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Abstract— Gaussian processes (GPs) have been exploited for
various applications even including online learning. To learn
time-varying hyperparameters from an information-limited
sparse data stream, we consider the infinite-horizon Gaussian
process (IHGP) with a low computational complexity for online
learning. For example, the IHGP framework could provide
efficient GP online learning with a data stream from mobile
devices. However, we show that the originally proposed IHGP
has difficulty in learning time-varying hyperparameters online
from the sparse data stream. In this paper, we show how to
extend the IHGP in order to learn time-varying hyperparame-
ters using a sparse and non-stationary data stream. Firstly, we
show that our solution approach offers the exact gradient as
the solution of a Lyapunov equation. Next, we present that our
approach with the exact gradient and a constraint for sparse
sampling achieves better performance with a sparse data stream
while still keeping the computational complexity low. Finally,
to demonstrate the effectiveness, we present the benchmark
comparison results. We also consider a slow vision system that
needs to be combined with other fast sensory units for feedback
control in the field of autonomous driving. In particular, we
apply our approach to vehicle lateral position error estimation
together with a deep learning model for autonomous driving
using non-stationary lateral position error signals in a model-
free and data-driven fashion.

I. INTRODUCTION

GAUSSIAN processes (GPs, [1]) have been extensively
exploited for various applications that require predic-

tion and its predicted confidence region in a nonparametric
and data-driven fashion [2]–[8]. GP regression has been
applied to many practical applications including embedded
systems such as mobile sensor networks and self-driving cars
[2], [9]–[11]. Practical problems often require high quality
online adaptive learning from a sparse data stream [12].
In the case of data sensor fusion for autonomous mobile
vehicles and robots, the sampling rate of the global posi-
tioning system (GPS) is generally much slower than that of
the inertial measurement unit (IMU). Hence, there are many
techniques to solve such a multirate situation formulated as
a multirate sensor fusion problem [13]. Recently, there has
been much attention on high performing modern machine
vision such as deep learning using vision data to obtain
vehicle state information (e.g., lane tracking problems) [14]–
[16]. Industrial researchers are highly motivated to adopt
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low-cost embedded systems with sparse data streams [17].
Machine vision (e.g., deep learning models with multiple
layers) generally slows down the data stream, which makes
it difficult for the GP regression to adaptively learn the time-
varying hyperparameters from such an information-limited
data stream.

In what follows, we introduce efforts to design efficient
GP regression for online learning. The naive implementation
of GPs requires a computational complexity of O(n3t ), where
nt is the number of training samples. Since the growing
complexity (as nt increases) is an impediment to a practical
application (e.g., online learning using the non-stationary
data stream), many researchers adopt to use approxima-
tion methods for computationally efficient GP regression
[9], [18], [19]. These approximation methods are largely
classified into two groups, viz., sparse methods and local
methods. Sparse methods [20] approximate the posterior
using nr � nt number of samples (i.e., inducing points)
that well represent the data [21]. In this case, the computa-
tional complexity is reduced to O(n2rnt). These methods are
appropriate for modeling smoothly-varying functions with
high correlations. On the other hand, local methods [22],
[23] are appropriate for modeling highly varying functions
with low correlations only using local data. These methods
divide the data into K sets of size nt/nr, then each local
GP performs in each division. In this case, the computational
complexity reduced to O(n3t/K

2) [21]. A promising local
approximation method is Infinite-Horizon GP approximation
(IHGP, [9]). Instead of construction of the kernel matrix,
the IHGP leverages Markov structure of the process and
represents the model as a linear Gaussian state space model
to solve using Kalman filtering [24]. The Kalman filter
requires a computational complexity of O(M3N), where M
is the dimension of the state space and N is the number
of the data points. The IHGP further reduces the GPs’
computation complexity to O(M2N) by simplifying its filter
recursion using a stationary Kalman filter gain with a steady
state assumption at each iteration [9]. From this reduction
in the computational complexity, the IHGP is then capable
of online learning of time-varying hyperparameters [9]. The
IHGP proposed in [9] shows an example of online adaptive
IHGP running in real-time on an iPhone. The IHGP estimates
hyperparameters adaptively by maximizing the marginal like-
lihood using its numerically found gradient. However, the
originally proposed IHGP fails to yield accurate prediction
and its confidence region when applied to a sparse online
data stream, i.e., an information-limited situation as shown in
Fig. 1. The prediction (in solid line) and its confidence region
(in grey) of the adaptive IHGP largely differ from the base-
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Fig. 1: A poor convergent behavior of online GP learning using a
sparse data stream (only with 20% of the total data, marked with
4) by the originally proposed IHGP [9] as compared to that of the
full GP using total data samples marked with +.

