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Abstract— Category-based methods for task-specified grasp
planning have recently been proposed in the literature. Such
methods, however, are normally time consuming in both train-
ing and grasp determination process and lack capabilities to
improve grasping skills due to the fixed training data set. This
paper presents an improved approach for knowledge-based
grasp planning by developing a multi-layer network using self-
organizing map. A number of grasp candidates are learned in
the experiments and the information that is associated with
these grasp candidates is clustered based on different criteria
on each network layer. A codebook which is composed of a
small number of generalized models and the corresponding
task-oriented grasps is generated from the network. In addition,
the proposed network is capable of automatically adjusting
its size so that the codebook can be continuously updated
from each interaction with the novel objects. In order to
increase the accuracy and convergence rate of the clustering
process, a new initialization method is also proposed. Simulation
results present the advantages of the proposed initialization
method and the auto-growing algorithm in terms of accuracy
and efficiency over some conventional methods. Experimental
results demonstrate that novel objects can be successfully
grasped in accordance with desired tasks using the proposed
approach.

Index Terms— grasp planning, clustering algorithm, self-
organizing map, initialization method, growing network

I. INTRODUCTION

Grasp planning with robotic hands for performing daily
tasks in human environments is a major challenge even for
the best artificial robotic manipulators available today. Given
the basic information (e.g. size and shape) on the everyday
objects, the most conventional way to generate a good stable
grasp in the sense of force-closure is to determine the contact
locations of each fingertip [1], [2]. Finding a good stable
grasp, however, is only a necessary but not a sufficient
condition for efficient grasp planning, especially when some
manipulations are expected after grasping [3]. In other words,
a good grasp should be made in accordance with the desired
task. And yet the desired tasks are normally not considered in
the conventional approaches due to the difficulty in modeling
tasks in the process of grasp planning.

Most of everyday tools that humans use consist of a
particular component, as known as affordance part, which
is designed specially to fulfill their functionalities and to
make their grasps easier. For instance, the handle parts of
mugs and teapots and the handles of knives and hammers.
Thus, by learning object affordances from a deep neural
network model [4], [5], a task-oriented grasp can be achieved
through determining a proper grasp on the affordance parts
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[6], [7]. Some research studies expand on this idea in a
more general concept that one task-oriented grasp can be
generalized to objects that are similar in functionality and
shape so as to facilitate the grasp planning procedure [8],
[9]. By constructing categories to contain similar training
objects and learning every possible task-oriented grasps with
these training objects, a probabilistic approach that selects a
learned grasp which is most likely applied to the target object
to accomplish the task is proposed in [10]. The selected grasp
can also be used to grasp any novel objects which are not in
the training categories but similar to the training objects.

With this type of approach, a more suitable grasp for a
novel object can be determined, as more training objects
are contained in the category and more grasp candidates
are learned from training. Consequently, the computational
demand for analyzing the grasp data and selecting an appro-
priate grasp will be significantly increased when the training
data set gets large. To address this technical issue, a number
of clustering techniques have been utilized to condense
the total grasp candidates into a codebook/dictionary which
contains a small set of representative grasps [11], [12]. One
of the most efficient methods is the k-means algorithm. How-
ever, it suffers from its own sensitivity to the noise or outliers.
Compared to k-means algorithm, k-medoids algorithm [13]
is more robust and has been used to form a codebook in
[14]. Besides these two algorithms, the self-organizing map
(SOM), also known as the Kohonen feature network [15],
has also been applied to many applications, such as data
exploration [16], image processing [17] and robotic grasp
planning [18], [19]. It is a competitive feed-forward neural
network and an efficient algorithm for feature extraction
while maintaining the topological structure of input data. In
particular, SOM forms a topological map which preserves
the same distribution as the input data while projecting data
form a high dimensional space onto a low dimensional output
space. This feature of SOM makes it more suitable for
clustering grasp candidates than k-means and k-medoids in
our case, as information learned from grasp candidates using
similar objects in the input space corresponds to close spatial
locations on a topological map.

