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Abstract—This paper presents a robotic episodic cognitive 
learning framework based on the biological cognitive 
mechanism of hippocampal spatial cells. By emphasizing the 
cognition process and episodic memory in brain, the framework 
adopts the velocity modulated grid cells and place cells to afford 
the robot position cognition, abstracts the state neurons to 
represent the robotic state, and uses state neurons’ activity and 
connection to simulate the episodic memory construction 
process. The episodic memory is formed by a sequence of 
particular events consisting of visual features, state neuron, 
phase, and pose information. Besides an episodic-cognitive map 
building approach based on this framework is proposed, which 
performs closed-loop correction by resetting the spatial cells 
phase to keep the map accurate. The episodic-cognitive map 
built in this paper is a topological metric map to describe the 
topological relations of the particular events coordinates in the 
unknown environment. The framework is applied on a mobile 
robot platform, the robotic episodic cognitive learning and 
episodic-cognitive map building approach are investigated. The 
robotic experiments demonstrate that the framework can 
effectively achieve the robotic incremental accumulative 
learning, update the spatial cognition to the environment and 
construct the episodic-cognitive map. 

I. INTRODUCTION 

One of main objectives of recent robotics research is the 
development of robots which can be capable of realizing 
cognition to the unknown environment. The ability of spatial 
cognition is fundamental to robotic intelligent control, 
including environment exploration, map building, localization, 
and navigation [1]. The spatial cognition is also crucial for 
humans and animals to survive in the world. The three-maze 
navigation experiments revealed that the animal’s navigation 
depended on the cognitive maps in brain, and clarified that 
cognitive maps were not solely for mapping physical space but 
for a broad range of “cognitive space” [2,3]. 

Reviewing the literature on hippocampal function and 
physiology, a large body of evidences show that hippocampus 
is selectively involved in spatial cognition and memory. The 
hippocampus damage experimental research also shows that 
hippocampus is the main region for representation of the space 
and episodic memory, and mice without hippocampus could 
not complete the Morris water maze navigation [4]. The 2014 
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Nobel Prize in Physiology or Medicine is awarded to John 
O’Keefe, May-Britt and Edvard Moser for their discoveries of 
hippocampal place cells [5] and medial entorhinal cortex grid 
cells [6]. Place cells, grid cells, together with other cells [7, 8] 
constitute a comprehensive global positioning system (GPS) 
in brain. Based on the biological cognitive mechanism, grid 
cells and place cells have been gradually applied in the field of 
spatial cognition and map building for mobile robot. 

Humans and animals have large hippocampal-entorhinal 
brain structures which have been implicated in spatial learning 
and episodic memory long before. In this work, we aim to 
apply this biological cognitive mechanism into robot system 
and achieve the robotic cognition to the unknown environment. 
An episodic cognitive learning framework is proposed, which 
introduced spatial cells, visual cues, kinesthetic cues, and state 
neurons for realizing robotic cognition, constructing episodic 
memory and building a cognitive map. To the best of our 
knowledge, kinesthetic cues are used to maintain and update 
the activity of grid cells, and sequentially used to update the 
activity of place cells. Our strategy is based on that neuronal 
activity in the hippocampus reflects memory processing [9]. 
By studying the episodic memory storage mechanism and 
establishing the connection between neurons, the mobile robot 
can perceive its current position in the environment, and 
effectively retain the particular events of experiences to 
construct episodic memory [10]. The proposed framework can 
provide ideas for subsequent path planning and behavior 
controlling of mobile robot. 

In summary, this paper makes the important progress in 
the following two aspects: 

1) The proposed episodic cognitive learning framework 
emphasizes the process of cognition and memory, especially, 
it adopts the velocity modulated spatial cells to afford the 
robot spatial position information, abstracts the state neurons’ 
activity and connection to simulate the memory construction 
process. The framework possesses high cognitive intelligence. 
Based on the framework, the robot can achieve spatial 
cognition to the unknown environment by accumulative 
learning, and retain the learned experiences to construct 
episodic memory. 

