arms manipulating the
rod makes it more challenging.

Sampling-based planners are a commonly used in robotics
for motion planning in high dimensional configuration spaces
[19]. Seminal work by Kavraki et al. [20] proposed a
sampling-based multi-query approach where a probabilistic
roadmap is computed off-line. Then, the cost of online
planning lies only in graph search. A practical application
of pre-computed roadmaps was presented in [21] for motion
planning of concentric tube robots navigating anatomical
obstacles. The pre-computed roadmap loses its relevance
when the environment changes and must be modified. Ex-
tensions were made to address these issues by maintaining
and making efficient repairs based on recent changes in the
environment [22]. In the work of Salzman et al. [23], which
has similarities to ours, a self-collision-free roadmap of a
multi-link system is pre-computed in a pre-processing step.
Thus, during online planning, collisions are only checked
with the extrinsic workspace obstacles. This approach makes
the roadmap independent of the robot’s environment. The
same notion is the base of our work to employ an indepen-
dent roadmap that describes the configuration space of the
rod for any dual-arm system.

In our work, we pre-compute a roadmap for a lower-
dimensional subset of the configuration space of the system,
i.e., the roadmap only describes the configuration space of
the rod, which can be coupled to any configuration space
of two robotic arms. Some planning algorithms decouple
the system to different components of motions [24], [25]



naturally existing in many systems. An early implementation
of this approach planed the motion of a manipulator while
decoupling the motion of the first three links from the
wrist [26]. Planning of multiple robots’ motion can be done
individually by computing a path for each robot and applying
velocity tuning between paths for synchronized collision-free
motion [27]. More recently, the work in [9] pre-computed
dynamic roadmaps for the legs of a quadruped robot, which
were used online to rapidly identify collision-free foothold
positions.

III. PROBLEM DEFINITION

In this section, we provide a formal definition of the path
planning problem. We first describe a model of the elastic
rod. While a complete derivation of this model is given in
[5], we outline the key components of the model that are
needed in later sections. We then describe the problem of
path planning for both the rod and robots holding the rod.

A. The configuration space of an elastic rod

In this section, we present the necessary background
from Bretl and McCarthy [5]. Their work showed that each
equilibrium configuration of a Kirchhoff elastic rod [6]
corresponds to a unique point in a subset of R6. Given the
differential equations governing equilibrium configurations
of the rod, they were able to map points in R6 to rod config-
urations and provide a computational criterion to determine
their stability. We assume that the stiffness of the rod is high
enough so that the effects of gravity can be neglected.

We assume that the rod is straight in the undeformed
configuration and has length L. Using t ∈ [0, L] to denote
arc-length along the rod, the position and orientation of the
rod at arc-length t are described by an element q(t) of the
special Euclidean group SE(3). The rod’s shape is described
by a continuous map q : [0, L] → SE(3). In the Kirchhoff
elastic rod model, the rod is allowed to twist and bend, but
is unshearable and inextensible [6]. These constraints are
enforced by requiring q to satisfy the differential equation

q̇ = q
(
û e1
0 0

)
, (1)

for some function u : [0, L] → R3, where overdots denote
differentiation with respect to t, the map ̂ : R3 → so(3)
satisfies a × b = âb for all a, b ∈ R3, and e1 = [1 0 0]T .
The function u1 is the twisting strain and the functions u2
and u3 are the bending strains along the rod.

Each end of the rod is held by a robotic gripper. For
now, we will assume, without loss of generality, that the
base of the rod is held fixed at q(0) = I , where I is the
identity element of SE(3). This provides an initial condition
for the differential equation (1). Since we neglect the effect
of gravity, the resulting configuration of the rod can be
translated and rotated to the pose of the gripper at t = 0. The
gripper holding the rod at t = L is free to move in SE(3).