line predictive references (in dotted lines) produced by the
standard GP regression denoted by Full GP (Fig. 1). In this
paper, we address the aforementioned problem. Therefore,
the objective of the paper is to develop a GP online algo-
rithm for adaptively learning time-varying hyperparameters
in order to compute posteriori predictive mean and prediction
error variance functions for a given sparse data stream.

The contributions of our paper are as follows. Firstly, we
consider a challenging problem of designing computationally
efficient, adaptive, and online learning with sparse time-
series data for GP regression. In particular, we consider
a non-stationary process for the time-series signal with
an application to vehicle lateral position error estimation
for autonomous driving. Our solution approach builds on
the IHGP [9] that has many advantages such as a low
computational complexity and online adaptive learning of
hyperparameters for non-stationary data streams. However,
the IHGP shows poor convergent behaviors for sparse data
streams (Fig. 1). Therefore, in this paper, we focus on the
extension of the IHGP in order for time-varying hyper-
parameter learning to deal with sparse and non-stationary
data streams. In particular, we provide the exact gradient
to learn the time-varying hyperparameters to compute the
gradient. Our approach requires the partial derivative of
the solution of the discrete time algebraic Riccati equation
(DARE), with respect to hyperparameters, which is shown
to be the solution to a specific discrete Lyapunov equation
(see Lemma 2.1). In addition, we set a lower bound on the
length scale hyperparameter during the optimization process
to overcome the sparse data sampling in time. Finally,
we provide two examples to evaluate the efficacy of the
proposed methodology. One example is a GP regression on
simulated benchmark data taken from [9]. The other example
is the online adaptive learning of hyperparameters for a non-
stationary time series of vehicle error state estimates, which
is generated by a deep learning model. Simulation results

successfully demonstrate the effectiveness of our approach.
This paper is organized as follows. In Section II, we

present our approach with technical details along with a
background. Section III describes the comparative simulation
study setups. Our successful simulation results are presented
in Section IV. Finally, Section V provides a conclusion along
with our future work.

II. METHODS

A. Stochastic differential equation interpretation of a GP

Let x(t) be a realization of a non-stationary GP on
the time input t. A GP is completely defined by a mean
function µ(t) and a covariance function K(t, t′), i.e., x(t) ∼
GP(µ(t),K(t, t′)). GP regression is to infer the posterior dis-
tribution p(x(t)|yo) = N (x(t)|µ̂(t|yo), K̂(t, t′|yo)), where
yo is the measurement, for computing prediction and its
predicted confidence region. In order to represent a GP
in the form of stochastic differential equation (SDE), we
use a half-integer Matérn covariance function that can be
converted to an exact SDE representation [25], [26]. The
Matérn covariance function is given as

KMat.(t, t
′) = σ2

(
1 +

√
3|t− t′|
`

)
exp

(
−
√

3|t− t′|
`

)
,

where σ and ` are magnitude and length scale hyperparam-
eters that control the correlation scale and variability of the
process [26].

By using the interpretation of a GP as an SDE, we present
the non-stationary GP in terms of the corresponding linear
time-varying (LTV) SDE as follows [25]–[30].

dx(t)

dt
= F (t)x(t) + u(t) +B(t)ξ(t),

yi = C(ti)x(ti) + εi,
(1)

where x(t) = (x1(t), x2(t), · · · , xM (t))T ∈ RM is the state
vector that consists of M stochastic processes, and u(t) is a
known control input. The process noise ξ(t) is given by

ξ(t) ∼ GP(0, Qcδ(t− t′)),

a zero-mean, multi-dimensional Gaussian process with the
power-spectral density matrix Qc ∈ RS×S and δ(·) is the
Dirac delta function. The measurement noise εi is given by

εi ∼ N (0, σ2
nI),

and is realized by an independent and identically distributed
(i.i.d.), zero-mean, multi-dimensional Gaussian distribution.
F (t) ∈ RM×M , B(t) ∈ RM×S , and C(t) ∈ R1×M are the
system, noise effect, and measurement matrices, respectively.
In our case, state space model matrices are as follows [25].

