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Abstract— In this paper, we address the challenge of sensor
fusion in Soft Robotics for estimating forces and deformations.
In the context of intrinsic sensing, we propose the use of a
soft capacitive sensor to find a contact’s location, and the
use of pneumatic sensing to estimate the force intensity and
the deformation. Using a FEM-based numerical approach, we
integrate both sensing streams and model two Soft Robotics
devices we have conceived. These devices are a Soft Pad and a
Soft Finger. We show in an evaluation that external forces on
the Soft Pad can be estimated and that the shape of the Soft
Finger can be reconstructed.

I. INTRODUCTION

The emergence of Soft Robotics has brought about a new
stream of ideas in the domain of sensing. The challenge
to sense external forces and the shape of these deformable
robots has spawned many new sensor designs and the use of
novel sensing principles. Meanwhile, estimating the state of
a soft robot based on multi-modal sensing streams is an open
challenge. In general, approaches for sensing can be found
that use learning-based, analytical and numerical methods.

In this work, we follow up on our previous work on
model-based pneumatic sensing [1] and we explore the idea
of model-based sensor fusion to address force and shape
sensing in Soft Robotics. The central idea of this approach is
to use a numerical model, which allows to differentiate the
measurement of deformation from what causes it. To this
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Fig. 1: In this work, we present two devices, a Soft Pad and
a Soft Finger, that include capacitive and pneumatic sensing.
Capacitive sensing allows us to find contact locations and
pneumatic sensing to measure the amount of deformation.
Sensor fusion is mediated by a numerical model (FEM),
which allows us to estimate the forces being applied and
the deformation of the devices.

end, we use capacitive and pneumatic sensing. We employ
capacitive sensing for detecting the location of external con-
tacts and pneumatic sensing for quantifying the deformation.
We provide two example devices that display the principles
of the proposed approach (see Fig. 1, for dimensions Fig. 5):

• A Soft Pad that has a deformable electrode array
embedded in its upper layer and embedded cavities
underneath. The electrode array allows the detection of
contact location, while the cavities allow for quantify-
ing the amount of deformation by measuring volume
changes. Using both sensing streams and the model, the
contact’s location, the contact’s force and the resulting
deformation can be estimated.

• A Soft Finger that has electrodes on its segments and
pneumatic cavities between its segments. The electrodes
allow for detecting contacting objects, while the cavities
again allow sensing the amount of deformation. In ad-
dition, the finger is actuated by a cable, which can also
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be considered by the model. Therefore, the sensing of
external contacts can take into account the deformation
already caused by the actuation.

For the Soft Pad, we evaluate the performance of the contact
location and the force estimation. For the Soft Finger, we
show that external contacts can be detected reliably and
provide an evaluation for the estimation of the deformation.
The results for both platforms are encouraging to further pur-
sue this sensor fusion approach. A video accompanying this
paper illustrates these approaches and provides additional
example interactions to the ones presented here.

The remainder of the paper is structured as follows: In the
next section, we review the related work from the field. In
Sec. III, we describe the devices we fabricated and how we
obtain capacitive and pneumatic measurements respectively.
In Sec. IV, we describe our modeling approach and how
it allows us to fuse the sensor streams. Then, in Sec. V,
we provide an experimental validation using the proposed
devices. Finally, in Sec. VI, we summarize our contributions
and give a perspective on future research ideas.

II. RELATED WORK

A variety of measurement principles/physical effects have
been shown to work for tactile sensing and shape sensing in
deformable materials. Pneumatic sensing is a popular option
for tactile sensing. One of its advantages is, that it allows
sensing and actuation at the same time, as shown in [2]. The
authors implemented a soft pad that can sensorize a robot’s
environment and provide cues for grasping by estimating
the center-of-mass and orientation of an object, all while
having variable stiffness. Our own previous work [1] uses
embedded air chambers for detection of location. However,
these approaches do not scale very well in terms of the
number of sensing points, compared to capacitive sensing,
e. g. [3]. This is due to the bulky instruments, valves and
tubing involved. One technology that has received significant
attention in recent years in sensor designs is using liquid
metal, i. e. gallium-indium-tin, Galinstan. The liquid can be
embedded in microchannels inside soft structures. Depending
on the geometry of the channels, changes in strain or tactile
pressure bring about changes in resistance for example [4].
Another significant trend is the development of additively
manufactured sensors [5], where the authors show a flexible
design inspired by the rigid electrode layouts prevalent in
consumer-electronics. In this work, we follow up on [5],
but this time we use Galinstan to fabricate deformable
capacitive touch-pads, which exhibits great deformability and
is therefore better suited for our use-case [6].

