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Abstract— Online coverage planning can be useful in appli-
cations like field monitoring and search and rescue. Without
prior information of the environment, achieving resolution-
complete coverage considering the non-holonomic mobility
constraints in commonly-used vehicles (e.g., wheeled robots)
remains a challenge. In this paper, we propose a hierar-
chical, hex-decomposition-based coverage planning algorithm
for unknown, obstacle-cluttered environments. The proposed
approach ensures resolution-complete coverage, can be tuned
to achieve fast exploration, and plans smooth paths for Dubins
vehicles to follow at constant velocity in real-time. Gazebo
simulations and hardware experiments with a non-holonomic
wheeled robot show that our approach can successfully tradeoff
between coverage and exploration speed and can outperform
existing online coverage algorithms in terms of total covered
area or exploration speed according to how it is tuned.

I. INTRODUCTION

The paper addresses online coverage planning in unknown
environments for vehicles with non-holonomic constraints.
Efficient field coverage is essential for tasks such as environ-
mental monitoring [1], map reconstruction [2], locating sur-
vivors [3], and autonomous exploration of forested areas [4].
In all these applications, regions to be explored may be un-
known and partially observable. Even if the environment map
can be obtained prior to departure, unexpected unvisitable
areas may occur, such as collapsed trees following a storm.
Hence, it is necessary to develop approaches that enable
online exploration and coverage planning of irregularly-
shaped environments with potential unexpected obstacles.

Depending on the application, various different types of
unmanned vehicles–including aerial (fixed-wing aircraft),
surface, ground (wheeled/legged robots), and underwater
ones (e.g., [5–10])–can be deployed. A common challenge
among most of them is the presence of non-holonomic
mobility constraints, often manifested as a minimum turning
curvature constraint. A way to take into consideration this
constraint is by using a Dubins vehicle model [11], which
specifies the vehicle to move in fixed-speed straight lines
and counter/clockwise turns. More complex paths can be de-
signed by concatenating straight-line and turning maneuvers.

When the environment is known, existing approaches
(e.g., [6, 12–14]) decompose the region into a set of non-
overlapping subregions, and then plan paths within each
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subregion. In practice, however, regions to be explored can be
unknown. Exhaustive search strategies, like back-and-forth
parallel swath motions [15, 16] or spiral paths [17], alter
the robot’s direction of motion if obstacles are encountered.
This may lead to incomplete coverage when the region
occluded by the obstacle has not been visited. In contrast,
many existing online coverage methods [15, 18–20] lead to
abrupt velocity and orientation changes when encountering
obstacles. This effect becomes pronounced especially when
operating in obstacle-cluttered environments, and can hinder
tasks for which the success rate is sensitive to the quality of
sensor input, e.g., in field reconstruction [2, 21] and survivor
localization [22]. To mitigate this challenge, we propose an
online approach that plans smooth trajectories that minimize
the frequency of acceleration-deceleration events.

To represent the environment we consider a uniform
hexagonal grid where a cell’s dimension is determined by the
robot’s sensor footprint. Hexagon-based partitioning enjoys
several benefits, including regular tessellation [23], uniform
travel distance to all adjacent cells, and better description
of non-convex regions [24]. The effectiveness of hexagonal
cell decomposition has been shown in applications including
potential-field-based path finding [25], field search [26] and
offline path finding [27] in known environments, and online
underwater mine countermeasure [28] with no restricted
areas. Different from those aforementioned approaches, we
focus on describing unknown, obstacle-cluttered, bounded
environments with duplicates of regular hexagons, which fill
a plane with no gap or overlap.

We propose an online, hierarchical coverage planning
approach for Dubins vehicles. At the high level, a Hex-
Decomposition Coverage Planning (HDCP) algorithm is
proposed. Based on information collected from the robot’s
observations up to the current time, the robot selects a
feasible hexagon subregion to explore next. At the low
level, Dubins-curve-based paths are planned in real-time.
Closed-form solutions for feasible paths (e.g., start and goal
positions for line segments, angles for arcs) are provided. The
proposed HDCP algorithm aims to cover the entire unknown
(yet bounded) environment, whereas its variant, HDCP-E, is
used for fast exploration. The proposed method is evaluated
in Gazebo simulations in three forest/farm-like environments
and in one baseline empty environment, and compared
against Spanning Tree Coverage (STC) [19], Boustrophedon
motions and the A* search algorithm (BA∗) [20], and Multi-
robot Hex Decomposition Exploration (M-HDE) [29] in
terms of covered area and exploration speed. We observe that
unknown environments containing random obstacles can be
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fully covered. Moreover, HDCP can cover the most amount
of free space, whereas HDCP-E can achieve the highest
coverage area per unit time. The proposed method is also
evaluated in hardware with a non-holonomic wheeled robot.
Contributions: This paper has three key contributions.