2) The framework based map building method tracks the 
neural activities to encode locations and orientations with 
regard to the robot, and creatively performs the closed-loop 
correction by resetting the spatial cells phase. It can build an 
episodic-cognitive map with higher efficiency and accuracy. 
The final episodic-cognitive map is a topological metric map 
in the unknown environment, including environmental visual 
cues, state neurons, phase, and particular coordinates of 
topological relationships, which affords the robot high 
cognitive ability. 
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II. RELATED WORK 

Place cells are located in the hippocampus, they are 
activated respectively when an animal enters different 
particular locations in the environment, and these ensembles 
of place cells represent not only the animal’s current location 
but also locations that the animal had visited earlier, they can 
build an inner map of the environment in the brain [11]. Grid 
cells are located in the entorhinal cortex which is the 
neighborhood of the hippocampus, they are activated when an 
animal passes specific locations, they are regarded as the core 
of path integration system, and they can form a coordinate 
system that allows for spatial navigation [12]. Inspired by the 
spatial cells’ position cognition mechanism, many research 
models have been proposed for realizing the robotic cognition 
to the environment and building cognitive maps. 

Among these models, some models [13-15] actually just 
built maps using place cells, they simplified the physiological 
basis and lacked of localization accuracy. To improve the 
spatial localization accuracy, Tejera presented a bio-inspired 
model for spatial cognition, which can create a World Graph 
topology map for robot navigation [16]. Milford presents a 
new SLAM system, RatSLAM, that has been derived from 
models of the hippocampal complex in rodents. It uses pose 
cells to integrate odometric information with landmark 
sensing to form a consistent representation of the environment 
[17]. Using both grid cells and place cells, Yuan proposed a 
computational model to build cognitive maps, they adopted a 
competitive hebbian learning method for selecting grid cells 
activity to compute place cells activity [18], whereas the high 
computational complexity has a high requirement on storage 
and run time. Chen applied boarder cells, view cells, grid cells, 
and speed cells to simultaneous localization and mapping to 
construct a computational GVGSP-SLAM model [19], but 
this model has not been implemented in simulation or a real 
robot. Yu proposed a unified spatial cells attractor model for 
self-motion trajectory path integration to build the 
environmental cognitive map [20]. However these models 
never consider the function of episodic memory formed in the 
hippocampus. The robot system with memory function could 
improve the robot capability and intelligence [21]. 

A few studies developed episodic memory models for 
cognitive robots in the field of mapping and navigation. 
EPIROME model was proposed to improve robot action 
planning based on the past experiences [22]. Stachowicz 
adopted index data structure to store episodic memory to 
provide knowledge for robot [23]. Kelley implemented a 
memory model to allow a robot to retain knowledge from 
previous experiences [24]. Liu created a framework of 
episodic memory driving Markov decision process for 
episodic memory construction and navigation [25]. In [26], an 
unsupervised learning model enhanced episodic memory 
adaptive resonance theory was proposed. The model can 
categorize and encode experiences of a robot to the 
environment and generate a cognitive map. However, the 
models [22-24] actually focused on data structure to simulate 
the functionality of episodic memory, which paid less 
attention on biological basis. The models [25, 26] elaborated 
how cognitive map is interfering with episodic memory, but 
they did not clarify how the neuronal activity in the 
hippocampus affects the memory construction. Thus, there 

remains a need to explore the interactive relationship among 
spatial cells, episodic memory and cognitive map for the 
mobile robotic application. 

III. EPISODIC COGNITIVE LEARNING FRAMEWORK 

The proposed episodic cognitive learning framework is 
shown in Fig. 1. The robot system extracts the velocity and 
direction information to modulate the activity of spatial cells, 
and then combines with scene image information, activates 
state neurons and forms episodic memory. At last, the robot 
system generates an episodic-cognitive map as a result. The 
detailed description of these modules in this framework will 
be provided in the following sections. 