As shown in [5], the function u must satisfy certain
conditions for the corresponding shape of the rod to be in
equilibrium. To describe these conditions, we first define

A = {a ∈ R6 : (a2, a3, a5, a6) 6= (0, 0, 0, 0)}. (2)

A is simply R6 with a two-dimensional plane removed. Next,
given a ∈ A, solve the system of differential equations

µ̇1 = u3µ2 − u2µ3 µ̇4 = u3µ5 − u2µ6

µ̇2 = µ6 + u1µ3 − u3µ1 µ̇5 = u1µ6 − u3µ4

µ̇3 = −µ5 + u2µ1 − u1µ2 µ̇6 = u2µ4 − u1µ5

(3)

for t ∈ [0, L] with ui = c−1
i µi, i ∈ {1, 2, 3}, and the initial

condition µ(0) = a. The constants c1 > 0 and c2, c3 > 0
are, respectively, the torsional and bending stiffnesses of the
rod. The function µ : [0, L] → R6 can be interpreted as the
vector of internal forces and torques along the rod. Solving
(1) with ui = c−1

i µi produces an equilibrium shape of the
rod.

Based on the procedure described above (and as proved
in Theorem 5 of Bretl and McCarthy [5]), each point in
A corresponds to an equilibrium configuration of the rod.
We denote such equilibrium configurations by the pair of
functions (q, u). Each (q, u) and the corresponding µ are
completely defined by the choice of a ∈ A. Denote the
resulting map by (q, u) = Ψ(a) and define C = Ψ(A). In
Theorem 5 of [5], it is shown that the map Ψ is injective,
i.e. for each (q, u) ∈ C there exists a unique a ∈ A.

We next describe a test to determine which equilibrium
configurations of the rod are stable. A configuration (q, u)
is a stable equilibrium configuration if det(J(t)) 6= 0 for all
t ∈ (0, L], where the matrix J(t) is acquired by solving the
linear arc-length-varying matrix differential equations

Ṁ = F(µ(t))M J̇ = GM + H(µ(t))J (4)

with initial conditions (M(0), J(0)) = (I, 0). The definitions
of G, F(·) and H(·) along with a full proof are given in
[5]. Here also, the matrix functions M and J are completely
determined by the choice of a ∈ A. A point t ∈ (0, L] at
which det(J(t)) = 0 is called a conjugate point.

The above test allows us to determine which equilibrium
configurations of the rod are stable. Denote the set of all a ∈
A that correspond to stable equilibrium configurations by
Astable, and let Cstable = Ψ(Astable). Also, define the map
Φ : C → SE(3) such that a configuration (q, u) is mapped
to q(L). Given a path of the rod in Cstable, the function
Φ can be used to find the path of the robotic gripper that
causes the rod to follow the path in Cstable. In particular,
letting B denote the space of boundary conditions, the map
Φ ◦Ψ : Astable → Bstable takes a ∈ Astable to the required
pose of the gripper b = q(L) ∈ Bstable. Finally, we define the
free configuration space Afree ⊂ Astable to be the set of all
a ∈ A that correspond to stable equilibrium configurations
of the rod that do not contain self-intersections.

Planning in A is beneficial since a point in A uniquely
defines an equilibrium configuration of the rod. On the
other hand, many solutions exist for a given gripper pose
b ∈ Bstable. Hence, unlike planning in A, planning in B
requires knowledge of the initial rod pose and the entire
path taken by the gripper. Another advantage of planning
in A is that any two stable equilibrium configurations are
path connected [8], a result that is used later in this work to
improve the performance of the proposed planner.



B. The configuration space of the system

The elastic rod model derived in [5] and summarized in the
previous section does not account for the configuration of the
robots holding the rod’s ends. Therefore, to generalize this
model, we now consider a system comprised of two robotic
arms holding an elastic rod. Let Q be the configuration space
of the two arms formed by their joint space product, andA be
the configuration space of the rod as defined in (2). Thus, the
configuration space of the system is defined as Z = A×Q.

At any instant, a desired rod configuration can be treated
as a rigid object. Hence, the two arms holding the rod by
its endpoints impose a closed kinematic chain constraint
C(a, φ) = 0, where φ ∈ Q. Further, let Zb ⊂ Z be a
restricted region due to obstacles, joint limits and the rod
infeasible set A\Afree. We define the free configuration set
Zo as follows:

Definition 1. Let Zo be the free configuration space of the
system of the two arms and held rod such that

Zo = {(a, φ) ∈ Z : (a, φ) /∈ Zb, C(a, φ) = 0} . (5)

That is, Zo is the set of configurations that satisfy the
closed kinematic chain, satisfy joint limits and are collision-
free.

