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Abstract— A robot control system is often composed of a
set of low level continuous controllers and a switching policy
that decides which of those continuous controllers to apply at
each time instant. The switching policy can be either a Finite
State Machine (FSM), a Behavior Tree (BT) or some other
structure. In previous work we have shown how to create BTs
using a backward chained approach that results in a reactive
goal directed policy. This policy can be thought of as providing
disturbance rejection at the task level in the sense that if a
disturbance changes the state in such a way that the currently
running continuous controller cannot handle it, the policy will
switch to the appropriate continuous controller. In this letter we
show how to provide convergence guarantees for such policies.

I. INTRODUCTION

Behavior Trees (BTs) were created by computer game
programmers as a way to improve modularity and reactivity
in the control policies of so-called Non-Player Characters
(NPCs) in games [1]. Since then, BTs have been receiving
an increasing amount of attention in Robotics [2]–[9]. The
reason is that robotics share many high level planning and
control problems with game AI, while at the same time,
the low level problems, such as force control, grasping and
sensing, are extremely challenging in robotics, and almost
trivial in virtual worlds. Therefore, game AI designers have
encountered the high level problems of composing a large
set of low level behaviors into a rational system, earlier than
robot researchers. BTs is a tool to handle such compositions
in a modular and efficient way.

Feedback is one if the key concepts in control theory,
where many kinds of disturbances can be handled by iter-
atively measuring the state of the system and applying the
appropriate control action. In a robot control system, there is
often a set of continuous controllers, performing tasks such
as moving to a given pose, or grasping an object, and a
task switching structure responsible for switching between
those continuous controllers. For such systems, we want the
disturbance rejection to take place at both the continuous
level, handling measurement errors and model uncertainties,
and at the switching level, handling events such as objects
being moved by external agents, or accidentally dropped by
the robot itself.

BTs, especially those using the backward chained design
proposed in [8], can provide disturbance rejection on the task
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Fig. 1: A BT including the four actions Move to Object,
Grasp Object, Move to Goal, Place Object at Goal, designed
in a way to provide disturbance rejection at the task level.
An extended version, including additional objectives and al-
ternative ways to achieve subgoals, can be found in Figure 5.

level, as described above. An example of such a design can
be seen in Figure 1. The detailed workings of a BT will
be described below, but before going into details, we can
note that the design in Figure 1 would provide the following
functionality for a mobile manipulator aiming to move to an
object, grasp it, move to a goal region and drop the object
there.1 If, while grasping, the object is moved outside the
reach of the gripper, the robot switches to first moving closer
to the object, and then switches back to the grasping task. If
the object slipps from the grasp while moving towards the
goal, the robot stops moving and starts grasping. Finally,
if the object slipps from the grasp, but accidentally rolls
away and stops in the goal area, the robot stops moving
and goes to idle-mode, as the given task is now complete.
An extended version of Figure 1 can be found in Figure 5,
where additional concurrent objectives are added, together
with the possibility of achieving subgoals in different ways.

The objective of doing disturbance rejection using feed-
back is to achieve convergence to a goal state, with a large
region of attraction, even in presence of disturbances and

1A video clip illustrating the execution can be found at:
https://youtu.be/h6JsYbi5EmI
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uncertainties. Thus, a natural question to ask is: What can
be said about converge and region of attraction for the design
in Figure 1?

The main contribution of this letter is that we answer
the question above, by making an extension to the state
space formalism proposed in [3] and use it to do a con-
vergence analysis of the backward chained design proposed
in [8]. Furthermore, we show how the requirements of the
convergence proof, in terms of constraints to be preserved,
can serve as design specifications when implementing the
different components.

The structure of this letter is as follows. First, in Section II
we present the related work. Then, in Section III we give a
background on BTs and the result in [3]. The main results
are then presented in Section IV, followed by an example in
Section V, and conclusions in Section VI.

II. RELATED WORK

The problem of convergence analysis of BTs has been
addressed in a number of recent papers, [4], [5], [10], [11].
In general, all of them analyze a linear chain of actions,
each satisfying the preconditions of the following. This is
different from the design proposed in [8] and analyzed here,
where several different strategies for achieving a condition
can be added, several different preconditions for an action
can be listed, and separately achieved, and several top level
objectives can be set.