A.  Spatial Cells Model 

1) Path integration model 
Both grid cells and place cells are modulated by the theta 

rhythm that oscillates at between 4 and 12 Hz [27]. As the 
foundation neuron of grid cell [28], the band cell’s membrane 
voltage (mv) can be computed as (1). It is the total of cosine 
function of soma oscillation at frequency sf  and dendrite 

oscillation at frequency df . And the simulation result of 

oscillation interference between soma and dendrite is shown 
in Fig. 2. It creates the phase precession phenomenon [29]. 

( ) cos(2 ) cos(2 )d sbc t f t f t                      (1) 

According to (1), the beat frequency bf  is obtained from 

the difference of sf  and df , i.e., b d sf f f  . Moreover, the 

beat frequency bf  is influenced by the velocity and direction 

of the animal’s movement according to (2) 

 cos ,b df Bs                                (2) 

where s  is the movement velocity,   is the movement 

direction, d  is the preferred direction, and constant B is 

used for keeping band cell’s firing pattern stable. The 
resulting interference pattern of (1) resembles parallel bands 
across a 2D environment, as shown in Fig. 3. They fire 
periodically whenever an animal moves a fixed distance in 
the cell’s preferred direction. And the fixed distance is called 
spatial wavelength, which is related with the spacing of grid 
cell. 

 
Fig. 1.  Episodic cognitive learning framework. 
  



  

 

 

As we know, the change in spatial position can be 
represented by the velocity, which is the change in spatial 
coordinates for a given change in time ( , )x t y t    . So 

the velocity can be computed as 2 2( ) ( )s x t y t      , 

and the animal’s movement direction can be calculated as 
arctan(( ) ( ))y t x t      . For the movement relative to 

the preferred direction 0d  , bf  can be rewritten as 

cos( )b df Bs B x t      . The phase is the time integral 

of its frequency, and the change in phase of the beat oscillation 
with frequency bf  over time can be transformed into the 

change in phase with position as (3) 

( 0) 2 2 .b d bf t B x                           (3) 

Summing (3) from the start point shows that phase 
depends directly on position relative to the start position 0x , 

i.e., 0 0( 0) ( 0) 2 ( )b d d B x x         . 0 ( 0)d    is the 

initial phase relative to the preferred direction 0d  . In this 

way, the relationship between phase difference and position 
difference is built, which is the basis for path integration. 

2) Grid cell and place cell model 
Grid cells fire periodically to form a hexagonal firing field 

to cover the whole environment when the animal is exploring 
the environment. The hexagonal firing pattern of grid cell may 
be simplified as overlay of three spatial patterns of band cells, 
which have preferred directions differing by multiples of pi/3 
rad, as shown in Fig. 4, it is obtained by summing of three 
band cells shown in Fig. 3. The activity of grid cell over time 
can be obtained according to (4) and (5) 
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where di , i  are the preferred direction and phase offset of 

the thi  dendrite input respectively, and gc  is the activity 

threshold of grid cell. 

The fact that grids are reliably located from trial to trial 
implies that the grids become associated to the environmental 
landmarks within a familiar environment. For the reason that 
the movement velocity and direction are subject to error, these 
dendrite oscillations would have a cumulative effect on the 
grid location in space. The cumulative error can be optimized 
by resetting all dendrite oscillators to the same phase at the 
familiar location. 

In this paper, to avoid the high computational complexity, 
we simplified the physiological basis, and modeled the place 
cell as an AND gate for receiving inputs from several 
presynaptic grid cells with similar spatial phase but different 
spacings and directions. The output activity of place cell can 
be computed as (6) 

3
1( ) ( ( )) .i ipc t gc t 

                            (6) 

The activity of place cell is abstracted to describe the 
particular positions, which can afford the robot position 
cognition in the environment. 

B. Spatial Episodic Memory Model 

For the fact that neuronal activity in the hippocampus 
reflects memory forming process, this work abstracts the state 
neurons to imitate place cells to represent the robotic states, 
and uses the state neurons’ activity and connection to simulate 
the episodic memory construction process. 