1) We develop a hex-decomposition-based online cov-
erage planning algorithm, HDCP, that guarantees
resolution-completeness in unknown, cluttered spaces.

2) We propose the variant HDCP-E, to trade-off between
fast exploration and resolution-completeness.

3) We offer closed-form solutions for planning smooth
paths that robots can follow at constant speed.

The major difference between HDCP and our previous
work M-HDE [29]–which also applies hexagonal cell decom-
position in unknown environments–is the sensor-footprint-
based decomposition strategy herein which ensures full cov-
erage within each subregion. Further, M-HDE is developed
mainly for online exploration tasks. If applied to coverage
tasks (as in this work) it performs worse because it prioritizes
visiting the most unexplored area. Doing so leaves uncovered
subregions and necessitates returning back to fill in holes.

II. RELATED WORK

Several methods have been proposed to tackle the coverage
path planning problem. When prior map information is avail-
able, planning can be offline [30]. Most planners use some
form of decomposition, like Boustrophedon [6, 31], Semi-
boustrophedon [14], Morse [12], or Line-sweep-based [13]
decomposition, to partition the free space into a set of
non-overlapping cells. For online coverage planning, using
information collected by on-board sensors, similar cellular-
decomposition-based strategies [15, 20, 32] are also applied.
Resolution-complete coverage can be obtained by ensuring
that all cells can be visited, and then applying “lawnmower”
motions within each cell. Another popular approach used
for coverage planning is the Spanning Tree algorithm [19,
33]. However, paths generated by those methods may contain
sharp turns which can reduce efficiency and increase fuel
consumption for non-holonomic robots [34]. A common way
to consider non-holonomic constraints is to generate feasible
paths using a Dubins model for offline coverage planning [6,
14, 35, 36]. Lewis et al. [14] solve the offline coverage
problem as a traveling salesman problem, and add constraints
to ensure planned paths consist of line segments and curves
of a given minimum radius only. Yu et al. [37] proposed
a graphical-optimization-based smooth planning strategy for
Dubins vehicles. The method reduces the total coverage
time, but at the expense of high computational complexity.
Function-based smooth coverage planning methods generate
paths represented by functions like clothoids [38] and Bézier
curves [39, 40]. Due to their smoothness, Bézier curves
enable fast coverage and energy efficiency, but at the price
of complex calculations. Online coverage planning methods
that are directly applicable to Dubins vehicles remain limited.
One approach is to obtain an offline solution for coverage
paths using any available prior knowledge, and then replan
according to the information collected through sensors as

the robot moves to avoid collisions [41–44]. Another way
is to modify existing online coverage approaches, such as
online STC [19] and online BA∗ [20], to decelerate and
make smooth turns that satisfy the minimum turning radius
constraints. Our proposed work fills in the gap by utilizing
sensor-based decomposition and directly incorporating non-
holonomic constraints.

III. PROBLEM SETUP

Consider a robot tasked to survey an unknown, bounded,
obstacle-cluttered space S. The robot is equipped with navi-
gation sensors (e.g., LIDAR, depth camera) and observation
sensors (e.g., RGB/thermal camera, mine detector). Navi-
gation sensors are used to plan collision-free paths, while
observation sensors are used to complete the designated task.
Different from target search problems in which the search
terminates once targets are located, the goal here is to cover
the entire field with observation sensors.

We use two coordinate systems. Cartesian coordinates link
to high-level objectives (e.g., to represent a point of interest
in a map) and enable onboard sensor data inference (e.g.,
visual scene understanding). Cube coordinates are necessary
to plan paths in hexagon subregions that form a hex grid.
Thus, we use a two-layer environment map where a 2D hex
grid plane is overlaid on top of a Cartesian plane.

Fig. 1. (a) Top view of the 2D hex frame H (dashed red) and world frame
W (solid black). (b) Six adjacent cells of a subregion. (c) Covered area by
the robot’s observation sensors as it completes a circular path within a hex
cell. The blue dashed circle filled with yellow depicts the sensor footprint,
red solid lines represent paths, and the covered area is marked in gray.

We place a world (fixed) frame W (Fig. 1(a) solid black
lines) in Cartesian plane, with axes W x, W y. The robot is
modeled in Cartesian plane as a Dubins vehicle, i.e.

W ẋ = W v cos θ , W ẏ = W v sin θ , θ̇ = u ,

where (W x,W y) is the robot’s position, and θ is its heading.
Speed v is constant, and u ∈ {−1, 0, 1}.

We place another a frame H (Fig. 1(a) dashed red lines) in
hex grid plane as the frame of reference for cube coordinates.
Cube coordinates correspond to three axes (Hx,H y,H z).1

The directions of axes are given in Fig. 1(a).2 The origin of
frame H matches frame W , as well as a robot’s departing
position. Key variables used in this paper are listed in Table I.