In [10], it was noted how BTs generarlize the Teleo-
Reactive approach proposed in [12]. The convergence proof
of Teleo-Reactive designs from [12] was also carried over
to BTs, and it was shown how Fallback compositions of
Sequenced Precondition-Action pairs ensures convergence to
the goal state if each actions satisfies a precondition with
higher priority (to it’s left in the Fallback composition).

An analysis of convergence conditions was also made in
[4], [5], with the objective of allowing the user to specify the
high level goals, then invoking a HTN planner to optimize
the execution, including looking for opportunities of parallell
execution, of the tasks to be done. An extended version of
BTs (eBTs) was defined to bridge the gap between BTs and
HTN-planning. The work presented here goes beyond the
work in [4], [5] in that it uses a continuous state formalism,
instead of one where the state is composed of a set of
conditions that are either true or false.

In [11], the authors define a version of BTs called Robust
Logical-Dynamical Systems (RLDS) that they use to prove
convergence in the presence of disturbances on the task level,
such as someone closing a drawer that was opened by the
robot. The work is similar in spirit to [10]. The authors
define a set of tasks, each having a runnable condition
deciding when it can be run, and each pushing the state
towards satisfaction of the runnable condition of the next
task. They define a priority ordering, with more downstream
tasks having higher priority, to enable the system to skip
tasks if external events enable it. They also open up for
a set of reactive evasive manoeuvre tasks, having highest
priority, even more downstream than the goal. Furthermore,

they describe a way to compute implicit conditions that
need to hold for future actions. These conditions are added
as running conditions for all actions. Thus, [11] is closely
related to this work, but this letter goes beyond the work in
[11] by similarly identifying conditions that need to hold, but
with a higher resolution in time and space. Alternative ways
to achieve the same objective can be included, with separate
constraints. For example, after picking up an object the
robot needs to move to the goal region without accidentally
dropping the object, or moving into the designated un-safe
zone. But after placing the object, there is obviously no need
to be careful not to drop it, whereas the importance of staying
out of the un-safe zone remains. A detailed comparison to
the results of [11] can be found in Section IV-D.

For papers not dealing with BTs, the results are closely
related to the ideas of [13], using a switching scheme to
enlarge the region of attraction of a control policy. The
metaphor of a funnel for a feedback policy that moves a
larger set of initial conditions into a smaller set of final
conditions was used. By requiring that the final conditions
was inside the initial end of another funnel (controller) of
lower index, the authors were able to guarantee that the
switching iteratively progressed to controllers of lower index
until finally the overall goal region was reached. This letter
goes beyond [13] by applying binary conditions, such as
object in gripper, and separate tasks, such as grasp object
to handle the complexity of the world. Thus allowing the
structured combination of controllers developed to perform
completely different subtasks. Furthermore, the notion of
constraints being implied across the different tasks is also
different from [13].

III. BACKGROUND

In this section, we give a brief overview of the state space
formulation of BTs that was introduced in [3], as well as the
design proposed in [8].

A. State space formulation of BTs

Definition 1 (Behavior Tree): A BT is a three-tuple

Ti = { fi,ri,∆t}, (1)

where i ∈ N is the index of the tree, fi : Rn → Rn is the
right-hand side of an ordinary difference equation, ∆t is a
time step and ri : Rn→ {R,S ,F} is the return status that
can be equal to either Running (R), Success (S ), or Failure
(F ). Let the Running region (Ri), Success region (Si) and
Failure region (Fi) correspond to a partitioning of the state
space, defined as follows:

Ri = {x : ri(x)=R}, Si = {x : ri(x)=S }, Fi = {x : ri(x)=F}.

Finally, let xk = x(tk) be the system state at time tk, then
the execution of a BT Ti is a standard ordinary difference
equation

xk+1 = fi(xk), (2)
tk+1 = tk +∆t. (3)



TABLE I: The four fundamental node types of a BT.

Node type Symbol Succeeds Fails Running
Sequence → If all children succeed If one child fails If one child returns running, and the previous ones succeed
Fallback ? If one child succeeds If all children fail If one child returns running, and the previous ones fail
Action box When execution succeeds When impossible to succeed During execution

Condition oval If true If false Never

—>

A2A1

(a)

?