1) Event model 
The episodic memory stores a series of particular events 

representing experience. More specifically, as (7), one event 
e  is modeled as a tuple of observation o , state neuron s , 
pose p , and phase b . 

, , , be o s p                                   (7) 

Observation is used for place recognition. The SIFT 
features of current scene image is extracted, and the 
descriptors are used to describe the robotic current 
observation. 

State neuron is used to estimate the robotic current state. 
We use the state neurons’ activity and connection to construct 
the episodic memory. The sequence of state neurons allows 

 
Fig. 4.  Hexagonal firing pattern of grid cell. 
  

 
Fig. 3.  Interference pattern along different preferred directions. 
  

 
Fig. 2.  Simulation result of oscillation interference. 
  



  

the mobile robot to remember temporally ordered 
representations of events. 

Pose is calculated by the path integration, it represents the 
robotic current position ( , )x y  and heading direction  , and 

affords the topological description of the particular events in 
the environment. 

Phase describes the phase of beat oscillation at frequency 

bf  at the robotic current state. The phase can be transformed 

to location and used to afford the spatial coordinates for map 
building. 

2) State neuron activation 
When the robot first enters a new place, the robot system 

would capture the current scene image and extract the SIFT 
features to represent the current observation. This work 
defines a unidirectional mapping projection from high 
dimensional observation to low dimensional state neuron, 
which means that there is always a unique state neuron for any 
observation. To estimate whether to activate a new state 
neuron or a previous activated state neuron, the maximum 
observation similarity measurement between current 
observation and the previous observation is specified as (8) 

 

 1,2, ,

match ,
arg max ,

max length( ), length( )

cur i

T T
i n

cur i

o o

o o







        (8) 

where n  denotes the number of previous activated state 

neurons,  match ,cur io o  returns the number of matched 

SIFT feature points, length( )T
curo  returns the number of 

current observation’s feature points.  

If the maximum observation similarity measurement   is 
larger than a similarity threshold s , the robot system would 

assume it encounters a familiar place. And then the Euclidean 
distance between the current estimated positon and previous 
position is calculated. If the distance is less than the preset 
distance threshold, the robot system would consider that it 
encounters a familiar place, and activate the corresponding 
state neuron. Otherwise, the robot system would think it enters 
a new place that it never reaches before, and it activates a new 
state neuron for current place. In this case, the previous 
activated state neurons become the context state neurons of 
current activated state neuron. In different places, the robot 
system would activate different state neurons to represent its 
different states for place recognition. 

3) Episodic memory construction 
The process of episodic memory construction is shown in 

Fig. 5. Along with the time, the robot wanders into different 
places, the robot system combines the observation with the 
pose and phase information through the velocity modulated 
spatial cells to activate different state neurons, builds events, 
and forms the episodic memory. As shown in Fig. 5, the red 
circle represents the current activated state neuron is , and the 

blue circles represent the context state neurons 

 , , 1js j i k i   . This work uses the state neurons’ activity 

and connection to simulate the episodic memory construction 
process. When one state neuron is activated, it would build the 
connection with its context state neurons. We define ,i jw  as 

the connection weight, and compute it as (9). It represents the 
connection relationship between the current activated state 
neuron is  and the context state neuron js  (the blue arrows in 

Fig. 5). Similarly, the yellow arrows are used to describe the 
connection relationship between the previous activated state 
neuron and its context state neurons. These state neurons 
connect with each other to form the episodic memory. 

, ( ) ( )i j i jw s t s t                                 (9) 

In this paper, the output activity of current activated state 
neuron is  at current moment t  can be represented by 

( ) 1is t  . For the reason of decay characteristic of state 

neurons along with time, the output activity of the state neuron 
can be calculated as (10) 

( 1) exp( 1 ) ( 1)
( ) ,

0
i i n

i

s t s t
s t

otherwise

     
 


        (10) 

where   is a decay coefficient, memory depth n  determines 

the maximum quantity of the context state neurons. The 
schematic of state neurons activation and decay characteristic 
is shown in Fig. 6. The curve shapes of the output activity of 
the state neuron would be changed if it is reactivated again. 