The motion planning problem is as follows. Given start
and goal configurations (as, φs) ∈ Zo and (ag, φg) ∈ Zo for
the system, find a continues path τ : [0, 1] → Zo such that
τ(0) = (as, φs) and τ(1) = (ag, φg).

C. Preliminary results

The main practical outcome of the configuration space of
an elastic rod described in Section III-A is the ease of imple-
mentation of any sampling-based motion planning algorithm.
Planning solely in A is technically straightforward. However,
preliminary planning results (to be shown in the experimental
section) for the system seen in Figure 4.I show poor perfor-
mance with an average runtime of at least 70 seconds in
our experiments. The main reason for the excessive runtime
is that around 98% of the computation is spent on solving
the ODE’s in (1)-(4). An average computation of a single
ODE takes approximately 70 milliseconds. Hence, sampling
a random configuration is relatively computational expensive
and slows down the exploration. Such excessive runtime is
not practical, for example, in a real-time motion planning
framework. In the next section, we propose an alternative
planning strategy in which we approximate the free configu-
ration space of the rod in an off-line pre-processing phase.

IV. METHOD

We propose to approximate Afree with a graph structure,
i.e., a roadmap, AG ⊂ Afree (Figure 2). Such a roadmap
would capture the main connectivity of Afree while enabling
immediate knowledge of the rod’s configuration correspond-
ing to each node. In other words, the roadmap is pre-
computed off-line such that, for every node, the configuration
a of the rod and its solution Ψ(a) are stored. In this way,
any path in AG can almost immediately be mapped to a

Fig. 2. Illustration of planning for the robot joints over the roadmap AG
of the rod. The roadmap AG is an approximation of Afree. Two branches
of the two trees are expanded in ZG toward a random configuration.

path of the rod in Z with no additional solutions of the
ODE’s (1)-(4). Thus, querying in AG rather than in Afree is
more conducive for rapid motion planning. We next describe
the algorithm for generating the roadmap followed by the
planning process.

A. Generating a Roadmap

Let AG = (Vm, Vs, E) be an undirected graph containing
a set of m nodes or milestones Vm, a set of edges E
connecting some pairs of milestones, and a set of sub-
milestones Vs along the edges. Algorithm 1 describes a
procedure to generate a roadmap AG ⊂ Afree. We first
generate the set Vm of random milestones in Afree. Recall
that membership in the set Afree ⊂ R6 (which is checked in
Line 5 of Algorithm 1) is evaluated by solving the differential
equations (1)-(4) to determine if the corresponding configura-
tion of the rod is stable and free of self-intersections. Edges
are then added between each milestone and its k nearest
neighbors. The addition of an edge is done using function
get edge(ai, aj), described later, and returns a set Ns of
sub-milestones along a path connecting ai, aj ∈ Afree. An
edge e = (ai, aj ;Ns) is formed by connecting two nodes,
ai and aj , and the sub-milestones Ns along the connection.

Algorithm 1 generate roadmap(m, k, L, c)

1: Vm ← ∅, Vs ← ∅, E ← ∅.
2: for i = 1→ m do
3: repeat
4: a← rand()
5: until rod feasible(a, L, c) {check if in Afree}
6: Vm ← Vm ∪ {(a,Ψ(a))}
7: end for
8: for i = 1→ m do
9: Nk ← k nearest neighbors of ai ∈ Vm.

10: for all aj ∈ Nk do
11: Ns ← get edge(ai, aj , L, c).
12: E ← E ∪ {(ai, aj ;Ns)}.
13: Vs ← Vs ∪Ns.
14: end for
15: end for
16: H ← all pairs shortest path(AG).
17: return AG = (Vm, Vs, E) and H .

For each milestone and sub-milestone ai in the map AG,
we store its solution Ψ(ai). Thus, Vm and Vs are sets of
nodes in the form of (ai,Ψ(ai)). In practice, we require bi
(pose of the rod’s end-tip when the other end-tip is in the



origin) and a discrete set Pi ⊂ R3 of points along the rod for
collision checks. Furthermore, fast on-line planning would
require rapid querying of paths within AG. Therefore, we
use the Floyd-Warshall all-pairs shortest path algorithm [28]
to compute a graph reachability of the map. We construct
and store a look-up table H enabling rapid querying of
the shortest path between any two milestones in AG. Table
H also enables easy knowledge of whether the roadmap is
composed of one component or more.

