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Abstract— Large industrial robots offer an attractive option
for deep rolling in terms of cost and flexibility. These robots
are typically designed for fast and precise motion, but may
be commanded to perform force control by adjusting the
position setpoint based on the measurements from a wrist-
mounted force/torque sensor. Contact force during deep rolling
may be as high as 2000 N. The force control performance is
affected by robot dynamics, robot joint servo controllers, and
motion-induced inertial force. In this paper, we compare three
deep rolling force control strategies: position-based rolling with
open-loop force control, impedance control, and gradient-based
iterative learning control (ILC). Open loop force control is
easy to implement but does not correct for any force deviation.
Impedance control uses force feedback, but does not track well
non-constant force profiles. The ILC augments the impedance
control by updating the commanded motion and force profiles
based on the motion and force error trajectories in the previous
iteration. The update is based on the gradient of the motion
and force trajectories with respect to the commanded motion
and force. We show that this gradient may be generated
experimentally without the need of an explicit model. This
is possible because the mapping from the commanded joint
motion to the actual joint motion is nearly identical for all
joints in industrial robots. We have evaluated the approach
on the physical testbed using an ABB robot and demonstrated
the convergence of the ILC scheme. The final ILC tracking
performance of a trapezoidal force profile improves by over
70 % in terms of the RMS error compared with the impedance
controller.

I. INTRODUCTION

Surface treatment processes, including roller burnishing,
deep rolling, and laser peening are commonly utilized to
improve performance of a wide variety of commercial and
aerospace products [1]. Of all these methods, the deep
rolling process is of particular interest because it may be
customized according to part geometry and the required
compressive residual stress profile to enhance part fatigue
life and strength [2]. Deep rolling is a mechanical surface
treatment method in which the workpiece surface is ex-
posed to high local mechanical load using a spherical or
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Fig. 1. The robotic deep rolling process.

cylinder-like tool to induce work hardening and compres-
sive residual stress in the near-surface material. Computer
numerical controlled (CNC) platforms are typically used in
industry due to their rigidity, but they are expensive with
low throughput. Furthermore, many CNC platforms are not
designed to accommodate the high spindle loads required
for rolling/burnishing. Large robotic systems could provide
an excellent alternative to traditional CNC platforms for deep
rolling (as illustrated in Fig. 1) with the advantages of lower
cost, higher throughput, and process flexibility for parts.

Industrial robots typically only allow users to access the
external position and velocity control interfaces, e.g., the
Robot Sensor Interface (RSI) of Kuka (12 ms sampling
rate), Low Level Interface (LLI) of Stäubli (4 ms sampling
rate), and Externally Guided Motion (EGM) of ABB (4 ms
sampling rate). In this paper, we present and compare
three strategies to implement deep rolling using a position-
controlled industrial robot. The first approach is position-
based rolling with open-loop force control. In this case,
a user commands a pre-computed position trajectory that
produces the desired contact force and motion in orthogonal
directions. However, this approach does not reject force
disturbances and is difficult to adopt to non-constant force
profiles or curved parts. The second method uses force
feedback to implement impedance control [3] to ensure force
profile tracking. Such schemes are offered as part of a
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proprietary add-on feature for some industrial robots, e.g.,
the ABB force control package [4]. Compared with the open-
loop control, the impedance control is robust with respect
to the robot and material properties and can reject force
disturbances. However, the tracking performance for time-
varying or position-dependent force profiles is frequently
compromised by the robot dynamics and joint servo con-
trollers. The third approach is based on iterative learning
control [5], [6]. The idea is to iteratively update the input
based on the error from previous trials. As the method is
for motion control, a precise surface deformation model is
needed to extend to force control.