F =

[
0 1

− 3
`2 − 2

√
3
`

]
, B =

[
0
1

]
, C =

[
1 0

]
, Qc = 12

√
3
σ2

`3
.

The initial state is given by the prior with the initial state
covariance matrix P0, i.e., x0 ∼ N (0, P0). The white
Gaussian process (i.e., process noise) term ξ(t) may be
interpreted as a derivative of the Wiener process dw(t),



where dw(t) = ξ(t)dt is an increment of the Wiener process
w(t) at time point t, i.e., dw(t) := w(t + dt) − w(t). By
multiplying the SDE (1) by dt, (1) can be more formally
represented in terms of the increment of the Wiener process
dw(t) as

dx = (F (t)x(t) + u(t))dt+B(t)dw, yi = C(ti)x(ti) + εi.

The solution of the LTV-SDE (1) is

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ){u(τ) +B(τ)w(τ)}dτ,

where Φ(t, τ) is the state transition matrix from τ to t [30].
Then the mean and covariance functions of the corresponding
GP to the LTV-SDE (1) can be obtained by taking the first
and second moment of x(t) as follows.

µ(t) = E[x(t)] = Φ(t, t0)µ0 +

∫ t

t0

Φ(t, τ)u(τ)dτ,

K(t, t′) =E
[
(x(t)− µ(t))(x(t′)− µ(t′))T

]
=Φ(t, t0)K0Φ(t′, t0)T

+

∫ min(t,t′)

t0

Φ(t, τ)B(τ)QcB(τ)TΦ(t′, τ)T dτ,

where µ0 and K0 are the initial state mean and covariance
matrix at t0, respectively. For a practical application, a
micro-controller needs to deal with discrete-time inputs and
sampled measurements. For discrete state values xk = x(tk),
the state space model is now given by

xk ∼ N (xk|Ak−1xk−1, Qk−1),

yk ∼ N (yk|Ckxk, σ2
nI),

(2)

where Ak is the discrete-time state transition matrix between
time-instance tk and tk+1. Qk is the covariance matrix of
the process noise. The corresponding discrete-time system
matrices Ak and Qk are then obtained by the SDE system
parameters from (1)

Ak = Φ(tk+1, tk),

Qk =

∫ tk+1

tk

Φ(tk+1, τ)B(τ)QcB(τ)TΦ(tk+1, τ)T dτ,
(3)

where Φ(tk+1, tk) is a transition matrix.

B. Steady-state Kalman filter

We can explicitly represent the Bayesian filtering using the
Kalman filter, which is the recursive solution to a general
linear Gaussian model in (2). The Kalman filter equations
can be represented as prediction and update steps as follows
[24].

Prediction step:

mp
k = Ak−1m

f
k−1,

P pk = Ak−1P
f
k−1A

T
k−1 +Qk−1,

Update step:

Sk = CkP
p
kC

T
k +R,

Kk = P pkC
T
k S
−1
k ,

mf
k = mp

k +Kk[yk − Ckmp
k],

P fk = P pk −KkSkK
T
k ,

where mp
k and P pk are predictive state mean and covariance,

respectively, and mf
k and P fk are filter state mean and

covariance, respectively. Sk and Kk are temporary variables
to calculate the mean and covariance, and R is equal to
the measurement noise power σ2

nI . If the measurements are
given by a scalar, then Sk is a scalar, and therefore matrix
inversion is not necessary.

Now, let us assume a case of linear time-invariant (LTI)
SDE without control inputs, such that F (t) = F,B(t) =
B,C(t) = C, and u(t) = 0. Since the model is stationary,
the stationary state is distributed by x∞ ∼ N (0, P∞) and the
stationary covariance of x(t) is the solution of the Lyapunov
equation, Ṗ∞ = FP∞ + P∞F

T +BQcB
T = 0.