In the hex grid plane, a hexagon subregion is Sk, with
its cube coordinate (Hxk,

H yk,
H zk). 3 The position of the

center of Sk in frame W is[
W x
W y

]
=

[
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2
r 0 0

0
√
3

2
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√
3
2
r

] [
xk yk zk

]
T .

1Cube coordinates have three axes in the 2D case.
2More details can be found in [29].
3We drop superscript H in cube coordinates for clarity of presentation.



TABLE I
LIST OF KEY VARIABLES USED IN THE PAPER.

Sk , Si, Sj subregions
(Hx,H y,H z) cube coordinate in hex grid plane

(W x,W y) cartesian coordinate in Cartesian plane
r hexagon grid radius
rt circular path radius
rmin robot minimum turning radius
lr radius of observation sensor footprint

W µk starting point on circular path in Sk
Wϕk tangent point on circular path in Sk
α angle between W µk and Wϕk in Sk
l length of straight-line path for Transitioning Mode
τ step index for hex grid plane planning
Pτ a robot’s path in hex grid plane
Vτ a set of task-complete subregions
Eτ a set of explored subregions by navigation sensor

Φi,j , Φ̂i,j feasible path and shortest feasible path from Si to Sj

Each Sk has six adjacent cells (Fig. 1(b)), forming a set

N (Sk) = {(xk, yk − 1, zk + 1), (xk + 1, yk − 1, zk),

(xk + 1, yk, zk − 1), (xk, yk + 1, zk − 1),

(xk − 1, yk + 1, zk), (xk − 1, yk, zk + 1)}.
Hex side length r is determined based on the observation

sensor footprint, taken here to be a circular disk of radius lr
(Fig. 1(c)).4 Radius lr depends on the selected sensor’s range
and is chosen by the user so that to achieve object detection
of acceptable (by the user) accuracy. Once lr is determined,
the goal is to achieve full coverage for circumscribed circle
of each hexagon cell. Suppose the radius of circular paths is
rt, chosen such as rmin ≤ rt ≤ lr. Ideally, setting rt = lr
ensures complete coverage of the circumscribed circle of a
hexagon cell with no redundancy. However, in practice we
may often have rt < lr in which case more sensor data are
collected but at the expense of efficiency (defined as newly
covered area per unit time). Given lr and rt, then r = lr+rt.

Our method assumes the following. 1) The navigation
sensor detection radius is large enough to at least detect
obstacles in adjacent subregions. 2) There is sufficient battery
life to achieve full coverage. 3) rmin is reasonably small
compared to the sensor footprint and obstacle density.

IV. ONLINE HIERARCHICAL COVERAGE PLANNING

We propose a hierarchical approach to cover an unknown
environment. High level planning runs on the hex grid. A
robot determines a sequence of subregions to visit in the next
several time steps (Section IV-A). Low level planning runs on
the Cartesian plane. A robot plans circular and straight-line
paths to complete an observation task in current subregion
and move to next subregion, respectively (Section IV-B).

A. Hex Decomposition Coverage Planning

We first describe our proposed Hex Decomposition Cov-
erage Planning (HDCP) approach. HDCP works at the hex
grid plane, and ensures resolution-complete coverage of hex-
decomposed unknown regions. In each subregion, a robot is
deployed to complete the observation task, entering into an
Observing Mode. A subregion is visited, if the robot has

4This is reasonable as there are a few ways to achieve a circular footprint,
e.g., via rotation with gimbals or by using multiple sensors.

finished Observing Mode in this subregion. Re-entering a
visited subregion will not trigger another Observing Mode.
A subregion is explored if it has been covered by navigation
sensors, i.e. having been marked as obstacle-free or obstacle-
occupied region. Once a robot completes an observation task
within one subregion, it enters into a Transitioning Mode and
moves to another subregion. Only Observing Mode triggers
observation sensors; navigation sensors collect information
continuously during both modes.

We demonstrate the detailed process for HDCP in Algo-
rithm 1. Upon departure, the robot initiates robot-centric
frames H and W , whose origins are at robot’s departure
position, for high-level and low-level planning, respectively.
A bounded unknown space S consists of unknown but finite
number of subregions Sk(xk, yk, zk). Let τ be the step of
high-level planning which records when a subregion was
visited, i.e. pair (τ, Sk) represents a robot’s position in hex
grid plane at step τ .

A robot’s path in the hex grid plane up to step τ is
then defined as Pτ = {(t, Sk)|t ∈ [1, τ ], Sk ∈ S}. Let Vτ
be the set containing visited subregions up to step τ , i.e.
unique subregions in Pτ . |Vτ | ≤ |Pτ |, where | · | denotes
set cardinality. Let Eτ = {(Sk, u)|Sk ∈ S, u ∈ {0, 1}} be
the set containing all explored subregions and their status
u by navigation sensors up to step τ . u = 0 represents
that a subregion is obstacle-free, otherwise u = 1. Eτ,u=0

returns all explored obstacle-free subregions, Eτ,u=1 returns
obstacle-occupied, unvisitable subregions.