Regarding shape sensing, some interest is directed towards
optical sensing principles, like Ledermann et al., who have
studied the use of optical fibers, e. g. [7]. For shape sensing,
even capacitive sensing has been studied recently by Scimeca
et al. [8]. The authors propose to use a capacitive tactile
array at the base of a soft finger segment, sensing pressure
distribution in order to estimate the pose of the tip using
a feed-forward neural network trained using visual tracking

data. However, these approaches do not include measuring
of external contacts to estimate the resulting deformations.

Works close to our approach in terms of multi-modal
sensing are due to Truby et al. [9], Soter et al. [10] and Yang
et al. [11]. Truby et al. show a complex sensorization of a soft
finger, featuring a bending sensor, an inflation sensor and a
contact sensor on the finger-tip. The bending measurement is
shown to be independent of the inflation readings, meaning
that it is possible, in principle, to estimate the bending radius
independently of the pressure used for actuation, for instance,
when the finger contacts an object. However, their work
only shows results for regressions and does not deal with
multiple interactions along different directions. Soter et al.
propose a design in which cavities inside a soft pad are
filled with a colored liquid [10]. A display showing the level
of the liquid in the cavity is used to monitor touch and
bending interactions on two different devices. In terms of
modeling, the sensor is identified at a single pressure point
or bending along one direction through regression. Yang et
al. [11] conceive a pneumatic sensor in the shape of a cuboid
made out of silicone. They model the deformation of the
wall carrying a weight similar to a beam. They find the
beam deformation that best explains the pressure through
the volume change, which results in the estimation of the
force/weight. The same pneumatic sensor is then used to
detect curvature by means of a geometric model (not a
beam). However, this approach lacks an integration strategy,
where shape and force can be estimated using the same
model.

In general, a proficient approach for integrating multiple
sensor streams is still missing. We propose a method which is
entirely model-based, i. e. that does not rely on learning, and
that leverages this model to fuse multi-modal sensor streams
in order to estimate forces and deformations. Learning can
achieve high levels of accuracy, e. g. [8]. However, the
feature-space used for learning grows exponentially for each
additional sensor added to device. Meanwhile, a model-based
approach scales well with the number of sensors, because
adding further constraints that represent them in the model
is low cost (see Sec. IV). Finally, the presented model-
based approach easily adapts to changes in the design of the
devices, whereby the learning effort could be wasted upon
redesign.

III. SENSING

A. Capacitive Sensing

Two main realizations of capacitive sensing are possible:
single-ended or self-capacitive (see Fig. 2 (left)) and mutual-
capacitive (see Fig. 2 (right). In single-ended sensors, an AC-
voltage is applied to a send-electrode (Tx). This potential is
responsible for an electric field that couples into any nearby
conductors or objects capable of draining the electric field
(such as, e. g., the human body). In the example of Fig. 2, the
sensor couples mainly to a human finger, which is considered
as a conductor that has an impedance Z to ground. Some
of the coupling in this scene is static (in blue) and some is
subject to change as the human finger moves. Changes in the
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Fig. 2: Single-ended mode (left): The electrode is driven
with an electrical potential and generating an electrical field
between the measurement electrode and the object. Mutual-
capacitive mode (right): the right electrode transmitter or Tx
is driven, generating an electrical field, which ends at receiver
or Rx. A conductive object within the measurement range
blocks/shields the field lines (green) between the electrodes.
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Fig. 3: Left: An array of electrodes made out of Galinstan
worked into a deformable silicone sheet. Middle: A 4×4
version of the Soft Pad. Right: A transparent version of the
Soft Finger where the size and location of the electrodes is
shown.

coupling will be reflected by changes in the amplitude of the
measured send current. Static coupling, also called parasitic
effects, will cause an offset value. To guide the coupling to
a desired region in the sensing area, active-shielding can be
employed.