Like most of other unsupervised learning algorithms,
SOM still suffers from two technical issues during im-
plementation: initialization of the weights/locations for the
neurons/centroids and determination of the number of neu-
rons (i.e., clusters). In general, the key idea of initializing
centroids is to search for such locations that are close to the
majority of data and also as far as possible away from each
other [20], [21]. From the viewpoint of statistics, selecting
outliers as initial centroids is not acceptable, since outliers
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are normally referred to the data corrupted by noise and differ
significantly from most of the training data. The situation
we consider in this paper is quite different from those of
the existing studies on the treatment of outliers. In our
case, an outlier typically contains the dimension information
of a particular model which is drastically different from
other models in the same group. And because a set of
corresponding grasp candidates are also contained in this
outlier, it can not be neglected. Hence, the initialization
process needs to focus on capturing the density of the
training data while taking the outliers into account. Another
issue from that SOM and other clustering algorithms suffer
is that it is impracticable to predefine an optimal number of
clusters due to the lack of prior information on the details
of network. In addition, in robotic manipulation, the ma-
nipulators should keep improving the grasping skill as they
continuously interact with more and more objects. In other
words, the training set should constantly adapt and update
with the related information from each grasp execution. Such
self-updating capability, however, is not provided by the
conventional category-based approaches due to employing
fixed size of training data set. In data analytics, a number of
approaches have been proposed to make networks capable
of automatically adjusting the size to achieve the optimal
clustering, such as data density-based approach [22] and
hierarchical approach [23].

In this paper, to efficiently analyze the grasp candidates, a
multi-layer network is developed based on SOM. A task-
oriented codebook which consists of a small number of
generalized models and the corresponding representative
grasps is generated from the network, and each representative
grasp can be employed for grasping novel objects which are
similar to the the generalized models in the codebook. In
order to improve the accuracy and convergence rate of the
clustering algorithm, a novel initialization method is also
proposed by using Gaussian kernel to measure the similar-
ity between the training data. Compared to other distance
metrics (e.g., Euclidean distance and Manhattan distance),
the Gaussian kernel can produce a large response when
two data points are close to each other and exponentially
fall off when two data points are apart. In addition, as a
nonlinear function of Euclidean distance, Gaussian kernel
can also provide some useful properties such as smoothness
(i.e., the Gaussian function is infinitely differentiable). As
a consequence, every training data including any outliers is
considered as candidates for the initial neurons. Moreover,
we incorporate the concept of growing network such that the
proposed network can automatically determine the number
of clusters based on the training data. In particular, the
codebook can be adapted with new training data so that the
generalized models can be refined and the grasping skills
can be improved through every grasp execution with novel
objects.

The reminder of this paper is organized as follow. The
general framework of the proposed grasp planning approach
is introduced in Section II. After reviewing the concept of
the batch learning SOM in Section III, the proposed multi-

layer network as well as the novel initialization method
and auto-growing algorithm are presented in Section IV.
Simulation and experimental results are provided to evaluate
the performance of the proposed initialization method and
auto-growing algorithm in comparison to some conventional
methods and validate the effectiveness of the proposed grasp
planning approach in Section VI. Finally, our concluding
remarks are presented in Section VII.

II. GENERAL FRAMEWORK

In this section, the basic procedure of the proposed grasp
planning is introduced. To focus on the grasp planning
and analyzing the training data, we assume that both the
dimensions and pose (i.e., position and orientation) of novel
objects are available and the category to which the novel
objects belong is known. In this paper, the dimensions of an
object are defined as the dimensions of the bounding box
of the object. In addition, the novel object is assumed to be
unseen by the robot but similar to the objects with that robot
has interacted.