Algorithm 1 Hex Decomposition Coverage Planning
1: procedure HDCP
2: τ ← 1, Si ← (0, 0, 0), empty sets Pτ , Vτ , Eτ , Φ̂i,j
3: while Si 6= ∅ do
4: Move to Si according to Eq. (7) and Appendix
5: Pτ ← Pτ ∪ (τ, Si)
6: if Si 6∈ Vτ then
7: Observing mode, Vτ ← Vτ ∪ Si
8: end if
9: Update Eτ by navigation sensor results

10: Si, Φ̂i,j ← NextHex(Si, Eτ , Φ̂i,j)
11: τ ← τ + 1
12: end while
13: end procedure
14: procedure NEXTHEX(Si, Eτ , Φ̂i,j)
15: if Qτ (Si) 6= ∅ then
16: Obtain Sj according to Eq. (1), Φ̂i,j ← ∅
17: else if Q′τ 6= ∅ then
18: if |Eτ | 6= |Eτ−1| or Φ̂i,j = ∅ then
19: Obtain Sj according to Eq. (2)
20: Φ̂i,j ← GetAStarPath(Si, Sj , Eτ )
21: else Sj ← Φ̂i,j [1], Φ̂i,j ← Φ̂i,j [2 : end]
22: end if
23: else Sj ← ∅, Φ̂i,j ← ∅
24: end if
25: return Sj , Φ̂i,j
26: end procedure



Suppose a robot finishes its observation task within subre-
gion Si at step τ , and needs to determine the next subregion
Sj to visit at step τ+1 (line 10 of Algorithm 1). To decrease
the number of repeatedly visited subregions, an unvisited
subregion is preferred. To minimize the total travel distance,
a robot prefers one of its adjacent subregions before moving
to subregions further away (Fig. 2(a)). Let Cτ = Vτ ∪Eτ,u=1

be the set of all “undesired” choices of Sj , i.e. either already
visited or obstacle-occupied. Then, set Qτ (Si) = {S∗j ∈
N (Si) | S∗j 6∈ Cτ}, 0 ≤ |Qτ (Si)| ≤ 6 contains candidates
of Sj , denoted as S∗j , which are unvisited, obstacle-free
subregions adjacent to Si.

As we seek to complete tasks for the entire free space
within the unknown region efficiently, it is undesirable to
leave any isolated subregion unvisited. The cost of coming
back to “fill a hole” later can be avoided by finishing
all nearby areas first before moving away. Let function
f(·) calculate the number of visited or obstacle-occupied
neighbors of a candidate S∗j as f(S∗j ) = |N (S∗j ) ∩ Cτ |.
f(S∗j ) = 6 indicates that all adjacent subregions of candidate
S∗j are either visited or obstacle-occupied, which makes this
S∗j a “hole” and hence should be prioritized to visit.

When |Qτ (Si)| > 0, there exists at least one candidate
S∗j that is adjacent to Si. Under this condition, among all
candidates S∗j , the next subregion that a robot prioritizes to
visit, Sj , is determined as

arg max
S∗j

f(S∗j )

s.t. S∗j ∈ Qτ (Si) , |Qτ (Si)| > 0 .
(1)

Given (1), among all unvisited adjacent subregions the
robot will choose the one with the maximum visited/obstacle-
occupied neighbors as Sj (line 16 of Algorithm 1). This
strategy ensures that the robot does not leave any isolated
unvisited subregions, to avoid the need to return to this area.

If |Qτ (Si)| = 0, the task has been completed for all
adjacent subregions of Si. Under this condition, the robot
will move to a subregion Sj that is nonadjacent to Si
(Fig. 2(b)). Let Q′τ = {S∗j ∈ Vτ | N (S∗j ) \ Cτ 6= ∅} be
the set that contains all candidates S∗j , which are visited
subregions with unvisited obstacle-free neighbors. If Q′τ is
not empty, the robot selects Sj from all candidates S∗j as

arg max
S∗j

t

s.t. (t, S∗j ) ∈ Pτ , S∗j ∈ Q′τ , t ∈ [1, τ ] .
(2)

Per (2), the robot revisits a nearest-in-the-past visited
subregion Sj which has unvisited obstacle-free adjacent
subregions (line 19 of Algorithm 1). Once Sj is chosen,
we seek a path in hex grid, which contains a sequence of
subregions on the way to move to Sj . In order to determine
an optimal feasible path, we need some definitions.

Definition 1: A feasible path between obstacle-free sub-
regions Si and Sj in hex grid plane, denoted as Φi,j , is a
list of ordered obstacle-free subregions5 such that if only the

5The first subregion in the ordered list is adjacent to Si, while the last
subregion is Sj itself.

movement to an adjacent subregion is allowed for each step,
a robot starting from Si can reach Sj in finite steps.