A2A1

(b)

Fig. 2: A Sequence node (a) and a Fallback node (b).

The return status ri will be used when combining BTs
recursively, as explained below.

The four fundamental node types2 of a BT are listed in
Table I. An Action node directly implements fi,ri as above,
with Ri 6= /0 being the set where the action controls the
agent. A Condition also implements fi,ri, but with Ri = /0.
Thus a condition never controls the agent, but checks a
proposition leading to the execution of some other action.
These two node types do not have children, and are thus
leafs of the tree. A BT can also be created by composing
other BTs, using the two fundamental compositions node
types: Sequence and Fallback, illustrated in Figure 2(a) and
2(b) respectively. The Sequence is used when the progression
to the next task depends on the success of the previous, such
as when drinking from a bottle only makes sense if you
succeeded in opening it. If you failed in opening it, or are
still trying to open it, there is no point in starting to drink.
The Fallback on the other hand, is used when progression to
the next task is only needed in case of failure of the previous.
If you fail to drink from the bottle, you might want to try
drinking directly from the tap. But there is no point in doing
that if you succeed with drinking from the bottle, or are still
trying to drink from the bottle. We will now formally define
the two composition types.

Definition 2: (Sequence Compositions of BTs) Two or
more BTs can be composed into a more complex BT using a
Sequence operator, T0 = Sequence(T1,T2). Then r0, f0 are
defined as follows

If xk ∈ S1 : r0(xk) = r2(xk), f0(xk) = f2(xk) (4)
else : r0(xk) = r1(xk), f0(xk) = f1(xk) (5)

T1 and T2 are called children of T0. Note that when
executing T0, the first child T1 in (5) is executed as long as
it returns Running or Failure (xk 6∈ S1). The second child of
the Sequence is executed in (4), only when the first returns
Success (xk ∈ S1). Finally, the Sequence itself, T0 returns
Success only when all children have succeeded (x∈ S1∩S2).

Definition 3: (Fallback Compositions of BTs) Two or

2Note that there is also other node types, including the Parallel composi-
tion and so-called Decorators, but since they are not used in this letter they
are omitted from the description.

more BTs can be composed into a more complex BT using
a Fallback operator, T0 = Fallback(T1,T2). Then r0, f0 are
defined as follows

If xk ∈ F1 : r0(xk) = r2(xk), f0(xk) = f2(xk) (6)
else : r0(xk) = r1(xk), f0(xk) = f1(xk) (7)

Note that when executing the new BT, T0 first keeps
executing its first child T1, in (7) as long as it returns
returns Running or Success (xk 6∈F1). The second child of the
Fallback is executed in (6), only when the first returns Failure
(xk ∈ F1). Finally, the Fallback itself T0 returns Failure only
when all children have been tried, but failed (x ∈ F1 ∩F2),
hence the name Fallback.

We conclude the state space description of BTs with noting
that the theoretical analysis of this letter is valid for the
abstraction above. Clearly, a real robot system is much more
complex than this and switching between different actions
will not happen instantly. However we do believe that the
results provide important insights for real systems as well.

B. BTs that Succeed in Finite Time

In control theory, the design objective of a controller is
often to make it stable (keeping the state close to a given
equilibrium point), or asymptotically stable (converging to
an equilibrium point). As BTs already include the notion of
a Success region Si, it makes sense to let the design objective
be that the state reaches Si. Furthermore, since compositions
of BTs are also a core part of the tool, we need each sub-
tree to reach its Si in finite time. Otherwise, if two sub-trees
are in a Sequence composition, and the first converges to
S1 as t → ∞, the second one would never execute and the
composition would never reach its goal. Thus we make the
following definition.

Definition 4 (Finite Time Successful): A BT is finite time
successful (FTS) with region of attraction R′, if for all
starting points x(0)∈R′⊂R, there is a time τ ′(x(0)) = τ ′(x0)
and an upper bound τb such that τ ′(x) ≤ τb for all starting
points x0 ∈ R′, and x(t)∈ R′ for all t ∈ [0,τ ′(x0)) and x(t)∈ S
for t = τ ′(x0).
As noted in the following lemma, exponential stability im-
plies FTS, given the right choices of the sets S,F,R.