In this case, the system matrices in (3) are then shown as

Ak = exp(F4tk),

Qk =

∫ 4tk
0

exp(F (4tk − τ))BQcB
T exp(F (4tk − τ))T dτ,

(4)

where 4tk := tk+1 − tk.
Given that P∞ exists and is known, the process noise

covariance in (4) can be computed efficiently as follows [31].

Qk = P∞ −AkP∞ATk . (5)

In steady-state Kalman filtering, we assume equidistant
observations in time (Ak := A and Qk := Q) as t→∞ [9],
[32]. Then the filter gain converges to the stationary Kalman
filter gain K = PCT (CPCT +R)−1, where P is the unique
solution of the following DARE [32].

P = ATPA− (ATPCT )(CPCT +R)−1CPA+Q. (6)

The filter conditional mean (or GP prediction) and the filter
state covariance of the Kalman filter recursion with the
stationary Kalman filter gain are given as follows.

mf
k = (A−KCA)mf

k−1 +Kyk,

P f = P −KCP,
(7)

for all k = 1, 2, · · · , N . The recursion in (7) has a
computational complexity with one M ×M matrix-vector
multiplication that results in O(M2N) while the Kalman
filter has a computational complexity of O(M3N), where
M is the dimension of the state space and N is the number
of the data points.

C. Gradient descent algorithm for online learning

Our approach adaptively optimizes the hyperparameters θ
using the following gradient descent algorithm with the exact
gradient.

θj = θj−1 + η∇ log p(yj |θj−1), (8)



where η is a learning-rate. The optimization process for
our benchmark results uses a nonlinear programming solver
with gradient information (fmincon) in the MATLAB op-
timization toolbox. In our case, θ is consist of σn, σ and
`, which represent the measurement noise variance, signal
variance, and length scale, respectively. In order to calculate
the exact gradient of the log marginal likelihood function,
we first define the log marginal likelihood in terms of vk :=
yk − CAmf

k and sk := CPCT + σ2
n as follows [9].

log p(y) =

N∑
k=1

1

2
(log 2πsk + v2k/sk)

=
N

2
log 2π +

N∑
k=1

1

2
log sk +

N∑
k=1

v2k
2sk

=
N

2
log 2π +

N∑
k=1

1

2
log(CPCT + σ2

n)

+

N∑
k=1

(yk − CAmf
k)2

2(CPCT + σ2
n)
.

Using this log marginal likelihood, we show how to
calculate the exact gradient of the likelihood for online
learning in (8). In order to explain our method, we first
introduce the following lemma.

Lemma 2.1: Let us define the notation (·)′ := ∂·
∂θ . Given

the discrete algebraic Riccati equation (6), the partial deriva-
tive of the solution of the DARE with respect to θ (i.e.,
P ′ := ∂P

∂θ ) can be exactly computed by solving the discrete
Lyapunov equation

ĀTP ′Ā− P ′ + Q̄ = 0, (9)

where Ā := A − CTS−1CPA, and Q̄ := A′
T
PA +

ATPA′
T − A′

T
PCTS−1CPA − ATPCTS−1CPA′ +

ATPCTS−1R′S−1CPA+Q′.
Proof: P ′ = ∂P

∂θ is obtained by differentiating the
DARE (6) with respect to θ as follows.

[
ATPA− P − (ATPCT )S−1CPA+Q

]′
=A′

T
PA+ATP ′A+ATPA′

T − P ′ −A′TPCTS−1CPA
−ATP ′CTS−1CPA+ATPCTS−1S′S−1CPA

−ATPCTS−1CP ′A−ATPCTS−1CPA′ +Q′ = 0,
(10)

where S is CPCT +R.
If we substitute Ā and Q̄ with A − CTS−1CPA,

and A′
T
PA + ATPA′

T − A′
T
PCTS−1CPA −

ATPCTS−1CPA′ + ATPCTS−1R′S−1CPA + Q′,
respectively, (10) becomes the discrete Lyapunov equation
(9) that can be solved for P ′. Therefore, P ′ can be exactly
computed by the solution of the discrete Lyapunov equation
(9) in Lemma 2.1.