Definition 2: A shortest feasible path, denoted as Φ̂i,j , is
the path among all feasible paths Φi,j which contains the
least number of subregions.

Definition 3: A subregion is visitable if and only if 1) this
subregion is obstacle-free, and 2) there exists one (shortest)
feasible path from the departure position to this subregion.

Each subregion in the feasible path and shortest feasible
path is an adjacent subregion of its preceding and following
subregions in the ordered list. The feasible path and shortest
feasible path are not unique between two subregions. More-
over, from the current position Si, there must exist at least
one feasible path to any subregion on path Pτ , which is a
subset of path Pτ .

A shortest feasible path Φ̂i,j can be obtained according
to function GetAStarPath (line 20 of Algorithm 1). Given
all explored subregions Eτ , GetAStarPath applies the A∗

algorithm [45] with distance cost q in 2D hex grid

q(Sk, Sk′ ) = (|xk − xk′ |+ |yk − yk′ |+ |zk − zk′ |)/2 . (3)

While following Φ̂i,j (line 21 of Algorithm 1), more
subregions are explored by the navigation sensor. If Eτ is
updated, Φ̂i,j needs to be updated accordingly (lines 18-20
of Algorithm 1). Note that Φ̂i,j may contain 1) unvisited
subregions, and 2) subregions with unvisited obstacles-free
neighbors. If at any step, an unvisited subregion is encoun-
tered, the robot enters Observing Mode to complete the task
for the subregion (lines 6-8 of Algorithm 1), then switches to
Transitioning Mode. If a subregion with unvisited obstacles-
free neighbors is encountered, we discard Φ̂i,j and move to
an adjacent unvisited subregion (line 16 of Algorithm 1).

When Qτ (Si) = Q′τ = ∅, coverage is complete. HDCP
establishes that in a bounded environment, for given dis-
cretization resolution, the coverage process terminates in fi-
nite time, leaving no unvisited area that is visitable according
to Definition 3. Coverage using HDCP is complete to the
resolution of the smallest allowed hexagon cell, which can
be referred as resolution-completeness [46].
Lemma 1 In an unknown, bounded environment, online
coverage using HDCP (Algorithm 1) is resolution-complete.
Proof of Lemma 1 We prove Lemma 1 by contradiction.
Assume the coverage terminates according to Algorithm 1
and there still exists a visitable, yet unvisited, subregion Sq .
Suppose the departure position of the coverage is Sp. Since
Sq is visitable, there must exist a shortest feasible path Φ̂p,q
according to Definition 3. Denote the mth subregion on the
shortest feasible path as Φ̂p,q[m].

According to Definition 1, Φ̂p,q[1] must be an adjacent
subregion to Sp, Φ̂p,q[1] ∈ N (Sp). Since the progress has
terminated, Q′τ = ∅. Recalling the definition of Q′τ , we can
deduce (6) from (4) and (5)

Φ̂p,q [1] ∈ N (Sp), (4)

Q′τ = ∅ ⇒ N (Sp) ⊂ Cτ , (5)

Φ̂p,q [1] ∈ N (Sp),N (Sp) ⊂ Cτ ⇒ Φ̂p,q [1] ∈ Cτ . (6)



Fig. 2. (a) Movement to an adjacent subregion, (b) movement to a non-
adjacent subregion, (c) outer tangent line path, (d) inner tangent line path.

Since Φ̂p,q[1] 6∈ Eτ,u=1, then Φ̂p,q[1] ∈ Vτ . Similarly, we
have Φ̂p,q[m] ∈ Vτ for m = 2, · · · , |Φ̂p,q|. Therefore, Sq =
Φ̂p,q[|Φ̂p,q|] ∈ Vτ , process terminates. Hence, Sq is already
visited, which leads to the contradiction.

B. Dubins Path Planning

Next, we discuss Dubins Path Planning for Observing
Mode and Transitioning Mode. For a robot currently in Si,
it first enters into Observing Mode. For an observation task,
it is required that the observation sensor covers the entire
subregion, which leads to a circular path. Let Wµi be the
starting point on the circular path. The robot follows a full
circle, (C2π)i, and then returns to Wµi. Once arriving at
Wµi, the robot enters into Transitioning Mode, in which
the robot aims to move to the starting point Wµj for the
next subregion Sj . Constrained by the vehicle model, feasible
paths always consist of arcs and straight lines, without turns
sharper than robot’s minimum turning capability.

Figures 2(c), (d) show the planned path, which comprises
an arc of angle α and a straight line of length l. The straight
line is chosen to be tangent to both circular paths in Si and
Sj . Let the tangent point in Si be Wϕi, the corresponding
tangent point in Sj will become the starting point Wµj .
Among outer tangent points (Fig. 2(c)) and inner tangent
points (Fig. 2(d)), following the robot’s current moving
direction, we select the one that is the closest to Wµi along
the circular path. Using geometry (closed-form solutions for
tangent points are given in the Appendix), α and l are

α = cos−1(1− ‖W µi −Wϕi‖2/2r2t ) ,

l = ‖W µi −Wϕi‖ .
(7)

The combined path for Observing and Transitioning Mode
between Si and Sj is (C2π)i(CαLl)i→j . By utilizing tangent
points to switch among arcs and straight line paths, generated
combined paths are smooth.