It is important to note that the pre-computed roadmap is
independent of any robotic system. That is, the roadmap can
be used with any two robotic arms with the sole constraint
of being able to grasp the rod by its end-tips for some
configurations. Planning using the pre-computed roadmap for
any dual-arm robotic system is presented next.

B. Planning on AG
Let ZG ⊂ Z be the product space of the joint space and

the approximation roadmap, i.e., ZG = AG × Q. Rather
than planning directly in Z and sampling computationally
expensive rod configurations in Afree, we propose to plan
in ZG subject to the constraints in (5). Furthermore, we
address sampling-based motion planning where the stan-
dard Rapidly-exploring Random Tree [29] algorithm can be
used. However, the nature of the problem provides better
performance when using a Bi-Directional Rapidly-exploring
Random Trees (Bi-RRT) [30] planning algorithm. Since our
system is constrained by (5), the implemented Bi-RRT is, in
fact, a slight modification of the Constrained Bi-RRT (CBi-
RRT) proposed in [31]. Lazy planners have no advantage in
planning over AG since small steps are performed without
local-connections to defer.

In any given planning query, the start and goal configu-
rations of the rod will most likely not be included in the
roadmap. Thus, the first step would be to connect them to
the roadmap. The nearest milestones are identified and edges
are added by using function get edge. In this way, the start
and goal rod configurations are fully included in the map. We
note that this is the only step in which solving the ODE’s (1)-
(4) is required. Nevertheless, in the next section, we present
a possible implementation of get edge that can bound the
computational runtime when adding an edge.

The basic principle of the planning algorithm is to ran-
domly choose a node (milestone or sub-milestone) ar ∈ AG
and generate a complementary random robot configuration
φr ∈ Q. Then, two search trees anchored at the start and goal
configurations, (as, φs) and (ag, φg), are expanded toward
the random configuration (ar, φr) along the shortest path in
AG (found using H) with predefined joint steps. One tree
is expanded, from the closest node in the tree, as much as
possible toward (ar, φr) (Figure 2). The second tree is then
expanded toward the most advanced node of the first tree.
The roles of the trees are swapped during iterations.

The probability for both trees to intersect with the same
rod and joints configurations (ar, φr) is low. In practice, the
trees will most likely reach (if such path exists) the same rod
configuration ar but with different arms configurations. The

arms hold the rod with the same shape but with different
joint angles, i.e, the rod is at a different spatial pose in
the workspace. Thus, the problem is now simplified to the
manipulation of a rigid object from one robot configuration
φ1 to another φ2 while maintaining constant rod configura-
tion ar and checking each for collisions. If the trees indeed
reached the same rod configuration, we check for a local
connection solely in Q. If a rigid manipulation is possible
then the trees are connected, resulting in a feasible path.

C. Edge addition

In this section, we address the strategy of connecting
milestones in the roadmap and connecting the start and
goal rod configurations to the roadmap using the function
get edge. We first consider the problem of connecting
start and goal configurations to AG. One possibility is to
search for an edge between two configurations in Afree by
checking if configurations along a straight line or arbitrary
curve, which connect them, are stable and free of self-
collisions, which requires the solution of the ODEs (1)-(4).
However, the number of ODE solutions in such a method
is not bounded and may result in excessive computations.
On-line connection of the start and goal configurations to
the roadmap must be fast and therefore, require a minimal
number of ODE computations.

In previous work [8], it was shown that the free con-
figuration space Afree is path-connected. Based on a scale
invariance property of the rod, for any two configurations in
Afree, a semi-analytical path can be constructed that is stable
and free of self-intersections. The next theorem expands this
notion and defines two-dimensional slices in Afree.