Now, we show how to obtain the exact gradient of the log
marginal likelihood.

Proposition 2.2: Given a log marginal likelihood as
log p(y) =

∑N
k=1

1
2 (log 2πsk + v2k/sk), where vk = yk −

CAmf
k and sk = CPCT +σ2

n, the exact gradient of the log
marginal likelihood is calculated as in lines from 13 to 20
of Algorithm 2.

Proof: The gradient of the log marginal likelihood is
given by

∇ log p(y) =

N∑
k=1

1

2(CPCT + σ2
n)

∂(CPCT + σ2
n)

∂θ

−
N∑
k=1

(yk − CAmf
k)

(CPCT + σ2
n)

∂(CAmf
k)

∂θ

−
N∑
k=1

(yk − CAmf
k)2

2(CPCT + σ2
n)2

∂(CPCT + σ2
n)

∂θ
.

(11)

From (11), it is straightforward to see how P ′ that is
obtained by solving the Lyapunov equation (9), is used to
compute the exact gradient as in Algorithm 2.

Note that we set a lower bound on the length scale
hyperparameter ` during the optimization process (8) to
overcome the sparse data sampling.

Remark 2.3: Our method to compute the exact gradient
differs from the previous work based on the numerically
found gradient using the DARE solver [9]. Our exact solution
also saves additional computational times. The computational
times of our approach and the previous IHGP (measured
using Matlab programming) are 0.0031s and 0.0042s, re-
spectively.

Algorithm 1 Online time-varying hyperparameter learning using sparse
data.

Input: θ = (σ2
n, σ

2, `)k−1, yk

1: w = window size
2: Yk = {yk} ∪ Yk−1 \ {yk−w}
3: model := Matern covariance functions to state space
4: while Until θ converges do
5: (F,Qc, C, P∞) = model(θ)
6: A = exp(Fdt),
7: Q = P∞ −AP∞AT ,
8: R = θ(1),
9: P = dare(A,CT , Q,R)

10: Obtain m by applying Kalman smoother
11: [L, grad]=Algorithm 2 (A,C, P, Yk, θ,m)
12: θ = θ + ηgrad (8)
13: end while

Algorithm 1 presents the IHGP algorithm [9] performed
on sparsely windowed observations Yk, assuming the locally
steady-state at time tk for online time-varying hyperparame-
ter learning. The reason for using the windowed observations
Yk is to consider the situation of estimating the lateral
position error while the vehicle is driving (Section III-B). To
minimize the the memory size of the electronic control unit
(ECU) of the vehicle, we maintain the size of the window
by continuously adding the latest observation and removing
the oldest observation in a sparse sampling rate. Note that



to reconstruct the posteriori predictive mean function and its
prediction error variance function, i.e., interpolation using
sparse data streams, we applied Kalman smoothing [24] in
Algorithm 1.

Our modified algorithm to compute the exact gradient
is given by Algorithm 2, which is nested in Algorithm 1
in order to estimate the time-varying hyperparameters at
time tk by maximizing log likelihood function using (8) in
Algorithm 1.

Algorithm 2 Evaluating the log marginal likelihood and its gradient.

Input: A,C, P, Y, θ,m
1: ŝ = CPCT +R
2: K = PCT /ŝ
3: dR = [1 0 0]T

4: j = the number of hyperparameters
5: for i = 1→ j do
6: obtain dA, dQ (see Appendix in Section VI)
7: Ā = A− CT ŝ−1CPA
8: Q̄i = dATi PA + ATPdATi − dATi PC

T ŝ−1CPA −
ATPCT ŝ−1CPdAi +ATPCT ŝ−1dRiŝ

−1CPA+ dQi
9: P ′i = dlyap(ĀT , Q̄i)

10: dSi = CP ′iC
T + dRi

11: dKi = P ′iC
T /ŝ− PCT dSi/ŝ2

12: end for
13: L = N

2
log(2π) + N

2
log(ŝ)

14: grad = N
2
dS/ŝ

15: for all yi ∈ Y do
16: v = yi − CAm
17: L = L+ 0.5v2/ŝ
18: dv = −mTCdA− CAdm
19: grad = grad + vdv/ŝ− 0.5v2dS/ŝ2