Lemma 1 (Exponential stability and FTS): A BT for
which xs is a globally exponentially stable equilibrium of
the execution (2), and S ⊃ {x : ||x− xs|| ≤ ε}, ε > 0, F = /0,
R = Rn \S, is FTS. The proof can be found in [14].

C. Backchained BTs

The idea of backchaining BTs was first proposed in [8].
Given a list of available actions, with pre- and postconditions,



as shown in Table II, the first step of the algorithm converts
the list of actions into a set of so-called Postcondition-
Precondition-Action BTs (PPA-BTs) as illustrated in Fig-
ure 3, each aimed at satisfying a given condition, but
invoking the actions only when that condition is not met.

Assume, as in Table II, that there is a postcondition C2
that can be achieved by either action A1 or action A2, that
in turn have preconditions C11,C12 and C21,C22 respectively.
Then we create a PPA-BT aimed at achieving the condition
C by composing the actions and conditions in the generic
way displayed in Figure 3, i.e., each action Ai in sequence
after its preconditions Ci j, and these sequences in a fallback
composition after the main condition C2 itself. Finally we
create similar BTs for each postcondition Ci of Table II.

Actions Preconditions Postconditions

A1 C11, C12, . . . C2, C3, . . .

A2 C21, C22, . . . C2, C4, . . .

A3 C31, C32, . . . C3, C7, . . .
...

...
...

TABLE II: The input to Problem 1 is a set of actions and
corresponding pre- and postconditions, as illustrated above.

C2

?

—>

C1N A1C11

—>

CMN A2CM1

…

… …

Fig. 3: General format of a PPA-BT. Given Table II we see
that the Postcondition C2 can be achieved by either one of
actions A1 or A2, which have Preconditions C11,C12 and
C21,C22 respectively. Thus we form the BT above, on a
Postcondition-Precondition-Action form (PPA).

Algorithm 1: Creating a Backward Chained BT
Input: Goals C1, . . . ,CM

1 T0← Sequence (C1, . . . ,CM);
2 while Exists C′ ∈T0 such that

Parent(C′) = Sequence AND C′ is
postcondition of some action do

3 TPPA← CreatePPA-BT(Ci);
4 Replace Ci in T0 with TPPA

Now, given a set of such atomic BTs, and a list of goals
of an agent, we can recursively create a BT to achieve
those goals using Algorithm 1. The algorithm is illustrated
in Figure 4, and Figure 5.

As an example, first create a Sequence node with the goal
conditions In Safe Area and Object at Goal as children. Then
we look at Table II and create PPA-BTs for achieving both
of these conditions. Both these BTs are shown in Figure 4,
with dotted lines to the conditions they achieve. We then

replace the original conditions with the BTs achieving them,
as shown in the top of Figure 5. Iterating the procedure we
find new preconditions in these BTs and create new BTs
to achieve them. See all dotted lines in Figure 4, that are
replacing the corresponding conditions as shown in Figure 5.
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Fig. 4: The dotted lines show how to combine a number of
BTs on the PPA-BT form described in Figure 3, with the
two overall goals shown at the top, In Safe Area and Object
at Goal. The result can be seen in Figure 5. Note how, for
each dotted line, a child of a Sequence node (precondition,
something we want to achieve) in the upper BT is replaced
by a PPA-BT with that same condition as child of a Fallback
node (postcondition, something we know how to achive) in
the lower BT.
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Fig. 5: The resulting BT after applying the design shown in
Figure 4.

The main result of this letter is that we provide conver-
gence analysis of such designs, see Theorem 1 below. The
result shows that if the actions satisfy some stated properties,
the region of attraction is captured by a so-called And-Or
tree, as illustrated in Figure 7.



IV. CONVERGENCE OF BACKCHAINED BTS

To appreciate the need for a convergence proof, we
start this section with a discussion of things that can go
wrong with the proposed design. Then we make some initial
assumptions and definitions, followed by the main result.
Finally we give some detailed comments on how this result
differs from the related work in [10], [11].

A. What can go wrong?

To understand what might go wrong with the design
proposed in Algorithm 1 we look at the example in Figure 5.
The design is modular in the sense that it locally tries to
achieve goals and subgoals. However, there might be global
couplings between goals on different levels. In the worst
case, the top level goals are mutually exclusive, such as if
the goals were In Safe Area and Not In Safe Area. Clearly,
convergence to the satisfaction of both is impossible, but we
can still naively apply Algorithm 1. Thus we need to create
analytical tools to capture such problems.