Theorem 1. Let σ : [0, 1] → A. Define the function
t1 : [0, L] → R+ so that t1(s) is the first conjugate point
along the rod configuration Ψ(σ(s)), which is found by
solving (1)-(4). Similarly, define the function t2 : [0, L] →
R+ so that t2(s) is the first point of self-intersection along
the rod configuration Ψ(σ(s)). Now, define the function
tσ : [0, L]→ R+ by

tσ(s) = min{t1(s), t2(s), L} (6)

Next, define the function Θσ : [0, 1]× R+ → A by

Θσ(s, l) = (lσ1(s) lσ2(s) lσ3(s) l2σ4(s) l2σ5(s) l2σ6(s))T

where σi(s) is the ith component of σ(s). Now define
α : [0, 1]→ A by α(s) = Θσ(s, tσ(s)). We then have

Aα = {a ∈ A : a = Θα(s, l) for some

s ∈ [0, 1], l ∈ (0, 1)} ⊂ Afree. (7)

Proof: See the proof of Lemma 1 in [8].
Given two rod configurations ai, aj ∈ Afree, any path σ

can be chosen such that σ(0) = ai and σ(1) = aj , e.g., a
straight line as seen in Figure 3. Then, using Theorem 1 and
σ, we can compute the path α(s) containing ai and aj that
is the boundary of the defined slice Aα ⊂ Afree. Note that
except for the boundary points α(0) = ai and α(1) = aj ,
points directly on α(s) may not be inAfree. Next, let qs(t) ∈



SE(3) for t ∈ [0, L] be the rod configuration solution of
Ψ(α(s)). According to [8], the solution of Ψ(Θα(s, l)) for
any s ∈ [0, 1] and l ∈ (0, 1] is given by

qs,l(t) = Dlqs(lt)D−1
l where Dl =

[
I3×3 03×1

01×3 l

]
(8)

and for all t ∈ [0, L]. In practice, we have scaled the point
α(s) by l and evaluated the rod’s configuration at this scaled
value l. Given s ∈ [0, 1] and l ∈ (0, 1], it is possible to
solve Ψ(Θα(s, l)) through the ODE’s (1)-(4) to acquire the
rod shape qs,l(t). However, as discussed in Section III-C,
these computations are quite expensive. On the other hand,
the computation of (8) is simple and more efficient. This
powerful notion states that once a path α is found, all points
in Aα can simply be evaluated using (8) while not requiring
further ODE computations. Thus, we bound the number of
ODE computations for an edge to be proportional to the
distance between ai and aj or equal to nij = 1

δE
‖ai − aj‖

where δE is the pre-defined resolution along σ(s).
We can now construct paths ᾱ : [0, 1] → Aα as follows.

Define an n-degree polynomial h : [0, 1] → (0, 1] with
constraints h(0) = 1, h(1) = 1, and h(si) = fi for some
si ∈ (0, 1) and fi ∈ (0, 1) where i = 1, . . . , n−1. The value
fi is a factor scaling ᾱ(s) away from α(s) (Figure 3). Then
solutions along ᾱ(s) = Θα(s, h(s)) are given by (8).

Fig. 3. A slice Aα ⊂ Afree
formed by α.

Given two rod configura-
tions ai, aj ∈ Afree, a path
ᾱ : [0, 1] → Afree can be
computed as discussed previ-
ously and the rod solution is
easily acquired. This method
is used in this work to rapidly
connect the start and goal rod
configurations to their near-
est neighbors in AG. Once
added, they are considered an
integral part of the roadmap.
Therefore, planning with the same start and goal configu-
rations, i.e., in a real-time re-planning framework, may not
require any ODE computations, yielding much faster plan-
ning. In addition but less significant, the same method can
be used to connect milestones when generating the roadmap
to expedite the off-line process. Rather than construct the
roadmap in a conventional way by straightforward search of
valid edges—where some will be rejected and waste time—
this method can be used to guarantee that every two nodes in
the roadmap are connected by an edge. Experiments suggest
that this approach can reduce the off-line computation time
by approximately 60%. Therefore, in the off-line and on-line
computations, any two configurations can be connected using
path-connected slices in Afree with the minimal required
number of ODE solutions.

D. Probabilistic Completeness

As discussed above, the roadmap AG approximates Afree
to a fixed subset. Therefore, sampling-based planning in ZG
is not probabilistic complete. Similar to [32], probabilistic

Fig. 4. The two tested environments: (I) two ABB robotic arms and
(II) a Baxter dual-arm robot manipulating an elastic rod. Start and goal
configurations are left and right, respectively.

completeness can be regained by continuing to expand AG
in a parallel process. In addition, the parallel process can
continue to connect the start and goal rod configurations
to more nodes in the roadmap. If a solution exists but not
currently on the roadmap, more paths will be added until
found, allowing the planner to be probabilistically complete.