20: dm = AKCAdm+ dKyi
21: end for
22: return L, grad

Algorithm 2 summarizes the optimization steps by our
approach over a sparse data stream. First, by using the
state space model, solve the DARE for the state covariance,
and compute the stationary gain. We then calculate the
exact gradient by solving the discrete Lyapunov equation
(9). Previously, the IHGP method [9] tries to reformulate
(10) as another DARE for solving P ′ using a MATLAB
function (e.g., dare in MATLAB Control System Toolbox,
from MATLAB, MathWorks, Natick, MA, USA) in O(M3).
Since our approach replaces this part with another MATLAB
function (e.g., dlyap in MATLAB Control System Toolbox)
that solves discrete Lyapunov equation in O(M3) for the
exact P ′, we maintain the same computational complexity
as the IHGP approach.

Note that similar approaches to obtain P ′ exactly using a
Lyapunov equation are reported for the optimization of the
sampling points to perform robotic environmental monitoring
[33], and for the minimization of the gap between two
controllers to solve an inverse optimal control problem [34].

III. COMPARISON STUDIES

We compare the results of our approach against those
of the IHGP [9] over sparse online data streams. All
experiments run in Mathworks MATLAB (R2019a) on a

workstation equipped with 3.2GHz Intel Core i7 and 16Gb
RAM.

A. Simulated benchmark data

We provide a GP regression example with N = 100
observations simulated from yk = sinc(6− xk) + εk, where
εk ∼ N (0, 0.1). This example is taken from [9]. In order
to make a sparse data stream, we randomly select 20 out of
100 samples (i.e., 20%) to obtain the gradient of the marginal
likelihood while optimizing the hyperparameters.

B. Lateral position error estimation

Now we consider a practical problem for another compar-
ison study. We perform online GP learning and prediction
on a non-stationary vehicle state variable. In particular,
we consider the lateral position error of the vehicle, the
variable of which can be used for lane keeping feedback
control. We define the lateral position error as the distance
from the road center to the vehicle perpendicularly. We
collected the data by using AirSim car simulator (Microsoft
Corporation, Redmond, WA USA) based on Unreal Engine 4
(Epic Games, Inc. Cary, NC, USA) as shown in Fig. 3. We
depict the trajectory of the vehicle in Fig. 7. The red line
is the road center and the blue boxes are the collection of
the poses of the vehicle over time. To be more practical,
we simulate a situation where deep learning-based machine
vision produces the non-stationary vehicle state variable at
each sampling time. Our online GP learning is then applied
to produce the smooth prediction and its predicted confidence
region based on the sparse output sequences from machine
vision in a data-driven way, i.e., without any vehicle model
such as kinematics or dynamics. In this example, similar
to the previous example, we randomly select 19 out of 50
samples (i.e., 38%) to make a sparse data stream to obtain
the gradient of the marginal likelihood while optimizing the
hyperparameters. The deep neural network takes a series of
images with the resolution of 400 × 300 pixels (Fig. 2) as
the input and produces one estimated vehicle state variable,
i.e., the lateral position error with respect to the road center.
The deep neural network consists of a convolutional neural
network (CNN) and a long short-term memory (LSTM)
network. In what follows we explain both networks in details.

1) CNN: We use the pre-trained convolutional layers of
Google’s InceptionV3 model to extract features from the
vision data [35]. At every time step, the CNN takes an image
and generates a feature vector that contains information of
the image. Then we stack the sequential feature vectors of
the last five time steps and transfer them to the LSTM. The
reason for using a sequence of images as the input is to
filter the output to improve estimation performance via noise
reduction [36].

2) LSTM network: In our deep neural network, two LSTM
layers follow the convolutional layers. The LSTM network is
well suited for the prediction from sequential data. An LSTM
layer has a memory cell, an input gate, an output gate and
a forget gate. These gates regulate whether the information
of the input needs to be remembered or not. The conceptual



Fig. 2: An example of a sequence of images that the deep neural network takes as the input to produce the non-stationary vehicle state
variable.

Fig. 3: The simulation with a realistic visual environment for
collecting vehicle state variable (lateral position error with respect
to the road center).