In mutual-capacitive sensors, two kinds of electrodes are
connected to the sensing unit, send (Tx) and receive (Rx).
Again an AC-voltage is applied to Tx and the potential of
Rx is brought close to ground. Therefore, an electrical field
is built up between the two electrodes, which is responsible
for a displacement current that is usually measured at Rx.
In Fig. 2 (right), it is shown that a human finger, being a
conductive object with a connection to ground, will drain
a certain amount of field lines between Tx and Rx. In this
case, the displacement current will drop. This is the so-called
shielding effect due to the object. The complementary effect,
coupling, can be observed in tactile sensing elements where
the electrode distance changes due to external forces. The
electrodes approaching each other leads to an increase of
the displacement current, as described e. g. in [3].

B. Sensing Elements, Electronics and Fabrication

In this work, there are three capacitive sensing elements
being used, which are shown in Fig. 3. We have developed
an 8×8 pad, a 4×4 pad and the sensors embedded in the Soft
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Fig. 4: Left: The interlocking diamond-pattern in which the
electrodes are arranged including overall size information.
Right: A capacitive image obtained using single-ended mea-
surements when pressing on the Soft Pad as seen in Fig 1.

Finger. The sensitive area of the 8×8 pad has the dimensions
of 64×64mm2 (see Fig. 4). The 8×8 array included in the
Soft Pad and the electrodes inside the Soft Finger are driven
in single-ended mode and are used in the main evaluation
of the proposed approach. The 4×4 pad is driven in mutual-
capacitive-mode to investigate multi-touch. The electronics
hardware used for the 8×8 pad and the Soft Finger in the
single-ended mode were previously described in [12]. The
hardware used for the 4×4 pad in mutual-capacitive mode
was previously presented in [13].

The capacitive sensing elements of the Soft Pads use
Galinstan liquid metal electrodes encased in silicone rub-
ber to allow for great deformability. They are made using
an openly accessible, Do-It-Yourself fabrication approach,
called Silicone Devices, which does not require any advanced
machinery, except for a CO2 laser cutter [6]. Circuit compo-
nents (in this case, only connectors) were first fixated on the
surface of a silicone sheet. Next, on top of these connectors,
a stencil is laser cut in place out of vinyl sticker. Galinstan
is then stencil-patterned into a first layer of the interlocking
diamond design and subsequently overmolded with silicone
rubber. The second layer of the design is then created by
repeating the steps. All consumable items can be readily
purchased online, as detailed in the fabrication approach’s
accompanying Instructable.1

C. Implementing a Capacitive Touch-Pad

In Fig. 4 (left), the schematic of the 8×8-pad is shown.
Two capacitive sensor modules with 8 channels each are
used to perform the capacitive measurement in single-ended
mode. The modules are synchronized with a clock signal to
reduce cross-talk effects between them. Every column and
row are driven with an AC exciter signal with a frequency
around 100 kHz and a peak-to-peak amplitude of 5 V. The
corresponding changes in the amplitude due to the presence
of an object at the pad is calculated and provided at 100 Hz.
In fact, each row and column detects the finger before
contact. By applying the outer product to the collected
readings scol of the columns and srow of the rows, that is
Img = scol ⊗ srow, a capacitive image is generated with the

1https://www.instructables.com/id/Silicone-Devices/
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Fig. 5: Distribution of the cavities inside the Soft Pad and
the Soft Finger, example signal values from the deformations
seen in Fig. 1 and dimensions of the devices.

resolution of 8× 8 (see also [5]). Fig. 4 (right) shows the
resulting image when a finger touches the pad (see Fig. 1).
Further examples are shown in the video attachment. To
estimate the location of an external contact, the readings of
the columns and the rows are interpolated independently to
yield the x and y coordinate respectively, assuming that only
one touch event occurs at a time.

D. Pneumatic Sensing

Regarding pneumatic sensing, we use two types of sensors
in this work. The time-integrated values of air-flow sensors
are used to directly measure the changes in volume of the
cavities inside the Soft Pad, as in our previous work [1].
There, we provided a detailed account of the sensing princi-
ple including sensitivity, hysteresis and repeatability. Pres-
sure sensors are used to measure the pressure change in
cavities inside the Soft Finger. The structures of the cavities
and example signals are shown in Fig. 5. In the case of the
Soft Pad, the structure of the cavities is aimed at covering the
sensitive area in a uniform way, i. e. approximately uniformly
distributed sensitivity with respect to touch. Highly non-
uniform sensitivity is more difficult to model, as seen later
in Sec. V-A. In the case of the Soft Finger, the cavity shape
and distribution are responsible for sensitivity along the two
desired bending directions (in the lateral and frontal planes).
We arrived at these designs through experience as well as
trial and error, but we think that an automated approach could
help in finding optimized shapes for the given tasks in the
future.