In this paper, we introduce a robust data-driven gradient-
based ILC algorithm for robotic deep rolling that does not
need explicit model information of the system and environ-
ment, and only requires the position or velocity command
interface for robot control. Our formulation directly takes the
desired Cartesian force and motion as input and the measured
Cartesian force and motion as output. The standard ILC is
mostly based on linear proportional update. In contrast, we
use a trajectory-based gradient descent algorithm. Explicit
model is not needed for the gradient update computation.
Instead, we feed the time reversed force and motion tracking
error profiles directly into the physical system to generate
the gradient descent direction. We have implemented all
three approaches mentioned above and evaluated the tracking
performance for a trapezoidal force and motion profile on
an ABB industrial robot. The open loop controller is not
applicable for such a time-varying force profile. The ILC
controller improves the RMS tracking error by over 70 %
compared with impedance control. To our best knowledge,
this is the first theoretical and experimental work that applies
ILC for robotic deep rolling. To summarize, the contributions
of this study include:

1) Introduction of an ILC algorithm for motion and force
trajectory tracking that uses the physical process itself
to generate the gradient descent direction and does not
require explicit model information.

2) Development of convergence condition of the ILC
algorithm.

3) Demonstration of the applicability of the proposed ILC
algorithm to the commanded position control interface
available in many industrial robots.

4) Experimental demonstration of the feasibility of the
approach for deep rolling with a desired time-varying
force profile.

For the rest of the paper, Section II summarizes related
work on force control. Section III describes our data-driven
gradient-based ILC algorithm and its convergence condition.
Section IV shows the applicability of the ILC algorithm to
the motion and force trajectory tracking problem. The testbed
system and experimental results are presented in Section V.

II. RELATED WORK

Classical techniques which tackled the force control prob-
lem mostly focused on model-based control by feedback lin-
earization [7]–[9], impedance control [3], and in some cases

model-independent control. For instance, Raibert et al. [7]
proposed one of the earliest hybrid position/force control
algorithm based on feedback linearization and development
of two complementary orthogonal subspaces to decouple the
control of position and force. In [10], Anderson et al. pro-
posed hybrid impedance control that combined impedance
control and hybrid position/force control. Impedance control
tries to command the robot to mimic a specified impedance.
However, without cancellation of the nonlinear robot dynam-
ics, the motion-induced inertial force can compromise the
force tracking performance.

Force control techniques based on universal function
approximators such as neural networks (NNs) for robot
dynamics model approximation have been proposed [11]–
[13]. For example, Rani et al. [13] designed a neural adaptive
controller based on radial basis function NNs for hybrid
force and position control of a simulated two-link robot
manipulator.

Iterative learning control performs well in motion con-
trol [14] and has been evaluated with industrial robots [6].
It has also been extended to impedance control, admittance
control, and force control. For the case of impedance con-
trol [15]–[17], a learning controller was designed such that
a target impedance behavior was followed. For admittance
control [18], an ILC algorithm was proposed to gradually
eliminate interaction force for a peg-in-hole assembly task.
For robot force control [19]–[21], experimental evaluation
on physical systems were limited. Jeon et al. [22] proposed
a torque-level learning controller that can improve position
and force tracking performance based on error information
from previous trials, given sufficiently accurate knowledge
of the system model. Visioli et al. [23] presented an ILC
algorithm for the contour tracking task of a piece of un-
known shape without a time-based reference signal. Tahara
et al. [24] developed an ILC method for force/position
trajectory tracking with a robot subject to non-holonomic
rolling constraints. However, the input was at the torque
level, and only simulation results were presented. A hybrid
control strategy for dual-arm manipulation task using ILC
was proposed in [25], where the measured position and force
errors were fused by a Kalman filter with an experimentally
identified contact model, and the fused position error was
utilized by ILC for manipulator position compensation.

Drawbacks of the aforementioned works which pose a
problem for their application in deep rolling include de-
pendence on an accurate model of the robot and/or the
environment, the requirement of a robot joint torque control
interface, computational complexity, lack of experimental
evaluation for large target force levels. A preliminary inves-
tigation of the use of an industrial robot as an alternative to
CNC machines for deep rolling process was reported in [26]
but it did not address the force control algorithm. The goal
of this study is to lower the barrier of using industrial robots
for surface treatment processes by improving the robot force
control accuracy while retaining the benefits of flexibility
and lower cost.