Fig. 4: The structure of the CNN-LSTM network.

model structure of the deep neural network is illustrated in
Fig. 4.

IV. COMPARISON STUDY RESULTS

A. Simulated benchmark data

Figures 6 and 1 show the simulation results of our ap-
proach and the original IHGP [9], respectively. We use the
full GP implementation with the total data points (marked
with + in Fig. 6) as a reference (Full GP) to compare the
performance of our approach and the original IHGP. For
further performance analysis, we first define the Root Mean
Square Error (RMSE) with respect to the results of Full
GP regression, where the error is the difference between the
prediction with a sparse data stream and Full GP prediction.
Our approach (Fig. 6) uses the solution of the discrete
Lyapunov equation while the original IHGP (Fig. 1) uses
the forward recursion to exactly compute the gradient of the

log likelihood. Both methods perform well with a sufficient
number of data samples. However, our approach (Fig. 6)
outperforms the original IHGP (Fig. 1) over a sparse data
stream (marked with4 in Fig. 6). In particular, our approach
successfully produces prediction (in solid line) and its pre-
dicted confidence region (in grey) that match well with those
of Full GP regression (in dotted lines) (Fig. 6) even with a
sparse data stream. On the other hand, the prediction (in
solid line) and its confidence region (in grey) by the original
IHGP are based on wrongfully estimated hyperparameters
online (i.e., too small bandwidths over time) and so they
significantly differ from those of Full GP regression (in
dotted lines) as shown in Fig. 1. In this particular realization,
the RMSE values of our approach (Fig. 6) and IHGP (Fig. 1)
are 0.0009 and 0.0172, respectively.

B. Monte Carlo simulations

In order to evaluate the averaged performance of our ap-
proach against IHGP, we repeatedly realized the data streams
with random measurement noises 30 times under different
sparse rates. In particular, for each simulated data stream,
we vary the percentage of removed measurements from 0%
to 60% to compare the averaged RMSE values of the two
approaches (over random realizations). If we remove 0% of
the data, the RMSE values of both approaches converge to
0. However, as the amount of sparsity increases (i.e., the
percentage of removed measurements increases), the RMSE
value increases. In that case, our approach shows generally
much lower averaged RMSE values than the original IHGP
for overall ranges of sparsity (Fig. 5a). On average over
sparsity, the RMS reduction of our achieved averaged RMSE
values as compared to that of IHGP is 43%. Our approach
performs better due to the lower bound on the length scale
hyperparameter ` during the optimization process (Fig. 5a)
as compared to the unconstrained optimization (Fig. 5b).

C. Lateral position error estimation

The trajectory of the collected (ground truth) vehicle poses
is shown in blue rectangles during the test as shown in Fig. 7.
For each time step, the optimization process is performed for
a window of size 50 and it takes 0.026 seconds, which allows
the practical implementation of our approach. The results of
prediction and its predicted confidence region on the lateral
position variables by our approach and by the original IHGP
are shown in Fig. 8a and Fig. 8b, respectively. The prediction
(in solid line) and its confidence region (in grey) by the
original IHGP do not track the references (dotted lines)
of Full GP regression well while our approach’s prediction



(a) RMSE values with a constrained optimization. (b) RMSE values with an unconstrained optimization.

Fig. 5: RMSE values of our approach and IHGP from Monte Carlo benchmark simulations by varying the sparsity from the removal
percentage of 0% to 60%. Black dotted lines are predictions using the original IHGP, and blue solid lines are predictions (a) with and (b)
without a lower bound on the length scale hyperparameter during the optimization process. Blue and grey regions are confidence regions
of each prediction.
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Fig. 6: Simulation result of a GP regression on sparse data using
the modified IHGP.

tracks the reference prediction well as shown in Fig. 8a.
The RMSE values of our approach and IHGP during the
entire trajectory given in Fig. 7 are 0.0066, and 0.0436,
respectively. In addition, we collected data 10 times using
AirSim car simulator. For 10 simulated data streams, the
averaged RMSE values of our approach and IHGP are 0.008
and 0.0182, respectively. The performance gain by using our
approach is not significant in an RMSE sense due to a small
level of the randomness in our deep neural network output.
However, from the results of Section IV-B, we expect that
our approach is effective when it is applied to cheap sensor
units with high measurement noise levels.