Along the robotic exploration process, the robot system 
activates a series of state neurons, meanwhile it builds 
sequence of events. In this work, there are two premise 
elements that determine whether to build a new event. If the 
activity of place cell ( )pc t  is larger than the activity threshold 

of place cell pc , and the distance between the self-estimated 

position and the latest event’s position is larger than a distance 
threshold l , the robot system would build a new event.  The 

event’s position can be computed as (11) 

 
Fig. 6.  State neurons activation and decay characteristic. 
  

 
Fig. 5.  Memory construction by state neurons’ activity and connection. 
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Through connecting these state neurons to build the 
connection strength between these events, which can be used 
to perceive the order of events in the memory space for robot. 
And we abstract the connection strength to describe the 
topological relations between events. These events are stored 
to form the episodic memory, which can realize the robotic 
incremental cognition to the environment. 

IV. EPISODIC-COGNITIVE MAP BUILDING APPROACH 

Based on the episodic cognitive learning framework, this 
work proposed an episodic-cognitive map building algorithm 
as follows. 

Episodic-cognitive map building algorithm 

Input: current scene image, velocity, and direction 
Output: an episodic-cognitive map 

    Compute the activity of grid cell ( )gc t  and place cell ( )pc t  

    If ( ) pcpc t   

        Extract the SIFT feature of current scene image 
        Compute the current phase and pose 
        If 1n   

            Activate the first state neuron 1s , build the first event  1e  

            1n n   

        Elseif 
            Compute the similarity measurement as (8) 

            If s   

                Activate a previous activated state neuron 
                Update the current phase and position 
            Elseif 
                Activate a new state neuron 
            Endif 
            Update the state neuron connection weights 

            Build a new event ne  

            1n n   

        Endif 
        Store the event into episodic memory 
    Endif 
    Return the episodic-cognitive map 

 

When the mobile robot first enters into an unknown 
environment, it has no knowledge about the environment. It 
gets the knowledge by wandering about and interaction with 
the environment. During the exploration, the mobile robot 
system extracts its self-motion information to modulate the 
activity of grid cell and place cell. Given an activity threshold, 
if the current place cell’s activity is larger than the threshold, 
the robot system would capture the scene image and extracts 
the SIFT features. According to the observation’s similarity 
measurement, a new state neuron or a previous activated state 
neuron is activated, and the corresponding event is built and 
stored into episodic memory at the same time. Based on the 
formed episodic memory, the robot system can extract a 
topological metric map to describe the topological relations of 
the particular events’ coordinates in the unknown 
environment. 

If a previous activated state neuron is reactivated, the robot 
system would consider it encounters a familiar place where it 
has reached before. However, due to the path integration 

 

deviation, the robot estimated current position is not the same 
as the previous position, so it needs to correct the 
corresponding position. In this work, we correct the position 
information by resetting the phase as (12) 
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0 01
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( ) ( ) ,
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where ( )b t   is the new phase after resetting, 

0, , 1pre loct t t t    , loct  and pret  represent the current and 

previous time when the robot reaches to the current place 
respectively,   is a reset factor. 

V. IMPLEMENTATIONS AND RESULTS 

To evaluate the proposed episodic cognitive learning and 
map building method, we implemented it in a real corridor 
environment, as shown in Fig. 7. The robot system contains a 
Husky mobile robot with a Kinect vision and Hokuyo laser 
sensor mounted on it. Two computers with 2.40GHz CPU 
speed construct the whole episodic cognitive learning and map 
building platform. Laptop 1 connects directly to the robot and 
sensors for robot control and data extraction. Laptop 2 is 
responsible for running the algorithm, and it communicates 
with laptop 1 through TCP/IP. The predefined parameters 
utilized in this experiment are specified in Table I. The 
experimental results are discussed in the following sections. 