III. ILC FOR NONLINEAR SYSTEMS

Let Ln
2 [0, T ] denote Rn square integrable functions on

[0, T ] with the inner product < v,w >=
∫ T

0
v(t)Tw(t) dt

and norm ‖v‖2 =
∫ T

0
v(t)T v(t) dt. Consider the mapping

of an input trajectory u ∈ Ln
2 [0, T ] to an output trajectory

y ∈ Ln
2 [0, T ] with a fixed initial condition, denoted by

y = G(u) where G : Ln
2 [0, T ] → Ln

2 [0, T ] is an operator,
possibly nonlinear. Given a desired output y

d
∈ Ln

2 [0, T ],

the goal is to find u to minimize
∥∥∥y − y

d

∥∥∥ where the norm
is in the Ln

2 [0, T ] sense. Iterative learning control is basically
an iterative algorithm to update u to reduce the tracking error
e := y − y

d
:

uk+1 = uk − αL(ek), (1)

where α is sometimes called the learning rate, and k is the
iteration number. In the ILC literature, the update law L does
not explicitly depend on the model parameters, but needs
certain properties of G to ensure convergence (e.g., gain,
passivity). Many ILC algorithms have been developed for
linear systems [27], [28] where L is chosen to ensure the
convergence of e to zero. Such technique has been applied
to industrial robot motion control based on linearized anal-
ysis [29]. For nonlinear systems such as robots, passivity-
based convergence condition has been developed in [30].

A. Gradient-Based ILC

The standard gradient descent algorithm to minimize ‖e‖
results in the following ILC update law:

uk+1 = uk − αG∗kek, (2)

where G∗k is the adjoint of Gk := ∇uG(uk), the gradient
(Frechét derivative) of G, and α is a sufficiently small
constant.

Note that Gk is a linear time varying (LTV) system – the
linearization of G about the state trajectory generated by uk.
The adjoint G∗k is also an LTV system. If Gk is approxi-
mately time-invariant, then the gradient and its adjoint, Gk

and G∗k, are related through their impulse response kernels
[31]:

G∗k = T GT
kT , (3)

where T is the time reversal operator [32], and GT
k is the

LTV system with the transpose of the impulse response of
Gk. Substituting into (2), we have

uk+1 = uk − αT GT
kT ek. (4)

If the impulse response of Gk is symmetric, then GT
k = Gk.

This includes the special case when G is diagonal. In this
case, we have

uk+1 = uk − αT GkT ek. (5)

It may appear that model information, i.e., G, is needed in
implementing this update law. However, as proposed in [14]
for a single-input/single-output high speed galvo positioning
system, T GkT ek may be obtained by using the time reversal

Fig. 2. Block diagram of one iteration of the gradient descent ILC algorithm
using time reversal filtering.

filter with the physical system itself instead of relying on a
model.

Under the symmetric kernel assumption on ∇G, the
T GkT ek(here identical to G∗kek) term in (5) may be com-
puted without any knowledge of G by using the algorithm
below (illustrated in Fig. 2):

Algorithm 1. Given uk, apply the following steps to compute
G∗kek:
(a) Apply uk to the physical system and obtain the output

y
k

= G(uk) and tracking error ek = y
k
− y

d
.

(b) Time-reverse ek(t) to ẽk(t) := ek(T − t).
(c) Apply the augmented input u′k(t) = uk(t) + ẽk(t) to

the physical system and obtain the output y′
k

= G(u′k)
under the same initial configuration as in step (a).

(d) Compute e′k = y′
k
− y

k
, and reverse it in time again to

obtain the gradient direction G∗kek(t) = e′k(T − t).

B. Convergence Analysis

Consider the first order variation of δe resulting from a
small change of the input δu:

δe = ∇uG(u)︸ ︷︷ ︸
:=G

δu. (6)

Substituting in the gradient update law

δu = −αG∗e, (7)

we have
δe = −αGG∗e, (8)

which guarantees G∗e converges to zero. In the iterative
implementation, (7) becomes (2), provided α is sufficiently
small. In the model-free implementation of the gradient
descent algorithm, under the assumption that G is approxi-
mately time-invariant, (7) becomes

δu = −αT GT e, (9)

which becomes (5) in the iterative form. The convergence
requires G to have a symmetric kernel, GT = G. However,
this property may only be approximately true for the physical
system. For example, for a nearly diagonal G, the diagonal
portion satisfies the symmetric kernel condition, but we



need to consider the effect of the off-diagonal terms. In
this section, we derive a robustness bound for the anti-
symmetric portion of the kernel to ensure the convergence
of the tracking error in (9).