There can also be less obvious couplings between goals on
different levels. Look again at Figure 5. The robot is tasked to
pick and place an object, while staying in the safe area. What
if the fire alarm went off, making the entire building where
the object and the goal area are located unsafe. Again, clearly
there is no feasible solution. In such a case, the robot would
first exit the building, getting to the safe area. It would then
start to Move to Object to pick it up, but as soon as it left the
safe area, it would immediately switch to Move to Safe Area,
and end up chattering on the boundary of the area. To prevent
such behavior, and to guarantee convergence when possible,
we need a way to identify potential goal conflicts across the
whole BT. The solution to the problem will be to identify
and propagate information on potential conflicts in terms of
additional constraints (see the ACCs of Definition 7) of the
actions. Move to Safe Area is top priority and will have no
such constraints, but Move to Object will be extended with
the constraint of not violating In Safe Area, and Move to
Goal will have the two constraints In Safe Area, and Object
in Gripper, see Table III. As discussed in Remark 1 below,
these constraints can be seen by a human designer as design
specifications for the action implementations.

B. Initial Definitions

Preconditions and postconditions are central concepts of
Algorithm 1, thus we need to define them in the statespace
context.

Definition 5: (Preconditions and Postconditions in States-
pace form). If a BT Ti is FTS, we denote a set of conditions
{C j} j∈J such that ∩ j∈JS j = R′i the preconditions, and a
condition Ck such that Si ⊂ Sk a postcondition of Ti.

The class of BTs we will analyse is defined as follows.
Definition 6: (Backward chained BT) A Backward

chained BT is a BT that is constructed recursively out
of PPA-BTs, starting from a set of desired top level goal
conditions in a Sequence, as described in Algorithm 1.

Definition 7 (Active Constraint Conditions (ACC)):
Given a BT T0, and an action Ai in that BT, the Active

Constraint Conditions ACC(i) of Ai is the sets of conditions,
apart from the preconditions of A, that needs to return
Success (be true) for A to execute.
Examples of ACC can be found in Table III, and Figure 6.
Note that we ignore the conditions that need to return Failure
(be false) for A to execute. Also note that the preconditions
is not part of the ACC. The reason is that we do not want
actions to violate their ACC, but sometimes we do want
actions to violate their preconditions, if that implies reaching
their postconditions. An example of this is when the agent
is placing an object at a goal location. A precondition is to
have Object in Gripper, but that precondition is violated in
the act of placing the object at the goal location.

Actions Ai Postconditions of
Ai (Objectives)

Active Constraint
Conditions ACC(i)

Move to Safe Area In Safe Area -
Move to Object Near Object In Safe Area
Grasp Object Object Grasped In Safe Area
Move to Goal Near Goal In Safe Area AND

Object in Gripper
Place Object Object at Goal In Safe Area
Do Task and Earn $ Robot has $ In Safe Area AND

Agent Nearby
Pay Agent to Place
Object

Object at Goal In Safe Area

TABLE III: All ACCs of the BT in Figure 5. Note how
preconditions are not included in ACC(i). Only possible non-
local conflicts are captured, such as when executing Move to
Object, the agent has to satisfy the constraint In Safe Area,
otherwise, the execution will be interrupted.

Lemma 2 (Finding ACCs): Given a BT T0, and an action
Ai in that BT. Let P be the unique path from Ai to the root.
Let N0S be the set of Sequence nodes on P, with the exception
of the parent of A (to exclude the preconditions). Let N1 be
the set of children of N0S that are to the left of P, these must
return success for A to execute. Let N1C be the conditions
in N1. Let N2C be the conditions that are the first child of
Fallbacks that are in N1. Then ACC(i) = N1C ∪N2C.