V. EXPERIMENTS AND ANALYSIS

This section presents experiments of planning in Z and
ZG. The experiments were implemented in C++ with the
Open Motion Planning Library (OMPL) [33] on an Intel-
Core i7-8550U Ubuntu machine with 8GB of RAM. We used
the Kinematics and Dynamics Library to sample configura-
tions that satisfy the closed-kinematic chain constraint.

We tested the planning approach in two different environ-
ments seen in Figure 4. Environment I consists of two ABB
IRB-120 industrial robotic arms. The robots must manipulate
an elastic rod in a collision-free path between two poles.
The Baxter robot in environment II manipulates the same
rod into a channel of a specific shape through obstacles.
The start and goal configurations were chosen such that they
are sufficiently distant from each other while exercising the
planner in the presence of obstacles. In both environments,
the robots grip a rod of length L = 1 m, and we have
assumed the rod has stiffness c = (1 Nm2, 1 Nm2, 1 Nm2).
We begin by showing results for planning in Z for the
two environments. We then show statistics regarding the
generation of the roadmap AG with regards to different
roadmap sizes. Finally, we show performance results of
motion planning over AG and analyze the effect of the
roadmap size on the performance. Videos of the experiments
can be seen in the supplementary material.

A. Planning in Z
In this experiment, we show the results for planning in Z,

i.e., planning without approximating Afree. Each environ-
ment was tested with three sampling-based planners: RRT,
CBi-RRT and the Single-query Bi-directional probabilistic
roadmap planner with Lazy collision checking (SBL) [34].
All planners are standard implementations in OMPL. Table II
(left hand side) shows the performance of the three planners
in Z for environments I and II. The values represent the
average of 100 trials. The RRT for environment II did not
produce any result in a runtime bound of 1,500 seconds.
As discussed in Section III-C, planning directly in Z can
indeed produce feasible solutions but with low performance.



A significant portion of the computation time is wasted on
solving the ODE’s (1)-(4). This motivates the approximation
of Afree. Results for the approximation are presented next.

B. Planning in ZG

Several approximation roadmaps were generated with k =
4 nearest neighbors (selected empirically) and a different
number of milestones m. The generation time of the ap-
proximation roadmap as well as the size of the resulting
data structure are shown at the bottom of Table I. Table I
also presents the success rate and the resulting path quality
for planning in Env. I over 10 randomly generated roadmaps
for each size. Roadmaps where m < 100 have low success
rate and, therefore, are not further used. Path quality is the
average planned path length in Afree evidently improving as
m increases. Table II summarizes the experimental results
for an average of 100 runs for each of the generated
roadmaps. Planning is performed for both environments with
the same static roadmaps of the rod. The main observation
from these results is the runtime reduction by at least an
order of magnitude compared to planning directly in Z as
seen in Table II. Moreover, we observe better performance
as the density of the roadmap increases. Obviously, more
milestones provide a better approximation of Afree.

Figure 5 shows the failure distribution when planning in Z
and ZG. Recall that a minimal number of ODE computations
are required when planning in ZG for connecting the start
and goal rod configurations to AG. The average number and
time of the ODE computations needed to connect the start
and goal configurations to the roadmap are also reported
in Table II. As we would expect, denser roadmaps yield
shorter start and goal connections and therefore fewer ODE
computations. We note that the net planning time without
the connections is very low. That is, if the start and goal
nodes already exist in the roadmap, the runtime is reduced
by approximately 85%-92%. The important result is that
planning in ZG yields a reduction of more than 95% in the
number of ODE computations compared to planning in Z.

C. Random start and goal configurations

To evaluate the approach with varying boundary condi-
tions, we tested the planning for random start and goal
configurations. 100 queries were taken in Env I with start and
goal configurations randomly chosen from Zo. All queries
are known to have a solution. Planning in Z was tested with
the CBi-RRT planner, and planning in ZG was performed
using a roadmap of size m = 100. This puts a lower bound
on the performance. When limiting each planning iteration to
220 sec, the success rates for Z and ZG were, respectively,
56% and 95%, and the average runtimes were 94± 56.3 sec
and 6.39 ± 4.3 sec. The low success rate in Z is due to
some queries that require excessive runtime. On the other
hand, failure in ZG is due to limited paths on the roadmap
which is solved by increasing m. 100% success rate was
achieved when m = 1, 000.