A. Performance of Episodic Cognitive Learning 

During the experiment, the mobile robot wanders along the 
predefined trajectory in the corridor environment. The results 
of robotic episodic cognitive learning are shown in Fig.8. 

During the mobile robotic exploration process, the 
dendrite oscillation frequency is modulated by the kinesthetic 
cues, and it varies over time as shown in Fig. 8(a). Fig. 8(b) 
shows the phase of beat oscillation changes over time. The 
blue dashed line depicts the phase relative to the preferred 

TABLE I.  THE PREDEFINED PARAMETERS 

Symbol Value Symbol Value 

sf  6 s  0.3 

gc  0.15 l  0.5 

pc  0.4   10 

B  [2.96, 2.17, 1.72] n  0.4 

 

Fig. 7.  Robot system and corridor environment. 
  



  

direction 0 rad , and the red dashed line depicts the phase 

relative to the preferred direction 2 rad . They are 

proportional to the robot’s movement distance in the preferred 
direction, and provide the robot position cognition in the 
environment. 

State neuron is abstracted to represent the robotic state and 
construct the episodic memory. Fig. 8(c) describes the state 
neurons activation sequence along the robotic exploration. 
Initially, the environment surroundings are new to the robot, 
therefore the robot activates different state neurons to 
represent its different states and forms experiences. When the 
robot revisits the environment, some previous activated state 
neurons are reactivated because the robot recognized the 
explored environment based on previously learned 
experiences. This experiment totally has activated 108 state 
neurons. These state neurons connect with each other to 
construct the episodic memory, and the connection weights is 
shown in Fig. 8(d). Each square corresponds to the connection 
weight from state neuron i (y direction) to state neuron j (x 
direction). The larger the connection weight between two state 
neurons is, the more adjacent of them store in the episodic 
memory. The robot system uses the events to represent its 
learned experiences. According to the principle of event 
building, this experiment has totally built 214 events. Fig. 8(e) 
shows the relationship between state neurons and events, one 
state neuron may correspond to different events. These state 
neurons establish the relationship among events to form the 
episodic memory. 

 

From the above results, the proposed method can afford 
the robot ability of acquisition, storage, and retrieval of 
knowledge about spatial scene and position. It can achieve the 
spatial cognition to the unknown environment in the following 
three parts. First, the method can path integrate the kinesthetic 
cues to afford the robot position cognition. Second, the 
method can adapt to the environment changes by updating the 
state neurons and building events to form the episodic memory, 
which is important for long term operation. Third, the method 
can retrieve the previous learned experiences to recognize the 
environment, which is the process of cognitive learning and 
memory retrieval, and the process does not require any human 
intervention, therefore it can work in the natural environment. 

B. Performance of Episodic-Cognitive Map Building 

The result of the proposed episodic-cognitive map 
building method is shown in Fig. 9. The green line is the 
predefined trajectory for the mobile robot, it traverses the 
entire corridor environment. The grey area surrounded by 
black dots is the grid map built by implementing the 
Gmapping algorithm, and it is used to display the layout of the 
actual corridor environment. The red dots marked line is the 
final constructed episodic-cognitive map, and the red dots 
represent these particular events built in the exploration 
process. The result shows that our method can better path 
integrate the kinesthetic cues and perform the closed-loop 
correction by resetting the spatial cells phase. 

In this work, each event consists of observation, state 
neuron, phase, and pose information. After the robotic 
exploration, the robot system can build sequence of events to 
represent the particular learned experiences. Through 
connecting the events coordinates according to the generation 
sequence of events, the robot system can build the 
episodic-cognitive map with a set of vertices representing the 
discrete events, and a set of edges representing the connection 
strength between two adjacent events. The generated 
episodic-cognitive map is not solely a topological metric map 
for mapping the physical environment, but a broad range of 
spatial cognition to the environment, which can afford the 
robot high cognitive ability. Based on the   episodic-cognitive 
map, the robot system can get the spatial position relationship 
among different particular scenes in the environment, and the 
sequence of these learned experiences. 