Proof: By design, using Algorithm 1, P starts with
a Sequence (root) node, then has alternating Fallback and
Sequence nodes, until it ends with a Sequence node as parent
of A. P = N0F ∪N0S ∪Parent(A)∪A. For A to be executed,
every child to the left of P in N0F (the Fallbacks) must
return Failure, and every child to the left of P in N0S (the
Sequences) must return Success. Since we are looking for
nodes returning Success we can ignore N0F . The children of
N0S are either constraints, that we denote N1C or Fallbacks
that we denote N1F . Due to Algorithm 1, the first child
of a Fallback in N1F is a constraint, we denote these N2C.
Furthermore, N1F only returns Success when N2C does. Thus,
N1C ∪N2C = ACC(i) is the set that needs to return success
(in additions to the preconditions of A) for A to execute.

C. Main Result

Now we define the type of BTs that will be shown to be
convergent.



—>

? ?

Robot near 
Object —>

?

Object in 
Gripper —>

?

Free path to 
Object exists

Move to Ob‐
ject

< 0.5m to 
Goal —>

? Place Object 
at Goal

Free path to 
Goal exists Move to GoalGrasp Object

In Safe Area

—>

Object at 
Goal—>

Free path to 
Safe Area exists

Move to Safe 
Area

Robot has $ —>

?

—>

Payed Task 
Available

Do Task and 
Earn $

Pay Agent to 
Place Object

Agent 
Nearby

Fig. 6: Example execution of the BT in Figure 5. For Move
to Goal (yellow) to be executed, all green conditions must
be evaluated True and all red conditions must be evaluated
False. The green ones include both preconditions (single
stroke) and ACC constraints (double strokes). This implies
that the agent must chose a path inside the safe area, and
move smooth enough to prevent the object from slipping out
of the grasp. The corresponding constraints for all actions
can be found in Table III. Note that while violating green
conditions is often not desired, making red conditions true
is in general positive. If, while moving towards the goal, the
object somehow ends up at the goal before we deliberately
place it there, this is a good thing.

Definition 8 (Non conflicting BTs): A Backward chained
BT T , such that each action Ai in T satisfies the following
requirements it is called Non Conflicting. Ai is FTS. The set
(R′i∪Si)

⋂
j∈ACC(i) S j 6= /0 is invariant under fi.

There are two key parts of this definition. First, Ai being
FTS means that it will locally satisfy its postcondition.
Second, requiring the set (R′i ∪ Si)

⋂
j∈ACC(i) S j to be non-

empty and invariant under fi means that it will not violate
its ACC(i), which is a global property, across the whole BT.

Remark 1 (Controllers that keep ACC sets invariant):
From the definition above, it is clear that we need to
be able to design controllers fi(x) such that the set
(R′i ∪ Si)

⋂
j∈ACC(i) S j is invariant under fi. To see what this

might mean, we look at the example. As noted in Table
III, Move to Goal has to satisfy In Safe Area and Object
in Gripper If the un-safe area is static, invariance can be
guaranteed by planning paths to avoid it. If the un-safe
area is moving, an approach to avoid moving obstacles
might be needed. Furthermore, to keep Object in Gripper,
a smoother and slower motion might be needed when
executing Move to Goal, than when executing Move to
Object (when the gripper is empty). Finally, we note that
a general approach to satisfy controller constraints is the
Control Barrier Function approach [15].

Before stating the main Theorem, we need a compact way
of describing the region of attraction of the BT. The design of
Algorithm 1 is such that actions work to satisfy preconditions
of other actions. Several such precondition might be needed,
and each of those might be achievable in different ways. It
turns out that this fairly complex dependence can be captured
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Fig. 7: The resulting And-Or Condition tree after applying
Definition 9 to the design shown in Figure 5. As can be
seen, if e.g., Free path to Safe Area exists AND Free path
to Object exists AND Free path to Goal exists, the problem
will be solved.

by a straightforward transformation of the BT into an And-
Or tree, as follows.

Definition 9 (And-Or BTs): Given a BT T0, the corre-
sponding And-Or BT T AO

0 = AndOr(T0) can be created by
removing all actions, replacing all Sequence nodes with AND
operators and Fallback nodes with OR operators.
Note that when all children are conditions, returning only
Success/Failure, the Fallback is completely analogous to
an OR function and the Success is analogous to an AND
function. Thus, T AO

0 above can still be considered a BT. An
example of an And-Or BT can be found in Figure 7.

Lemma 3 (Success regions of And-Or BTs): The success
region of T AO

0 = AndOr(T0) satisfies the following:

SAO
0 ⊂ S0∪R0.