C. Trading-off Exploration Coverage and Speed

In some scenarios such as waypoint coverage [9] and water
sample collection [47], full coverage within subregions does
not need to be enforced. In this case, the exploration process
of unknown environments can be accelerated by combining
Observing and Transitioning Mode, which is referred to
as HDCP-E. In HDCP-E, full circle trajectory (C2π)i is
removed from planned paths to accelerate exploration of
more hexagon subregions. At the same time, observation sen-
sors are enabled throughout the process. The modified paths

become (CαLl)i→j . Hence, HDCP-E inherits the advantage
of smooth and continuous paths from HDCP.

The two variants (HDCP and HDCP-E) reveal the trade-
off between exploitation and exploration. HDCP guarantees
resolution-complete coverage of unknown yet bounded envi-
ronments by 1) visiting all subregions, and 2) achieving full
coverage within each subregion, whereas HDCP-E enables
fast and complete exploration in terms of visiting all subre-
gions. Importantly, the next-subregion-selection strategy (Al-
gorithm 1) can also be applied to other cell-decomposition-
based coverage algorithms to obtain the order of visiting
subregions.

V. EXPERIMENTS, RESULTS, AND DISCUSSION

Our proposed variants are evaluated in Gazebo simulation
and experimentally with a non-holonomic wheeled robot.
Their performance is compared against 1) online BA∗ [20],
2) online STC [19], and 3) M-HDE [29] in terms of total
coverage area and average exploration speed.

A. Simulation

1) Simulation Setup: Figures 3(a)-(c) show three 20m ×
20m 2D simulated forest/farm-like environments in Gazebo
(random, uniform, and in-row placement, respectively). Two
type of trees, which are different in terms of size and
shape, are used. Ten trees of each type are placed in each
environment, hence all three environments have same amount
of free space. In the random environment (Fig. 3(a)), trees
are placed randomly to represent a forest-like unstructured
environment. In the uniform environment (Fig. 3(b)), trees
are arranged and lined up strictly. In the in-row environment
(Fig. 3(c)), trees are loosely lined up, with slightly-varying
spacing between them. This environment approximates a
more realistic intercropping agricultural field. We further
consider the baseline scenario of operating in an empty
environment bounded by square walls.

We deploy the non-holonomic wheeled robot Turtlebot
to cover the entire area without prior knowledge of the
environment map. The robot is equipped with an RPLidar
laser scanner as the navigation sensor, and an Astra Pro
stereo camera as the observation sensor. Both perception6

and planning are online. To reduce the uncertainty in obstacle
detection caused by online perception and odometry drift, we
run ten trials for every obstacle-cluttered scenario.

Camera observations are chosen to have high accuracy
with lr = 0.5 m. Hence, for HDCP, HDCP-E, and M-HDE,
the hex subregion side length is r = 1 m. The robot moves
at a constant velocity of 1 m/s. For BA∗ and STC, the square
side length is 1 m;7 the robot moves forward at 1 m/s, and
decelerates to 0.3 m/s when taking sharp turns.8

To eliminate the influence of starting position, the robot is
deployed from 2 different positions: center and lower-left
corner (red and blue squares in Fig. 3(a)-(c)). Note that

6We use the open-source LIDAR-based obstacle detector published in
https://github.com/tysik/obstacle detector.

7We refer the reader to [19, 20] for more details.
8We optimized the turning speed so that no odometry drift is observed.



Fig. 3. In simulation, (a) random, (b) uniform, and (c) in-row environments. (d) Experimental environment.

TABLE II
RESULTS FOR PERCENTAGE OF COVERED AREA, RUNTIME AND EXPLORATION SPEED OVER 10 SIMULATION TRIALS

depart at
center

random uniform in-row
area (%) runtime (s) avg (m2/s) area (%) runtime (s) avg (m2/s) area (%) runtime (s) avg (m2/s)

HDCP 83.2±0.4 701.2±12.6 0.47 80.3±0.7 689.7±10.3 0.46 79.1±1.1 700.3±11.7 0.44
HDCP-E 68.1±0.4 337.3±8.0 0.79 68.3±0.6 342.7±4.4 0.78 66.8±0.8 352.4±11.3 0.75

STC 52.7±1.4 561.7±12.1 0.37 58.6±0.1 627.6±2.6 0.37 13.5±0.1 144.2±0.4 0.37
M-HDE 70.4±1.3 450.0±10.6 0.62 71.8±1.7 485.1±15.4 0.58 68.3±2.4 463.6±12.2 0.58