Offline Grasp Learning

Online Grasp Execution

Training object sets 
construction 

Task labeling Grasp
candidates 
generation

Novel object 
information

Task 
specification Optimal grasp 

determination
Grasp 

execution

Task-oriented 
codebook 

generation and 
update

Fig. 1: General framework of the proposed grasp planning
approach.

As shown in Fig. 1, the proposed approach is executed
in two phases: offline learning phase and online execution
phase. In the offline learning phase, a number of object
categories are first built up and each of them contains a few
objects (e.g., mugs or knives) that share similarities in shape
and functionality. Then, every training object is grasped
by a robotic manipulator to accomplish some certain tasks
(e.g., transportation and tool use) in physical experiments. In
doing so, the information related to each grasp candidate is
recorded and saved into a training data set for each object
category. In the end of offline phase, a number of codebooks
are individually created and each codebook is composed of
a number of generalized models and representative grasps
for the corresponding object category. During the online
operation, given the category to which the target object
belongs, comparing the dimensions of the target object to
that of the generalized models stored in the corresponding
codebook, a suitable representative grasp is selected from
the codebook and applied to the target object. Meanwhile,
the codebook incorporates the related information associated
with this grasp and updates automatically.
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III. BATCH LEARNING SELF-ORGANIZING MAP

There are two different learning techniques for SOM: the
online/sequential learning and the batch learning [15]. Using
the online learning, the weighting vector (i.e., location) of the
winning neuron (i.e., the neuron which is the most similar to
the inputs) and its neighboring neurons are updated imme-
diately after the determination of the winning neuron. This
process is repeatedly performed for each input data. This
technique, however, suffers from large computational load
as it constantly updates the weights and a high dependence
on the order of the input data. As to the batch learning
[24], the weights remain the same while processing the input
data and are updated after examining every input data in the
entire training set. Hence, the batch learning technique is
slightly more efficient in terms of computational cost and
independent of the order of input data. In this paper, the
batch learning SOM (BLSOM) forms the basic structure of
the proposed multi-layer network.

Let Ψ = {ψi|ψi ∈ Rd, i = 1, . . . , I} represent the
training data set for one particular object category and each
training data ψi represents a grasp candidate. A finite set
Ω = {ωj |ωj ∈ Rd, j = 1, . . . , J} denotes locations for all
the neurons in the competitive layer. In general, there are four
steps to perform the batch learning algorithm: initialization,
competition, cooperation and adaptation.

1) Initialization: In this step, the locations of each neu-
ron, Ω, are initialized with certain values (the details of
the initialization method will be introduced in Section
IV-B).

2) Competition: Present the entire training data set, Ψ, to
the network. For each training data, the closest neuron
(i.e., the best matching unit) is determined based on
the Euclidean distance by

αi = argmin
j
‖ψi − ωj‖2, (1)

where αi denotes the index of the winning neuron
corresponding to the training data, ψi. This winning
neuron represents the spatial location of an “excited”
neuron, thereby determining the basis of cooperation
for a topological neighborhood around it.

3) Cooperation: The most essential feature of SOM is
that it utilizes the idea of topological neighborhood
to define the relation between each neuron. There are
some important properties of a topological neighbor-
hood. The maximum of such neighborhood is at the the
central neuron. In addition, it is symmetric about the
associated central neuron and monotonically decreases
as it gets far away from the central neuron. Specifically,
the topological function of two neurons is defined as

hαi,j = exp

(
−‖ωj − ωαi

‖22
2σh(n)2

)
, (2)

where σh (referred to the learning rate) controls the
variation rate of the correlation between two neurons.

In general, σh decreases exponentially with time as

σh(n) = σh(0) exp

(
−n− 1

nmax

)
, n = 1, ..., nmax (3)

where n indicates the current iteration number, σh(0) is
the initial value of σh and nmax denotes the maximum
number of iterations.