Proof: Given a point x ∈ T AO
0 we need to show that

x ∈ S0 ∪R0. Since the top level node in T AO
0 is an AND,

we know that at least one AND node returns True. If there
is only one AND node returning True, we know that all top
level conditions are satisfied and x ∈ S0. If more than one
AND node returns True, there is a set of action nodes in T0
with all preconditions being satisfied. If x 6∈ S0, one of these
is executed and returns running, thus x ∈ R0

Assumption 1: (Reversible Actions) We assume that the
set SAO

0 of T AO
0 is invariant with respect to the actions fi(x)

of T0.
In the example, this excludes cases such as when there is first
a free passage to the goal, but while getting the object, this
path is somehow destroyed or permanently blocked, making
it impossible to achieve the overall objectives, or the object
is dropped so that there is no free path to it.

Assumption 2: (Restarting Failed Subtrees) While execut-
ing T0, if the sub-BT generated by applying Algorithm 1
to a condition C′ returns Failure, i.e., no path to satisfy
C′ is found, then this sub-BT will not start to execute as
a consequence of actions in other parts of T0.

This excludes infinite loops such as when the agent
realizes that there is no free path to the goal, and thus drops
the object to let another agent deliver it, but then immediately
realizes that it needs to pick it up again to move it to the



goal itself, and then realize again that there is no free path
to the goal, and so on. If such problems occur, they can
be addressed by re-ordering fallback options such that the
option with the least amount of failures has first priority.

We are now ready to state the main result of the letter.
Theorem 1: (Region of Attraction of Non Conflicting BTs)

The region of attraction of a Non Conflicting BT T0 and its
success region is a superset of the success region of T AO

0 ,
that is, SAO

0 ⊂ S0∪R′0. Furthermore, T0 is FTS with τb0≤Στbi
for all action Ai in T0.

Proof: Assume that we start in a state x ∈ SAO
0 . By

Assumption 1 and Lemma 3, we know that x(t) ∈ SAO
0 ⊂

S0∪R0∀t, there will always be an action in T0 that executes,
or the state is in S0, returning Success. Thus we need to show
that the state will reach S0 in finite time.

Number all nodes of T0 using a depth first algorithm,
starting with 0 at the root. Number the children in the usual
fashion, left to right.

Assume that action Ak, with number k, is executing. We
will now show that in finite time, either Ak leads to S0, or to
another action Am with a higher number m > k. Since there
are a finite number of nodes, this implies that S0 is reached
in finite time.

Let P be the path in T0 between Ak and Am. P is unique
since T0 is a tree. Let N∗ be the node closest to the root
in P. N∗ has at least two children, and is therefore either a
Sequence or a Fallback. We need to show that m > k, which
is equivalent to Am being to the right of Ak in T0. There
are four possible combination of left/right and N∗ being a
Fallback/Sequence, all these are illustrated in Figure 8, which
depicts a general subtree created using Algorithm 1. Am1 is
to the left, with N∗ being a Fallback, Am2 is to the left, with
N∗ being a Sequence, Am3 is to the right, with N∗ being a
Sequence, Am4 is to the right, with N∗ being a Fallback. Note
that in the figure, Ami symbolizes either the action Am, or a
subtree containing Am.
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Fig. 8: Illustration of the proof. Ami symbolizes possible
locations of either action Am or a subtree containing Am.
Note that there are two Am3.

The most likely option is that Ak satisfies its postcondition,
leading to the execution of Am3. Either way both Am3 and
Am4 have m > k as desired. Am2 cannot execute, since Cm2
was returning Success for Ak to execute, and Cm2 is a part
of ACC(k) which is invariant. Finally, for Ak to execute, the
subtree Am1 must return Failure. But by Assumption 2, Am1
will not change its return status as an effect of Ak. Thus Am1
will not execute.

Therefore, each action Ai is followed by another one with
higher index until S0 is reached. Finally, the total execution

time is bounded by τb0 ≤ Στbi, since each Ai is executed at
most once.