Decompose G into a symmetric kernel and an anti-
symmetric kernel part:

G = Gs +Ga, (10)

where GT
s = Gs and GT

a = −Ga. It follows that

G∗s = T GsT
G∗a = T GT

aT = −T GaT .
(11)

The update law (9) is now

δu = −αT (Gs +Ga)T e
= −αT (Gs −Ga + 2Ga)T e
= −αT ((Gs +Ga)T + 2Ga)T e
= −αG∗e+ 2αT GT

aT e
= −αG∗e+ 2αG∗ae.

(12)

Substitute the update law (12) into the error variation equa-
tion (6), we have

δe = −αGG∗e+ 2αGG∗ae. (13)

Assume GG∗ is positive definite (required for the conver-
gence of e in the gradient algorithm to zero), i.e.,

〈e,GG∗e〉 ≥ γG ‖e‖2 (14)

for some γG > 0. If the anti-symmetric portion of G is
sufficiently small:

‖Ga‖ ≤
γG

2 ‖G‖
, (15)

then the iteration (5) will converge.

IV. ILC FOR ROBOT MOTION/FORCE CONTROL

Robotic deep rolling involves moving a rigid roller along
a pre-determined trajectory while applying a desired force
normal to the surface tangent plane containing the path.
The task specification is therefore motion along the surface
of the part and force orthogonal to the motion direction.
However, the control input is the commanded joint position
qc and the measured outputs are the actual joint position q
and joint velocity q̇. In this section, we will transform the
input/output variables in the physical system to the Cartesian
Space suitable for motion/force control using the gradient
ILC algorithm in Section III-A.

A. Cartesian Input/Output Map

As the desired hybrid force and motion profile is described
in the Cartesian Space, we will use the resolved motion
controller as shown in Fig. 3. The input is the commanded
motion and force, (vc, fc), in the orthogonal directions. The
commanded force is converted to a velocity command using
impedance control (generalized damper):

vs = −K(f − fc). (16)

The combined desired task space velocity, VT , is converted
to the commanded joint velocity and then joint position,
qc, which in turn is fed into the robot controller. The
measured joint velocity is mapped to the task velocity in
the motion direction. The contact force is directly measured
using the force/torque sensor. We consider the transformed
input/output map as y = G(u) where

u(t) =

[
vc(t)
fc(t)

]
, y(t) =

[
v(t)
f(t)

]
. (17)

Similarly, the desired motion and force profile is denoted by
yd(t). Note that since the robot joint controller is stable, G
is a stable (nonlinear) dynamical system.

B. System Characterization

As discussed in Section III-A, a sufficient condition for
applying the model-free gradient-based ILC is the near-
diagonal structure of the map G. We will consider the
condition for the specific robot that we use, but the method-
ology is applicable to other industrial robots. We employ the
ABB IRB6640-180 articulated robot which has six revolute
joints, large load capacity (180 kg), and high static repeata-
bility (0.07 mm) and path repeatability (1.06 mm) [33]. We
use the EGM module of the ABB IRC5 controller, which
allows for joint position commands and joint position and
velocity measurements at 4 ms.

The joint servo controllers for industrial robots are typi-
cally well tuned so the joint motion follows the commanded
motion closely, and there is almost no cross-coupling. Denote
the mapping from the commanded joint angle qc to the actual
joint angle q by:

q = H(qc). (18)

By applying a chirp signal to qc, we may obtain the local
frequency response of the linearization of H at various robot
configurations. Since deep rolling does not involve large
changes of the robot configuration, H is approximately a
linear time invariant system. Furthermore, the joint servo
controllers are tuned to achieve almost the same closed loop
behavior. Therefore, H is nearly identical for all joints. This
means H may be replaced by a stable scalar transfer function.

Away from singularities, the resolved motion controller
is equivalent to the J−1 controller. So the joint angle
commanded is

q̇c = J−1 · VT = J−1 ·
[

vc
−K · (f − fc)

]
= J−1

([
I 0
0 K

] [
vc
fc

]
+

[
0

−K · f

])
.