4) Adaptation: In this step, each excited neuron is up-
dated through suitable adjustment made to its location
so as to increase the resemblance between the excited
neurons and the training data in terms of data distri-
bution. The update of the location is expressed as

ωnewj =

∑I
i=1 hαi,jψi∑I
i=1 hαi,j

. (4)

IV. GRASP CANDIDATES ANALYSIS

In this section, we present a multi-layer network to analyze
the grasp candidates and a novel initialization method to
determine the locations of initial neurons. The proposed
network can also automatically adjust the size (i.e., the
number of neurons) based on the training data set.

A. Grasp Training Set

Each training data vector contained in Ψ is defined as

ψi =
(
ψTi , ψ

D
i , ψ

O
i , ψ

G
i

)′
. (5)

ψTi ∈ RT denotes the tasks that are learned from the experi-
ments and are represented by a series of binary numbers. The
value of T is determined based on the number of tasks. For
instance, if there are two tasks (i.e., delivery and tool use),
T is assigned with value 1 (i.e., 0 for delivery task and 1 for
tool use task). Note that, although some objects can be used
to fulfill the same task (both bottles and mugs can be used
to pour water from them), such task needs to be encoded
individually for each object category. ψDi ∈ R3 denotes the
dimensions of the bounding box of the object. ψOi ∈ R4

denotes the orientation of the object with respect to the base
of the robotic manipulator in quaternion. ψGi ∈ R16 denotes a
data vector which consists of all the information related to the
grasp execution, such as initial joint position (R3) and joint
velocity (R3) of each finger, position (R3) and orientation (in
quaternion R4) of the hand with respect to the center of the
object (i.e., the center of bounding box) and the strain-gauge
data (R3) from each finger. The information contained in ψGi
will be applied to the target object to accomplish a desired
task.

B. Network Initialization

As mentioned in Section I, most of the existing initializa-
tion methods eliminate the outliers from the training data set
in the process of initialization to prevent problems happening
in the data analysis. In our case, however, each individual
training data (i.e., grasp candidate), even the outliers, need
to be considered as candidates for initial neurons.

In this paper, a set of representative training data are
selected to form the initial neurons for the network. To
achieve this, the Gaussian kernel is utilized to measure the
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similarities between the data and is defined as the classical
squared exponential function with one constant hyperparam-
eter, σk,

k(ψi, ψj) = exp

(
−‖ψi − ψj‖

2
2

2σ2
k

)
. (6)

Then, an objective function is constructed based on Eq. (6)
as

Ti =
1
J

∑J
j=1 k(ψi, ω0,j)

1
I−J−1

∑I−J−1
l=1 k(ψi, ψl)

, (7)

where ω0,j represents the locations of the initial neurons. The
numerator describes the relation between the current training
data and the selected initial neurons, and the denominator
characterizes the relation between the current training data
and the rest of unselected training data. The proposed ini-
tialization method then greedily selects a serious of optimal
weighting factor in the sense that they minimize Eq. (7). In
other words, the desired initial neurons should be most dis-
similar to each other and most similar to unselected training
data. Specifically, after determining J initial neurons,

ω0,J+1 = ψ∗i , (8)

where
ψ∗i = argmin

ψi∈Ψ\Ω0

Ti (9)

where Ω0 represents the set of all selected initial neurons,
and Ψ\Ω0 denotes all unselected data in the training set.
ψ∗i will not be considered as a candidate for the initial
neuron in the rest of initialization process. The details of
the implementation of the proposed initialization method to
select a total of J initial neurons are shown in Table I.