D. Flattened or Canonicalized BTs

A natural question to ask is how the result in Theorem 1
relates to the convergence proofs of the other works men-
tioned in Section II. The proofs in [10] and [11] assume that
the BT is on the following form: Fallback(Sequence(C1,A1)
. . . Sequence(CN ,AN) ). It is clear that the Backward Chained
BTs considered here can be written on the flattened form
above. However, as seen in Figure 9, this destroys some of
the structure. The proofs of [10] and [11] rely on each action
satisfying the preconditions of an action to its left (higher
priority, closer to goal). But, in Figure 9 it is clear that
some of the precondition are actually composed of several
conditions, that are in turn achieved by different actions.
Thus there is no clear progression from right to left. In
fact, if the robot starts out in the un-safe area, there is an
initial progression from left to right when reaching the safe
area and starting to move towards the object. In [11], the
implicit conditions correspond to the ACCs of this letter. But
in the flattened BT, there is no obvious way to see which
ACC should be considered where. Thus we conclude that
Theorem 1 is not a special case of the results in [10], [11].
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Fig. 9: The BT from Figure 5 written on the flattened
form. The green and red conditions return Success and
Failure respectively. Note that when Do Task and Earn $
is executing, there is no clear way to separate the satisfied
constraints that can be violated (green single stroke) from
the ones that cannot (green double stroke). However, this
information is available in the ACC of the Backward Chained
BT.

V. THE MOBILE MANIPULATOR EXAMPLE

The mobile manipulator example has been a recurring
theme of this letter3. But to summarize, we start with the
high level goal conditions In Safe Area and Object at Goal.
Then we apply Algorithm 1 as illustrated in Figure 4 to
get the result of Figure 5. Now, Theorem 1 tells us that

3A video illustrating the execution can be found at:
https://youtu.be/h6JsYbi5EmI



if the proper requirements are satisfied, we can expect
convergence, reaching both high level objectives. Thus, if
we start inside SAO

0 ⊂ S0∪R′0 then the goals will be reached
within τb0 ≤ Στbi. SAO

0 is the success region of the And-Or
BT, as illustrated in Figure 7, and shows that as long as
e.g., Free path to Safe Area exists AND Free path to Object
exists AND Free path to Goal exists, the problem will be
solved. Another feasible combination is Free path to Safe
Area exists AND Agent Nearby AND Payed Task Available.
In the former case the robot will move the object, and in
the later it will first earn money, and then pay another agent
to move the object. The requirements of Theorem 1 is that
the BT is non conflicting, see Definition 8, which means
that the actions should achieve their postconditions, without
violating previously achieved sub-goals, denoted ACC, see
Definition 7. These are listed in Table III, and correspond
to e.g., staying in the safe area, and in particular moving
carefully not to drop the object, when holding it.

Now imagine that the robot has the ability to create a free
path by removing obstacles, or opening doors. Extending the
BT in the standard way will however create a conflict, that
we will notice when computing the ACCs, see Table IV. The
problem is that the robot needs an empty gripper to open
the door, but dropping the object violates progress towards
placing the object at the goal. The solution is to note that
Free Path to Goal Exists is actually a precondition to Place
Object at Goal, of higher priority than Object in Gripper.
Thus, instead of the dashed option in Figure 10, the dotted
one should be preferred, that does not result in such conflicts,
see Table IV.

Actions Objectives ACC
Drop Object in Grip-
per (dashed)

Empty Gripper In Safe Area AND
Object in Gripper

Drop Object in Grip-
per (dotted)

Empty Gripper In Safe Area

TABLE IV: The new ACCs of the BT in Figure 10. Note
how the first (dashed) placement of the new subtree creates
a conflict (trying to Drop Object in Gripper while keeping
Object in Gripper as a constraint), while the second (dotted)
placement has no such problems.

VI. CONCLUSIONS

In this letter, we have shown how to provide convergence
guarantees for backchained BTs. Such BTs are more complex
than the linear designs studied in earlier work, where each
action satisfies preconditions of higher priority ones. Here we
allow separate preconditions that are satisfied with different
actions, as well as separate actions satisfying the same condi-
tions in different ways. The approach builds upon identifying
individual ACCs, global constraints that each action needs to
satisfy, using e.g., path planning or CBFs, and we show how
an And-Or tree can be used to describe when the design is
guaranteed to work. REFERENCES
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behavior trees in robotics and ai,” preprint arXiv:2005.05842, 2020.
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