BA∗ 75.7±1.1 629.4±18.5 0.46 73.6±0.5 579.5±4.5 0.48 75.1±1.7 635.1±7.3 0.45
depart at
lower-left

random uniform in-row
area (%) runtime (s) avg (m2/s) area (%) runtime (s) avg (m2/s) area (%) runtime (s) avg (m2/s)

HDCP 83.2±0.4 727.6±6.2 0.45 85.7±1.3 740.4±11.3 0.46 81.3±1.4 699.2±20.6 0.45
HDCP-E 70.7±1.1 369.3±10.0 0.75 67.8±1.1 338.9±9.2 0.79 69.2±1.5 357.3±10.9 0.76

STC 65.8±3.7 622.8±19.1 0.42 59.8±1.9 536.5±29.6 0.44 61.0±1.6 502.4±26.3 0.48
M-HDE 74.0±1.6 496.9±10.6 0.59 75.5±1.8 510.8±22.6 0.58 69.8±1.9 468.3±20.4 0.59

BA∗ 80.7±0.7 661.1±21.2 0.46 79.0±1.3 522.8±30.0 0.57 79.2±4.3 666.2±52.5 0.47

in both simulation and real experiment, robot-centric hex
(for HDCP, HDCP-E, and M-HDE) and square (for STC
and BA∗) grids originate at robot’s departure position. In a
robot-centric grid, the number of occupied cells caused by
obstacles and environment boundaries is influenced by the
relative position between the object and the origin of the
grid. For instance, a small obstacle can either lie within one
cell, or on an edge/intersection of multiple cells after varying
the grid origin. In addition, the size of cells is determined
according to the robot footprint. The occupied cells near
boundaries are marked as obstacles by the robot at runtime
via onboard perception. We do not pre-determine near-
boundary inaccessible cells for the robot prior to departure.

2) Results and Discussion: Table II contains means and
one-standard deviations for the percentage of coverage area
over total free space, total algorithm runtime, and averaged
exploration speed for each scenario over ten trials. We
consider the total free space as subtracting the tree-occupied
area from the total environment area, which is consistent
among all scenarios.

Results suggest that, regardless of departing position,
HDCP covers the most area in all evaluated, obstacle-
cluttered environments. While the uniform and in-row en-
vironments bounded by square walls are more regular and
structured, HDCP still outperforms the other evaluated meth-
ods that use a square grid discretization. Our findings demon-
strate the advantage of hexagon decomposition, where we
mark obstacles as more “round-like” hexagons instead of
square cells in obstacle-cluttered environments.

In terms of exploration speed, HDCP-E covers almost
twice as fast as STC and BA∗ in all environments from
both departure positions. The results suggest that the strategy
of HDCP and HDCP-E for selecting the next subregion

Fig. 4. Covered area (top panels, in white), detected obstacles (bottom
panels, red cells), and corresponding robot paths (blue curves) for (a) HDCP,
(b) HDCP-E, (c) M-HDE, (d) STC, and (e) BA∗ in the random map when
the robot departs at center position.

is efficient in terms of exploring more unknown space.
However, in HDCP, more area is covered when following
the full-circle at the expense of exploration speed. M-HDE
from our previous work [29] achieves the second fastest
exploration, in which the lack of inner-tangent straight-line
transitioning causes longer paths.9 Hence, in scenarios when
the speed of exploring more unknown space is the main
concern, HDCP-E can be used to achieve fast exploration.

It is worth noticing that STC is the approach most sensitive
to the environment and departure position. Especially in the
in-row environment, STC is unable to cover the entire space
when departing from center. This is because STC assumes all
visitable space has to have a width of at least four times of the
sensor footprint radius, to ensure repetition-free paths [19].
If the assumption is not satisfied, the area will be marked
as obstacle, even if the width of the area is wider than the

9Note that we modify M-HDE by replacing the original path finding
strategy in [29] with A* to achieve better performance.



robot’s own width and can thus be visited. On the other hand,
for HDCP, changing departure position and environment can
cause at most 6% coverage percentage loss.

Evident in Fig. 4, our proposed method generates smooth
paths for robots with non-holonomic constraints. The robot
moves at constant speed throughout the process, which
enables better path following and sensor stability. In contrast,
small areas can remain uncovered in both BA∗ and STC
when the robot fails to follow planned paths exactly due to
abrupt deceleration before turning. The advantage of smooth
paths is more obvious in cluttered environments, in which
case turning maneuvers are required more frequently.