Fig. 5. Failure rate with regards to the average runtime when planning in
(right blue curves) Z and in (left black curves) ZG.

VI. HARDWARE EXPERIMENTS

To validate our approach and test model accuracy, we
have built a setup comprised of two opposing ABB IRB-
120 industrial robots with a distance of 1.1 m between
their bases. We mounted two chuck grippers on the arms
that grip a Nitinol rod (length 0.55 m and stiffness c =
(0.77 Nm2, 1 Nm2, 1 Nm2), which corresponds to a cir-
cular cross-section) by its ends. For the start and goal
configurations in Figure 6, planning in AG produced a path
in an average of 1.73 seconds, compared to 44.28 seconds
when planning in Z. This result shows that planning in
Z, even without obstacles, remains challenging in terms of
computation time.

Planning either in Z or ZG, however, does not affect
the accuracy of the rolled-out path. Hence, we here aim to
compare planned paths of the rod, which are based on the
theoretical model of eq. (1)-(4), and the actual rolled-out
ones. The paths were executed by the arms in an open-
loop fashion. Using a camera stationed in front of the
robots, we reprojected the planned path onto the image
plane, shown in Figure 6 by the dashed yellow curves.
For the images in Figure 6, the maximum distances within
the image plane between points on the physical rod and
the closest point on the reprojected rod were 4.83, 7.31,
4.72, 7.79 and 8.51 mm, respectively. Measurement errors
exist due to imperfect camera calibration and resolution
accuracy. Thirteen additional experiments were conducted
with different starting and goal configurations. Across all
experiments, the average maximum image plane-distance
between points on the physical rod and the closest point on
the reprojected rod was 6.79mm.

VII. CONCLUSIONS

We have presented the problem of planning the motion
of an elastic rod manipulated by two robotic arms. We
propose the use of sampling-based algorithms to explore the
composite configuration space of the joints space and the free
configuration space of the rod. However, we have shown that
straight-forward implementation of sampling-based planning
is computationally expensive due to the ODE solutions for
the rod shape. We therefore propose to approximate the
free configuration space of the rod with a roadmap. This
roadmap encapsulates the connectivity of the space and
stores rod solutions in each node. In addition, the use of
stable slices in the free configuration space of the rod lay
a bound on the number of ODE computations for a local
connection, which significantly reduce connection runtime.
Planning for the robot joints over the roadmap along with



TABLE I
ROADMAP PROPERTIES WITH REGARDS TO m

m
20 50 100 500 1,000

gen. time (min) 1.9 14.2 23.2 87.1 135.5
mem. size (MB) 74 163 259 869 1,500
success rate 2/10 6/10 10/10 10/10 10/10
path quality 147.3 128.6 91.7 59.1 48.3

TABLE II
PERFORMANCE DATA FOR PLANNING IN Z AND ZG

planning in Z planning in ZG, m =
RRT SBL CBi-RRT 100 500 1, 000

en
v.

I

avg. time (sec) 125.3 107.5 77.7 3.3 2.56 2.16
planning time (s) 1.93 1.58 1.25 0.375 0.377 0.472
% ODE time 98.46 98.53 98.39 88.6 85.3 78.16
num. ODE comp. 1,784 1,487 856 77 55 44

en
v.

II

avg. time (sec) - 685.5 160.4 4.1 2.7 2.03
planning time (s) - 12.82 2.67 0.360 0.316 0.257
% ODE time - 98.13 98.33 91.2 88.3 87.3
num. ODE comp. - 9,227 3,164 94 62 45

Fig. 6. Snapshots of an experiment where a Nitinol rod is manipulated using two ABB robots between start (left) and goal (right) configurations. The
dashed yellow curve is the planned configuration projected onto the image plane.

connections through the slices have been shown, through
a set of experiments, to reduce planning runtime by at
least an order of magnitude. Future work could focus on
including the effects of gravity by considering its potential
when minimizing the total elastic energy of the rod to re-
derive eq. (1)-(4), and further exploiting the scale invariance
property of the rod to better understand the topology of the
constrained configuration space Zo.
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