Input: (1) Original training set, Ψ = {ψ1, ..., ψI}
(2) Number of initial neurons, J

Output: K optimal initial neurons, Ω0 = {ω0,1, ..., ω0,K}
1: if j = 1 (i.e., the first neuron) do
2: for every training data, ψi, do
3: Calculate 1

I−1

∑I−1
l=1 k(ψi, ψl)

4: end for
5: Determine the optimal neuron, ψ∗i , as
6: ψ∗i = argminψi∈Ψ

1
1

I−1

∑I−1
l=1

k(ψi,ψl)

7: else
8: for every unselected training data, ψi, do
9: Calculate Ti by Eq. (7)
10: end for
11: Determine the optimal neuron, ψ∗i , by Eq. (9)
12: end if
13: Update Ω0 = Ω0 ∪ ω0,j , where ω0,j = ψ∗i
14: Stop, if J neurons are selected. Otherwise, back to Step 1.

TABLE I: Proposed initialization method

C. Multi-layer Network

There are four major factors that characterize human grasp
choices [25]:
• Desired Tasks: The tasks that have to be accomplished,

such as delivery and tool use.

• Object type: The geometric information on the target
object.

• Object pose: The position and the orientation of the
target object.

• Grasp type: An appropriate task-oriented hand pose
and the corresponding motion of the hand.

Based on these criteria, we develop a multi-layer network
which is comprised of four connected layers. The structure
(i.e., number of neurons/groups) of each layer is different,
due to the different criteria employing on each layer.

The training data set, Ψ, is first clustered based on the task
criterion on the first layer. The neurons on the first layer,
ωTjt (jt = 1, ..., Jt), have the same data structure as ψT and
are used to cluster Ψ into Jt (Jt = 2T or Jt = 2T − 1)
groups. Specifically, only the first portion of ψi (i.e., ψTi ) is
considered in the clustering process on this layer.

On the second layer, each group from the previous layer is
further clustered into Jjtd groups based on the dimensions of
the training objects. The value of Jjtd depends on the number
of data centered around ωTjt . Specifically, it is initially
determined by the 2K rule which is given by

Jjtd = dlogKjte, (10)

where Kjt denotes the total number of training data that
are assigned to the neuron ωTjt . Hence, the number of
neurons on the second layer may be different for each
group. The neurons on the second layer are represented
by ωDjt,jd

(
jd = 1, ..., Jjtd

)
which has the same structure

as ψD. The initial locations of ωDjt,jd in each group are
determined by applying the proposed initialization method
and further adjusted to satisfy the conditions of the network
dynamics (the details of which will be introduced in the next
subsection). Eventually, the locations of neurons are formed
the same pattern as the data vectors from the connected
parent group on the previous layer.

Following the same procedure operated on the sec-
ond layer, each group from the second layer is clus-
tered into Jjt,jdo groups based on the orientations of
objects, ψOi , on the third layer and continuously clus-
tered into Jjt,jd,jog groups based on the grasp data,
ψGi , on the forth layer. The neurons on the third and
forth layers are represented by ωOjt,jd,jo

(
jo = 1, ..., Jjt,jdo

)
and ωGjt,jd,jo,jg

(
jg = 1, ..., Jjt,jd,jog

)
, respectively. Eventu-

ally, the network generates a codebook and each code in
the codebook consists of a series of connected neurons

Ωc =

{
ωcj |ωcj =

(
ωTjt , ω

D
jt,jd

, ωOjt,jd,jo , ω
G
jt,jd,jo,jg

)′}
.

Ωc contains Jc representative grasps and will be used for the
online grasp generation and execution. The structure of the
proposed multi-layer network is illustrated in Fig. 2.

D. Network Dynamics

As mentioned in the precious section, the numbers of
the initial neurons on the second, third and forth layers are
determined based on the 2K rule. Although it is easy to
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Fig. 2: The structure of the proposed multi-layer network.
The training data represent the grasp candidates collected
from the experiments. Neurons on different layer are associ-
ated with different portions of the training data. Eventually,
each output data in the codebook consists of one particular
neuron from each layer.

implement, the number of the neurons may not be optimal
for analyzing the data in the sense of accuracy of cluster-
ing. Moreover, the manipulators should keep improving the
grasping skill as they interact with more and more objects. In
other words, the codebook should constantly update through
changing the sizes of layers in the network.