The air-flow sensors used are the D6F-P0001A1 by OM-
RON Corp. One great advantage they have is, that they
are suitable for a large range of force measurements, as
they do not saturate at a certain force level, like a pressure
sensor would, while maintaining a high resolution. One of
their main weaknesses is a drift-effect that appears over
time, which is reflected by the hysteresis [1]. This can be
circumvented on the Soft Pad by resetting the integration
every time the user releases the finger from the pad. However,
this drift can not be dealt with by re-initialization in the case
of the Soft Finger. Therefore, we decided to fall back to
using the NXP Semiconductors MPX5100 absolute pressure
sensors, which have no noticeable drift.

�v3
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Fig. 6: In SOFA, actuation forces can be distributed to any
number of points on the FEM-mesh.

IV. NUMERICAL MODELING TECHNIQUES

In this section we describe the numerical model that is
implemented in our simulation framework SOFA2.

A. Online Finite Element Modeling (FEM)

We use the FEM, which yields the internal elastic forces
F(q), given that the nodes of the FEM mesh are at positions
q (see Fig. 1 right). In SOFA, we use a formulation that
accounts for the geometric non-linearities of the deforma-
tion and the material is characterized by the Hooke’s law
(Young’s modulus and Poisson’s ratio). During each step i
of the simulation, a linearization of the internal forces is
computed:

F(qi)≈ F(qi−1)+K(qi−1)dq, (1)

where dq = qi − qi−1 is the displacement of the nodes and
K =

∂F(qi−1)
∂q is the tangential stiffness matrix for the current

node positions q. To complete the picture, external forces are
included:

0 =−K(qi−1)dq+P+F(qi−1)+HT λ . (2)

HT λ is a vector that gathers boundary forces, such as
contacts or external controlled inputs, e. g. cable actuators.
The size of λ is equal to the number of rows in H and
to the number of actuators (contact forces, cables, etc.). P
represents known external forces, such as gravity. Then, (2) is
solved under the assumption of static equilibrium, delivering
a motion that is a succession of quasi static states. Please
refer to [14] and [15] for a more in-depth discussion about
the FEM formulation used here.

B. External Forces Actuation

In SOFA, it is possible to model external force actuators
that simply apply forces on some nodes of the FEM-mesh. In
this work, this force actuation is used to represent the pushing
on the Soft Pad or the Soft Finger. The actuation magnitude is
given by the pressure variable λ f , which can be distributed
to a number of points pi on the FEM-mesh, as shown in
Fig. 6. In this work, it is the capacitive sensors that drive the
location of the applied force and therefore the selection of the
points. Each resulting force �Fi is determined by the pressure
λ f and the 3D distribution �vi on nodes, i. e. �Fi =�viλ f . The
distribution is gathered in a row matrix Hf = [..., �vT

i , ...],
so that the expression HT

f λ f represents the force actuation
in (2).

2https://www.sofa-framework.org/
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Fig. 7: Illustration of the modeling of cable actuation in
SOFA on the example of a deformable finger (the figure
is adapted from [15]).

In modeling the Soft Pad’s indentation, we have set the
actuation directions all perpendicular to the sensor surface
and distribute the actuation magnitude equally among all
affected points in a certain radius, to match the indenter (see
Fig. 8). In the example of the Soft Finger, we use up to two
force actuators, each one applied to a single point.

C. Cable Actuation

Another one of the actuation modalities available in SOFA
are cables. Here we recapitulate on a previous paper [15],
where the approach to cable actuation was previously ex-
plained. A cable in SOFA is specified by a series of points
pi where the cable is attached to the FEM-mesh, as illustrated
by Fig. 7. A special point defined outside the FEM-mesh is
ppull , where the displacement/force is being applied. Here,
we illustrate the cable actuation displacement dc as being
applied by a rack and pinion system, like it is actually used in
this work. The displacement translates to a force �Fλc , having
a magnitude λc.