We also evaluate the algorithm in an square environment
without obstacles, which is believed to be most suitable for
lawnmower-like methods such as BA∗ and STC. In the empty
environment, BA∗ (0.75 m2/s) achieves comparable cover-
age speed as HDCP-E (0.82 m2/s). This is because when
applying lawnmower-like methods in the empty environment,
the robot follows straight-line paths from one side to another,
which requires minimum number of turns. In addition, BA∗

(92.1%) covers slightly more area than HDCP (91.4%).
This is because square cells describe the square environment
better when no obstacle exists. However, in obstacle-cluttered
environments, the existence of unexpected obstacles force the
robots to take frequent, possibly sharp turns. Taking sharp
turns requires deceleration and acceleration for lawnmower-
like methods, whereas HDCP and HDCP-E allow robots to
operate at constant velocity. Moreover, as discussed above,
the advantage of describing obstacles with hex cells is more
obvious in obstacle-cluttered environments than empty envi-
ronments. Overall, the proposed HDCP and HDCP-E work
well in unknown and irregularly-shaped obstacle-cluttered
environments that are bounded.

B. Experiments

We also evaluate the performance of all algorithms in a
10m×8m indoor space (Fig. 3(d)) with a real Turtlebot robot
configured as in the simulation. The environment contains a
truss, desks, and chairs as obstacles. For HDCP, HDCP-E,
and M-HDE, we have lr = 0.4 m and r = 0.8 m; the robot
moves at constant velocity of 0.3 m/s. For BA∗ and STC,
we have side length of 0.8 m, and the robot moves forward
at 0.3 m/s, and decelerates to 0.1 m/s in turning.

TABLE III
PERCENTAGE OF COVERED AREA, RUNTIME AND EXPLORATION SPEED

IN EXPERIMENTS

HDCP HDCP-E STC M-HDE BA∗

area (%) 76.5 62.3 65.6 73.5 75.8
runtime (s) 367.0 187.5 268.5 259.0 306.5
avg (m2/s) 0.10 0.16 0.12 0.14 0.12

In Table III, we observe that HDCP and BA∗ cover similar
area, which is expected since the experimental environment
is mostly empty with obstacles lined up strictly in the
middle. HDCP-E has the highest average exploration speed,
0.16 m2/s, which is consistent to simulation results. Further,
our approach generates smooth paths (Fig. 5) in real time for

Fig. 5. Paths for (a) HDCP, (b) HDCP-E, (c) STC, (d) M-HDE, and (e)
BA∗ in hardware experiments.

robots to follow at constant speed, while BA∗ and STC both
require frequent acceleration and deceleration since the robot
makes turns frequently in the small, cluttered space.

VI. CONCLUSIONS

The paper contributes to online resolution-complete cov-
erage planning in unknown obstacle-cluttered environments.
Research on this vein is limited when it comes to considering
some form of dynamic feasibility (in this case Dubins
vehicles), while ensuring resolution-complete coverage.

Results suggest that our proposed algorithm HDCP can
cover more area compared to existing methods such as M-
HDE, STC and BA∗ in unstructured and obstacle-cluttered
environments, due to the advantage of decomposing the
workspace in hex cells. Its variant HDCP-E achieves the
fastest exploration (covered area per unit time) in both struc-
tured and unstructured environments. Further, we show that
Dubins vehicles may fail to follow frequently required sharp
turns using STC and BA∗, leading to uncovered areas along
the search path. Our method guarantees resolution-complete
coverage while considering non-holonomic constraints in
the form of Dubins curves. Derived geometric closed-form
solutions to determine how to move between subregions
enable real-time planning. Current weaknesses of HDCP are
a slight underperformance compared to BA∗ in square, empty
environments, and the presence of repeated arc segments on
circular paths when moving to the tangent points. However,
we believe that ensuring path smoothness and continuity due
to this repetition outweighs the limitation.

Future work will focus on performing a complexity anal-
ysis to investigate how to speed up the methodology, and
application to real world agricultural/forest environments.

APPENDIX
Suppose the center position of Sk, Sk′ in the Cartesian

plane are (ak, bk), (ak′ , bk′), respectively. w = (ak′−ak)2+
(bk′ − bk)2. Inner tangent points are

Wϕk(x) =
2r2t (ak′ − ak)± rt(bk′ − bk)

√
w − (2rt)2

w
+ ak ,

Wϕk(y) =
2r2t (bk′ − bk)± rt(ak − ak′ )

√
w − (2rt)2

w
+ bk ,

W µk′ (x) =
2r2t (ak − ak′ )± rt(bk − bk′ )

√
w − (2rt)2

w
+ ak′ ,

W µk′ (y) =
2r2t (bk − bk′ )± rt(ak′ − ak)

√
w − (2rt)2

w
+ bk′ .

Outer tangent points are

Wϕk(x) = ak ± rt
(bk − bk′ )√

w
, Wϕk(y) = bk ± rt

(ak′ − ak)
√
w

,

W µk′ (x) = ak′ ± rt
(bk − bk′ )√

w
, W µk′ (y) = bk′ ± rt

(ak′ − ak)
√
w

.
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[42] R. Pěnička, M. Saska, C. Reymann, and S. Lacroix, “Reactive dubins
traveling salesman problem for replanning of information gathering
by UAVs,” in European Conf. on Mobile Robots, 2017, pp. 1–6.
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