V. CONCLUSION

In this paper, we successfully extend the IHGP in order
to learn the time-varying hyperparameters using sparse and
non-stationary data streams. Our approach calculates the
exact gradient of the marginal likelihood for GP online

Fig. 7: The trajectory of the collected (ground truth) vehicle poses
in blue rectangles during the test. The road center is shown as a
red solid line.

(a) The prediction results by our
approach.

(b) The prediction result by the
IHGP.

Fig. 8: The prediction (in solid line) and its confidence region (in
grey) of the box in Fig. 7 by our approach and the IHGP.

learning using the solution of the discrete Lyapunov equa-
tion. Our approach’s maximization with the exact gradient
and a lower bound improves the performance against the
previous IHGP with sparse data streams. Our approach
still maintains the overall computational complexity with
O(m2n) for GP online learning for possible use in embedded
systems. We have successfully demonstrated the usefulness
of our approach under sparse non-stationary data streams 1)
in a simulated benchmark problem and 2) in another practical
problem of estimating vehicle lateral position error using
the outputs of a CNN-LSTM network in a non-parametric
fashion (without any vehicle models). Future work is to
apply our approach to build algorithms to compute prediction
and its confidence region using different machine vision
applications in embedded systems for robotics and self-



driving cars.

VI. APPENDIX
In this section, we show how to compute dA and dQ

in Algorithm 2. Given F =

[
0 1

− 3
`2
− 2
√
3
`

]
∈ R2×2, Two

components of dF ∈ R2×2×2, viz., dF (:, :, 1) =

[
0 0
0 0

]
,

dF (:, :, 2) =

[
0 0
6
`3

2
√
3

`2

]
are obtained by differentiating F with

respect to σ and `, respectively. dA ∈ R2×2×2 is then calculated
as follows.
dA(:, :, i) = exp(dF (:, :, i) · dt), i ∈ {1, 2}.

Given P∞ =

[
σ 0
0 3σ

`2

]
∈ R2×2, dP∞ ∈ R2×2×2 is obtained

by differentiating P∞ with respect to σ and ` as follows. dP∞(:

, :, 1) =

[
1 0
0 3

`2

]
, dP∞(:, :, 2) =

[
0 0
0 − 6σ

`3

]
.

dQ ∈ R2×2×2 is then calculated as follows.
dQ(:, :, i) = dP∞(:, :, i)− dA(:, :, i)P∞A

−AT dP∞(:, :, i)A−ATP∞dA(:, :, i), i ∈ {1, 2}.
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[17] S. Lucia, D. Navarro, Ó. Lucı́a, P. Zometa, and R. Findeisen,
“Optimized FPGA implementation of model predictive control for
embedded systems using high-level synthesis tool,” IEEE transactions
on industrial informatics, vol. 14, no. 1, pp. 137–145, 2017.

[18] Y. Xu, J. Choi, and S. Oh, “Mobile sensor network navigation using
Gaussian processes with truncated observations,” IEEE Transactions
on Robotics, vol. 27, no. 6, pp. 1118–1131, 2011.

[19] Y. Xu, J. Choi, S. Dass, and T. Maiti, “Sequential Bayesian prediction
and adaptive sampling algorithms for mobile sensor networks,” IEEE
Transactions on Automatic Control, vol. 57, no. 8, pp. 2078–2084,
2011.

[20] E. Snelson and Z. Ghahramani, “Sparse Gaussian processes using
pseudo-inputs,” in Advances in neural information processing systems,
2006, pp. 1257–1264.

[21] M. M. Zhang, B. Dumitrascu, S. A. Williamson, and B. E. Engelhardt,
“Sequential Gaussian processes for online learning of nonstationary
functions,” arXiv preprint arXiv:1905.10003, 2019.

[22] M. P. Deisenroth and J. W. Ng, “Distributed Gaussian processes,”
arXiv preprint arXiv:1502.02843, 2015.

[23] J. W. Ng and M. P. Deisenroth, “Hierarchical mixture-of-experts
model for large-scale Gaussian process regression,” arXiv preprint
arXiv:1412.3078, 2014.
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