To address the issue of identifying a proper number of
neurons, we propose an auto-growing algorithm to adjust the
size of the network through adding or removing neurons. In
order to do so, a distortion function is used to quantify the
quality of clustering for each group and given by

Jj =

I∑
i

1{αi = j}‖ψi − ωj‖2, j = 1, ..., J, (11)

where αi is defined by Eq (1), and 1{•} represents an
indicator function. Specifically, 1{•} = 1 only when the
argument inside is true, and 0 otherwise, i.e., 1{True} = 1
and 1{False} = 0. For instance, 1{2 = 2} = 1 and 1{5 =
3} = 0. Equation (11) characterizes the correlation between
the neuron and the input data surrounding it. We then define
a minimum threshold value, δmin, and a maximum threshold
value, δmax, to control the compactness of each cluster
(i.e., range of variation within each cluster). In particular,
if the Euclidean distance between some input data and the
closest neuron to which they have been assigned is greater
than δmax, then the input data which is the furthest from
the neuron will be considered as an additional neuron and
inserted into the network. This process is illustrated in Fig.
3a. On the other hand, if the distance between a neuron and
every data surrounding it is less than δmax, but the average
value of distortion function, J̄j , of that neuron is greater than
δmin, then such neuron will be removed from the network, as
shown in Fig. 3b. Once the process of insertion and removal
is completed, the locations of neurons are refined by the
BLSOM. This procedure is repeatedly executed until the
conditions of the network dynamics are satisfied. The details
of this procedure is shown in Table II.

!"#$

Additional 
neuron insertion

Neuron 
refinement 

(a) Neuron insertion.

!"#$

Neuron 
removal

Neuron 
refinement 

!"%&

(b) Neuron removal.

Fig. 3: Neuron insertion (a) and removal (b).

Conditions: (1) ‖ψi − ωj‖2 < δmax, ∀αi = j

(2) J̄j < δmin

1: for every group, j = 1 to J , do
2: while either condition 1 or condition 2 is true do
3: if condition 1 is false do
4: Determine the index of the additional neuron by

αinsert = argmaxi∈I 1{βi = j}‖ψi − ωj‖22
5: Insert ψαinsert as an addition neuron to the network
6: elseif condition 2 is false do
7: Remove ωj from the network
8: end if
9: Refine positions of neurons by BLSOM
10: end while
11: end for

TABLE II: Dynamics of the proposed network.

V. GRASP GENERATION AND CODEBOOK UPDATE

Using the codebook produced from the proposed multi-
layer network, the process of generating a task-oriented grasp
for a novel object and that of updating the codebook are
presented in this section.

A. Task-Oriented Grasp Generation

Assuming the dimension and orientation of the target
object is known, a data vector associated with the desired
task and the target object is defined as

Ψnovel =
(
ψTnovel, ψ

D
novel, ψ

O
novel

)′
. (12)

Thus, a suitable grasp can be selected from the codebook by

β∗ = argmin
j∈Jc

‖Ψnovel −
(
ωc,Tj , ωc,Dj , ωc,Oj

)′
‖2, (13)

where β∗ denotes the index number of the selected represen-
tative grasp. The data related to the grasp execution, ωc,Gβ∗ ,
is retrieved from ωcβ∗ and applied to the target object to
accomplish the desired task.
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B. Codebook Update

As mentioned in subsection IV-D, robots need to improve
their grasping skills though constantly updating the code-
book. Once the desired task is successfully executed by
the selected representative grasp, the original codebook is
updated with the data contained in Ψnovel along with ψGnovel
which is recorded during the grasp operation. Consequently,
the relation between each representative grasp and the cor-
responding generalized models is enhanced.

VI. RESULTS

In this section, the performance of the proposed ini-
tialization method and the auto-growing algorithm is first
evaluated in simulation, and then the proposed knowledge-
based grasp planning method is validated through a number
of experiments conducted with different knives.