As in Sec. IV-B, each point pi is the placement for a
force constraint on the FEM-model. This time, the direction
of the constraint is found as the difference between the cable
direction after and before pi (see Fig. 7):

�vi,c = �vi,a − �vi,b. (3)

Like before, all the constraints are gathered in the row Hc =
[..., �vT

i,c , ...], so that the expression HT
c λc represents the cable

actuation in (2). The total cable length is calculated as

δc(p) =
N−1

∑
i=0

�pi+1 − pi�. (4)

D. Transforming Pressure Measurements to Volumes

The force and shape estimation method is currently based
on volume information as inputs, not pressures. As we are
using pressure sensors in the Soft Finger, it is necessary
to transform pressures to volumes. For now, we use the
assumption that the pressure inside the cavities of the Finger
does not significantly affect the shape of the cavity when
it is being compressed by the external forces or action of
the cable. In other words, we do not currently model the
forces due to the pressure inside the pneumatic cavities,
which in general could affect their shape. This is, however,

an acceptable simplification for the setup we use, as the
measured pressures are in the lower kPa-range (see for
example Fig. 5). This way, we use the ideal gas law to
transform from pressure readings to volumes:

PV = nRT, (5)

where P is the pressure, V the volume, n the number of moles
of gas, R the ideal gas constant and T the temperature. We
assume furthermore that we have constant temperature, so
that the right hand side of (5) is in fact constant. For the
initial conditions we get:

P0V0 = nRT =C. (6)

Therefore, the relationship between pressure and volume for
a measurement is:

ΔV =
C

(P0 +ΔP)
−V0. (7)

E. Finding Forces and Cable Displacement through Opti-
mization

Using inverse problem solving [15], we can optimize for
the actuation (force, cable) that best explains the volume
changes inside the pneumatic sensors of the Soft Pad and Soft
Finger (see Sec. III-D). The readings of the Soft Finger are
converted according to (7) from the pressure measurement.
Let Φi(q) be the function that maps the positions of the
nodes of the FEM-mesh to the volume of a pneumatic cavity
with index i ∈ {1,2, . . .}. Φi(q) can be calculated using the
triangles of the mesh defining the cavity and is already
implemented in SOFA.

The actuation forces due to pushing or the cables are given
by Δλ = (Δλ f 1, . . . ,Δλc1, . . .)

T . To find the relation between
the change in applied forces and the change in the (simulated)
volume ΔVi,sim of one pneumatic sensor we can write:

ΔVi,sim =
∂Φi(q)

∂q
K−1HT Δλ . (8)

Therefore, first the changes of forces are mapped to the cor-
responding nodes through HT , as discussed in Sections IV-B
and IV-C. The tangential compliance matrix K−1 transforms
these forces to (FEM-)node-displacements, which finally can
be mapped to changes in volume through the derivative of Φ
with respect to q. For conciseness, we rewrite ∂Φi(q)

∂q K−1HT

as Wi,va, which is the matrix that directly maps changes in
actuation force to changes in volume. Now, we can for-
mulate the optimization problem. We want to minimize the
difference between the simulated volumes ΔVi,sim =Wi,vaΔλ
and the real changes in volume ΔVreal = (ΔV1, . . . ,ΔVN)

T =
WvaΔλ :

Δλout = argmin
Δλ

�WvaΔλ −ΔVreal�2,

s.t. Δλmax ≥ Δλ ≥ 0.
(9)

Finally, we write out the squared expression. There, we
ignore the constant term corresponding to ΔV T

realΔVreal for
the optimization:

Δλout = argmin
Δλ

(Δλ TW T
vaWvaΔλ −2Δλ TW T

vaΔVreal). (10)



Fig. 8: Experimental setup for the Soft Pad.

Fig. 9: Distribution of the estimated contact locations for all
data points.

This quadratic program (QP) is solved using a QP-solver
with the method presented in [15]. If the force is applied
by a cable, once we have found Δλout and applied it to the
model, we can simply use (4) to find the corresponding cable
lengths δc, which in turn gives us the displacements dc.

In summary, this modeling approach allows to seamlessly
integrate the information from the capacitive sensors (push-
ing location), the information from the pneumatic sensors
(amount of deformation) as well as cable actuation to re-
construct the force acting on deformable structures. The
numerical model mediates the sensor fusion. Beyond that,
an estimation of the deformed shape is obtained.

V. EVALUATION

A. Soft Pad

To evaluate the performances of the presented approach,
we have performed an experiment designed to test the
accuracy of the localization and force reconstruction (see
Fig. 8). To this end, the Soft Pad was sampled in a regular
grid of 10×10 (100 times) in three different force levels:
∼5N, ∼10N and ∼15N. The diameter of the indenter is
20mm.