B. Discussion 

Similar to this work, RatSLAM is a novel SLAM approach 
inspired by computational model of the hippocampus. We 

 
Fig. 9.  Results of episodic-cognitive map building. 
  

Fig. 8.  Results of robotic episodic cognitive learning. (a) Frequency of 
dendrite oscillation (b) Phase of beat oscillation relative to different preferred 
directions (c) State neurons activation sequence (d) State neurons connection 
weights (e) Relationship between state neurons and events. 
  



  

implemented the RatSLAM algorithm to run the same 
experiment, and the comparison result is shown in Fig. 9. The 
blue line is the map built by RatSLAM. The detailed 
discussions are provided in the following two aspects. 

1) Our method has higher efficiency than RatSLAM. 
RatSLAM uses a competitive attractor network to integrate 
odometry information with local image for modelling the pose 
cells, and uses the pose cells to represent the belief about the 
location and orientation of the robot. Therefore, RatSLAM 
needs to compare every step image, which will result in large 
amount of computation. In this experiment, running 
RatSLAM for single instance takes 7988s. However, our 
method only compares the image if place cell at current 
positon is activated and its activity is larger than a given 
threshold. In this case, it only takes 2069s to run a single 
instance with our method. The efficiency of our method is 
nearly four times higher than RatSLAM. 

2) The map built by our method has higher precision than 
RatSLAM. Our method creatively performs the closed-loop 
correction by resetting the spatial cells phase, which is much 
more aligned with biological mechanism. It can improve the 
accuracy of cognitive map. To evaluate the accuracy of map 
building, we use the Euclidean distance between the position 
of experience node and the position of corresponding point in 
the predefined trajectory as the positon error. Fig. 10 shows 
the comparison result of position error. The position error of 
our method is within 1m, whereas RatSLAM has larger error 
than our method. Therefore, our method has higher precision 
than RatSLAM. 

In addition, we compared our method with ORB_SLAM2 
[30] and LSD-SLAM [31]. The former is a feature based 
method that composed of three main parallel threads: tracking, 
local mapping, and loop closing. The latter is a direct 

monocular SLAM technique, it directly operates on image 
intensities both for tracking and mapping. We implemented 
ORB_SLAM2 and LSD-SLAM with loop detection module 
turned to run the same experiment. Fig. 11 shows the results, it 
can be seen that the map built by our method is better matched 
with the predefined trajectory. In this experiment, 
ORB_SLAM2 occurs multiple tracking failures, which may 
be caused by this simple or plain corridor scene. Similar to 
ORB_SLAM2, LSD-SLAM has drawback in tracking in the 
corridor environment, and it is not qualified for the rotational 
movement in the corners. So we ignored the corner trajectory 
in this experiment. Compared to these traditional SLAM 
methods, our method tracks the neural activities, which 
encode locations and orientations with regard to the robot in a 
cognitive map. It can build a high accuracy cognitive map, 
which is necessary for the robot to perform tasks. 

VI. CONCLUSION 

To achieve the robotic spatial cognition to the unknown 
environment, a novel framework of robotic episodic cognitive 
learning inspired by the biological cognitive mechanism of 
hippocampal spatial cells is proposed. This paper creatively 
introduces spatial cells and state neurons to achieve robotic 
incremental accumulative learning, and update robotic spatial 
cognition to the environment, as well as construct the episodic 
memory to retain these learned experiences. Furthermore, the 
robot system can build an episodic-cognitive map to describe 
the topological relations of the particular events coordinates in 
the unknown environment with higher efficiency and accuracy. 
The method in this paper extends the application of biological 
cognition mechanism in the field of robotic learning and map 
building. It can be used as a foundation for further study on the 
efficient robot bionic navigation and localization. Future work 
is to devote this method into much more intelligent control of 
mobile robot. 
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