A. Simulation Results

The proposed initialization method is applied to localizing
the initial neurons on an artificial two-dimensional (2D) data
set. The data set consists of 7 regions in which 30 data
points are uniformly distributed and 4 regions located at
each corner where some sparse data points appear. The data
points are indicated as the dot (‘•’) markers in Fig. 4a. We
also compare the performance of the proposed method with
a popular approach, the Kaufman approach [13], in terms
of the accuracy of the clustering. The Kaufman approach
is one popular method in the initialization problems and
its performance has been proved to be better than other
approaches in [20]. The basic idea of the Kaufman approach
is to select the first initial neuron at the most central location
in the data set and iteratively determine the rest so that the
resulting neurons can represent the dense distribution of the
data set.

Following the procedure of the proposed initialization
method introduced in subsection IV-B with σk = 0.1, 11 ini-
tial neurons are sequentially determined and indicated as the
circle (‘◦’) markers in Fig. 4a. Because we take the outliers
into account in the process of localizing the initial neurons,
the selected initial neurons do not only cover the majority
part of the data set, but also indicate both the existence and
the locations of the outliers. As a comparison, the selected
initial neurons based on the Kaufman approach are indicated
as the cross (‘×’) markers in Fig. 4a. The pattern of the
data set can be represented by these neurons appropriately.
The outliers (i.e., sparse data points close to the corners),
however, are clearly neglected in the initialization process
as expected. In order to further compare the accuracy of the
proposed method with the Kaufman method, we refine the
selected initial neurons indicated in Fig. 4a by the BLSOM.
Given the maximum number of iterations n = 2 and the
initial value of learning rate σh(0) = 0.1, the clustering result
using the initial neurons selected by the proposed method
is illustrated in Fig. 4b, where all the regions including the
ones at corners are precisely located. In Fig. 4c, those corner
regions, by contrast, are merged into the closest data points.

As a result, the accuracy of the clustering result is low due
to the effect of the outliers.

(a) Initial neurons (b) Proposed method (c) Kaufman method

Fig. 4: Initial positions of 11 neurons selected by the
proposed method and the Kaufman method (a). Refined
positions through BLSOM using the proposed method (b)
and the Kaufman method (c).

To evaluate the performance of the proposed auto-growing
algorithm, the optimal number of clusters for the same 2D
data set is automatically determined by the proposed method.
To demonstrate the advantage of the proposed method, a
classic density-based method [22] (i.e., insert a neuron when
there is a cluster far away from others and remove a neuron
when two clusters are too close to each other) is also applied
to the same data set.

(a) Proposed method (b) Density-based method

Fig. 5: Progressively select 11 neurons using the proposed
method (a) and the density-based method (b).

In the simulation, we let δmax = 0.2 and δmin = 0.1.
Given n = 3 and σh(0) = 0.1, the clustering result using
the proposed method is demonstrated in Fig. 5a, where the
data set is clustered into 11 groups including every regions
in the center as well as the ones at corners. By contrast,
the result of running the density-based approach to select 11
neurons is shown in Fig. 5b. Apparently, more neurons are
needed to satisfy the conditions introduced in Table II due
to the poor clustering result. As a consequence, the process
of determining the number of clusters using density-based
approach gets computationally demanding and inefficient.

B. Experimental Results

In this subsection, the proposed knowledge-based grasp
planning is applied to the task-oriented grasp execution for
a categories of knives.
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1) Experimental Setup: The proposed approach is tested
on a Barrett Whole Arm Manipulator (WAM) equipped with
a three-fingered BarrettHand, as shown in Fig. 6. The test
category consists of six different kitchen knives which are
shown in Fig. 7. The dimensions of the bounding box of
each knife are listed in Table III. The knives are placed on
a foam base with inserting a small part of cutting edge into
the base to increase the stability of the knives, as shown in
Fig. 6.