1) Localization Accuracy: Fig. 9 shows the estimated and
ground truth location of each contact during the sampling
procedure. The samples are organized by the Force Level
(1-3) with a marker at the estimated position. Overall, all

Pos. Error (mm) Pos. Error (%)
Force Level mean (mm) std (mm) mean (%) std (%)

1 (∼5N) 1.06 0.77 1.67 1.20
2 (∼10N) 1.16 0.76 1.81 1.19
3 (∼15N) 1.02 0.70 1.59 1.09

All 1.08 0.75 1.68 1.17

TABLE I: Positioning error for the capacitive array

Force Error (%)
Set mean std
All 10.89 11.00

Circular Worspace 7.79 5.24
CW FL 1 9.40 5.50
CW FL 2 6.42 4.77
CW FL 3 7.56 6.40

TABLE II: Force reconstruction error for Soft Pad

estimated positions fall within close proximity to the ground
truth position. The largest systematic deviations are on the
border of the array. That is: points are estimated to lie further
inside the array than their actual position. Since the location
is estimated as an average of neighboring signal values, this
is natural, as there are no measurements past the outside of
the array to compensate for that bias.

Table I shows the summary of the statistics pertaining
the localization accuracy. The overall accuracy, as shown
in the last row, is 1.08mm ± 0.75mm. This value being
around a 3% error is a satisfactory performance. What is
interesting for us to observe is, that the localization is mostly
insensitive to the amount of force applied (Force Levels 1-3).
Even if the pad is deformed, the localization performance
remains unchanged, which is a desirable property. For the
future, further analysis in other deformation regimes, such
as stretching, will be interesting. Overall, we think that
the overall performance can be improved by adapting the
measurement electronics further to this use case.

2) Force Estimation: The overall results of the force
reconstruction are summarized in Table II. Considering all
data points, the reconstruction error is 10.89%± 11.00%.
This value can be considered to be somewhat coarse. As
illustrated by Fig. 10a, which shows the data points for Force
Level 1, the estimation deviates most from the ground truth
on the corners of the array. Selecting a circular workspace of
radius r = 28 on the pad (the side length to the array is 56 =
2 ·28), i. e. avoiding the corners, decreases the reconstruction
error to 7.79%±5.24%. The area covered is still more than
75% and this is a more satisfactory value estimation error,
as it would be challenging to radically improve upon them.

Two main causes were identified for the remaining errors.
First, there is the dramatic difference in measured volume on
the corners compared to the rest of the array, even though
similar forces are applied. Second, there is a non-symmetric
behavior of the material, even though the applied forces
are uniform. Regarding the first type of error: while the
simulation can account for changes in stiffness, it remains
difficult to represent bigger changes correctly, such as on the
corner of the array. This is especially true for our simulation,



(a) Estimated vs. real forces over the
whole area of the array (Force Level
1)

(b) Volume distribution for Force
Level 1 over the whole area of the
array

(c) Estimated vs. real forces in a
circular subset of the area of the
array

(d) Volume distribution for Force
Level 1 over the circular subset of
the array

Fig. 10: Plots showing the detail of data points from Force
Level 1 regarding the error of force estimation and the
total volume measured at each point. Ground truth force
measurements are shown in blue, estimated forces in red.

because for real-time performance only a limited number of
elements can be used. Regarding the lack of symmetry in
the volume measurements: it indicates that there might be
an inconsistency in the fabrication of the silicone structure.
The fabrication process of this structure at this scale is
challenging, but we think it is possible to improve this
behavior. All things considered, we believe that these results
are encouraging for this kind of approach, as both types of
problems discussed can be addressed.

3) Considerations on Multi-Touch : The measurement
results with the 4×4 Soft Pad and mutual-capacitive read-
out are illustrated for one electrode in Fig. 11. There, the
sensitivity to proximity and force as well as the multi-touch
capabilities are shown: In part one, the finger is approaching
the pad and then touching it. This leads to a signal decrease
due to the shielding effect of the finger (see Sec. III-A). Then,
force is applied in part two and the signal increases again. In
this situation, the gap between the electrode layers becomes
smaller due to the force and thus we see a strong coupling
effect. In other words, this configuration is different than
the self-capacitive measurements, because the measurements
exhibit both sensitivity to proximity and force. Thus, in part
three, we see a signal increase due to the compression of a
neighbouring (the third) electrode. Due to the low modulus
of elasticity of the silicone, this compression force is seen
on the first electrode as well, but less strongly. In part

four, there is a another touch event as part of a multi-touch
configuration. The blue matrix plot in the lower part of the
figure illustrates the detection of touch points. Overall, these
results indicate that measurements in the mutual-capacitive
mode are a promising future approach for detecting contact
location including multi-touch as well as providing force
related readings, similar to traditional tactile sensors [3], [8].