7 DOF WAM Arm

BarrettHand

Strain gauge
sensor

Target object

Fig. 6: Experimental setup.

1 2 3 4 5 6

Fig. 7: Training objects (knives) used in experiments.

Object # Dimensions of bounding box (cm)
Length Width Thickness

1 29.6 8.4 2.8
2 30.7 8.3 1.8
3 29.6 5.1 2.1
4 29.5 3.4 1.7
5 25.8 2.4 1.6
6 22.1 2.4 1.6

TABLE III: Dimensions of the training knives.

2) Grasp Candidates Collection: In order to increase the
reliability of each grasp candidate and efficiently eliminate
the inappropriate grasps, the grasp candidates used to build
up the training data set are collected in the experiments
instead of simulations. Two tasks (delivery and tool use) are
performed with each training knife, as shown in Fig. 8. We
encode the delivery task as (0, 0)′ and the tool use task as
(0, 1)′. The blade of each knife is grasped from the top to
perform the delivery task as shown in Fig. 8a, and the handle
of each knife is grasped to accomplish the tool use task as
shown in Fig. 10c. The stain-gauge data can be acquired

from the corresponding sensors equipped on BarrettHand
and is used to control the amount of grasping force. Each
knife is placed in 36 different orientations with respect
to the base of WAM, and two grasp candidates associates
with each orientation (one for each task) for each knife are
executed. Eventually, 432 grasp candidates are collected from
the experiments in total.

(a) Delivery task (b) Tool use task

Fig. 8: Collecting task-oriented grasp candidates through
using training knives to accomplish desired tasks: delivery
(a) and tool use (b).

3) Online Grasp Execution: Once the training data set is
built up, we evaluate the proposed approach by performing
task-oriented grasp on a number of novel objects (similar to
the training objects but apparently different in both shape and
size), as shown in Fig. 9. The dimensions of the bounding
box of each test knife are listed in Table IV. We let n = 2,
σh(0) = 0.1 and σk = 1 through out the entire network.
Given δmax = 0.5 and δmin = 0.25 for the second layer,
δmax = 3 and δmin = 2 for the third layer and δmax =
0.15 and δmin = 0.1 for the third layer, 36 representative
grasps are generated to form a codebook for the category of
knives. Figure 10 demonstrates that each test knife can be
successfully grasped in accordance with the desired tasks.
The information contained in the codebook for the knife
category is updated with the new data after each grasping
execution so as to improve the grasping skills.

1 2 3

Fig. 9: Novel objects used to test the proposed approach.

VII. CONCLUSION

This paper presents a knowledge-based approach to the
problem of task-oriented grasp planning. A multi-layer self-
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Object # Dimension of bounding box (cm)
Length Width Thickness

1 29.2 6.7 1.7
2 25.9 2.5 1.6
3 21.1 3.4 1.5

TABLE IV: Dimensions of the test objects (knives).

(a) Test knife 1 (b) Test knife 2 (c) Test knife 3

Fig. 10: Task-oriented grasp execution using test knives.

organized network is constructed to analyze the training
data and generate a small number of representative grasps
which can be applied to a group of similar objects. By
using Gaussian kernel to measure the similarity between
the training data, a novel method that can determine the
locations of initial neurons while taking outliers into account
is proposed. Simulation result shows that the proposed initial-
ization method can accurately capture the outliers in the data
set and render the distribution of input data. Moreover, an
auto-growing algorithm is also developed so that an optimal
number of clusters can be automatically and efficiently
determined based on the structure of the data. Specifically,
the codebooks are capable of constantly improving and
adapting through each interaction with novel objects. The
proposed knowledge-based approach is validated in a number
of physical experiments in which a suitable grasp can be
successfully generated for a novel object in accordance with
a specific task.

Further work will include the incorporation with vision
cameras to detect the pose of the target objects so as to
enhance the practicality of the proposed grasp planning
approach.
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