Section 1 Section 2 Section 3 Section 4
slow touch force applied force on

3rd electrode
touch on 

3rd electrodes
1st and

multitouch

Fig. 11: Signal evolution for various touch and force events
on one electrode of the 4×4 pad.

B. Soft Finger

In this evaluation, we cover two aspects of the performance
of the Soft Finger. The first one is with respect to the ability
to detect one or more contacts by means of the capacitive
sensors and the second one is with respect to the estimation
of the shape.

1) Contact Detection: To detect a contact, a simple
threshold is applied to the signal of the capacitive sensors.
Then, the constraints corresponding to the contact are en-
abled in the model (see Sec. IV-B). The model will find the
amount of force applied to all enabled constraints, including
cable actuation, that best explains the measured changes
in deformation (volume). The amount of force found for a
contact is not determined by the intensity of the capacitive
sensor value, but by the optimization method. In Fig. 12,
the case of two simultaneous contacts is shown. The signals
corresponding to the enabled contacts is clearly distinct from
the not activated contacts. It is not necessary to fine-tune
this threshold to get satisfactory behavior for conductive
objects, such as the human finger. However, detection of
non-conductive objects remains a challenge for this setup.
A mutual-capacitive design could address these use cases.
For a more thorough display of possible interactions, please
see the attached video.

2) Shape Estimation: To test the accuracy of the shape
reconstruction, the lateral-tip shown in Fig. 13 was used. It
is attached to the test-bed displayed in Fig. 8. The finger
is pushed separately on the points p0 and p3 by 5, 10,
15 and 20 mm respectively. The estimated displacement of
p0 and p3 in SOFA is compared to the real displacement.
This experiment is performed with the finger starting from
its rest position as well as with the finger initially actuated
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Fig. 12: Two contacts are detected simultaneously on the
finger.
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Fig. 13: The finger is pushed by a lateral-tip on p3 and the
pose is reconstructed in SOFA.

by the cable, which is pulled by a distance of 10 mm. In
this scenario, SOFA uses both the cable actuation and the
contacts to estimate the pose of the finger (see also attached
video). The results are summarized in Table III. Overall,
the estimation error is 1.26mm± 0.85mm, or about 15 %,
which should be already useful in many applications. In this
setup, we have explored smaller deformations surrounding
the initial pose of the finger. While the positioning accuracy
of the test-bed is better than pa = 0.1mm, the pushing leads
to a pivoting of the finger over the lateral-tip. This pivoting
can be neglected for small displacements, but limits its use
for larger ones. Overall, to investigate larger deformations,
we will improve our test-bench, for example by using optical
tracking.

VI. CONCLUSIONS

In this work, we have shown a model-based approach to
combine capacitive sensing with pneumatic sensing to detect
and model touch in deformable structures. The numerical
model allows exploiting the strength of each measurement
principle. Capacitive sensing is used to detect contact loca-
tions and pneumatic sensing is used to detect the amount
of deformation resulting from the touch interaction. We
evaluate this approach on two devices, a Soft Pad and a

Point Cable Error (mm) Error (%)
Actuation (mm) mean std mean std

p0 0 1.93 0.64 16.45 2.43
p0 10 0.55 0.24 6.69 5.20
p3 0 1.12 0.67 8.00 2.31
p3 10 1.42 0.99 9.51 4.48
All 0 and 10 1.26 0.85 10.16 5.36

TABLE III: Displacement tests for the finger

Soft Finger. Our results indicate that this approach is a
promising alternative for the challenge of sensor fusion in
Soft Robotics. In the example of the Soft Finger, we even
show that our approach can handle pre-deformations due to
cable actuation.

One of the big limitations regarding the capacitive sensing
we know of is that we could not show the implementation
of high-resolution, multi-touch events. By dedicating more
effort to the mutual-capacitive sensing modality, we will
address this in the near future. Furthermore, we would like
to explore the application of our concept to more elaborate
Soft Robotics designs, such as a hand or a trunk-robot for
inspection tasks having redundant actuation.
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