(19)

For the output, y, we assume a linear spring model for the
surface with the spring constant Ks. When the arm is in
contact with the surface, we approximate the system output
as:

y =

[
v
f

]
≈
[

Jmq̇
Ks(Js∆q)

]
≈
[
t−1s · I 0

0 Ks

]
J∆q, (20)

where q̇ is approximated by ∆q/ts. ts is the sampling period
(4 ms for the ABB EGM), and Jm and Js are the Jacobians



Fig. 3. Structure of the input/output map in the ILC analysis.

in the motion and force directions, respectively. Combining
∆q = H(∆qc) with (19), we have

y ≈
[
I 0
0 Ksts

]
JHJ−1

([
I 0
0 K

]
u+

[
0

−K · f

])
. (21)

As explained above, we approximate our industrial robot
controller by a single linear transfer function for all joints.
In that case, H and J−1 commute, and we have

y ≈
[
H 0
0 (I + tsKsHK)−1tsKsHK

]
u. (22)

Since H is a scalar and the surface spring is assumed
decoupled, we choose the force control gain K to be di-
agonal, so that the input/output relationship from u to y is
approximately diagonal. If the approximation is sufficiently
close, then as shown in Section III-B, the ILC algorithm,
Algorithm 1, will ensure convergence of y to y

d
.

V. RESULTS

A. Experimental Setup

With the ABB robot as described in Section IV-B, a 6-axis
ATI Omega160 force/torque sensor capable of measuring
forces in the range of ± 2500 N and with a measurement
uncertainty of 1 % is mounted at the robot flange. A
hardened-steel roller is connected to the force/torque sensor
through a yoke and a roller bearing. The size of the sample is
102.7×48.2×25.4 mm. The entire testbed is shown in Fig. 4.
We have implemented three control approaches: position-
based open-loop rolling, impedance control, and iterative
learning control. As denoted in Fig. 4, for all experiments,
the desired force is in the z direction, and the desired motion
is along the y direction, i.e., yd is in form of:

yd :=
[
0 0 0 0 vyd fzd

]T
. (23)

The total number of samples of the trajectory is N = 2000.

B. Implementations and Comparison

1) Open-Loop Position Control: We first evaluate the
open-loop position-based force control for tracking a con-
stant 1000 N force. With the attached force/torque sensor,
we first determine the desired position of robot end effector
that can produce the contact force by manually jogging the
robot to just establishing contact with the material. Then,
we command the pre-determined position trajectory using
RAPID (the high-level programming language for ABB
robots control). The force tracking performance is plotted
in Fig. 5.

Fig. 4. Experimental setup for the robotic deep rolling.

Fig. 5. Force tracking performance for 1000 N desired force in z using
open-loop position-based control.

This open-loop control approach is straightforward and
easy to implement using the standard robot controller. How-
ever, it is difficult to determine the desired position trajectory
if the desired force profile is time-varying or position-
dependent, or the the part has a curved 3d geometry.

2) Impedance Control: For impedance control, we use
the full generalized mass-spring-damper desired impedance
driven by the measured force to generate the commanded
robot joint position:

VT = ẊT = Kp(F−Fref )+Ki(XT−Xref )+KdẌT , (24)
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Fig. 6. Force tracking performance with different desired impedance.
(a) Performance under full impedance control. (b) Performance under
generalized damper only (first iteration of ILC).

where XT is a parameterization of the task space position
and orientation of the robot end effector. Fref , Xref are the
referenced trajectories. We consider the desired force and
motion profiles as trapezoidal in time with the peak force at
1000 N in the z direction. We have tested a group of different
set of gains (Kp,Ki,Kd), and the tracking performance
corresponding to the best set of gains (Kp = 0.0002,
Kd = 0.0008, Ki = 0.0004) is shown in Fig. 6(a). The
presence of a large delay in force tracking is evident, due to
the dynamics in H .

3) ILC Control: For the ILC implementation, we consider
the same force and motion profile as in the impedance
control case. Note that we add a step over of 0.25 mm
in the x direction for each ILC iteration to ensure rolling
is performed on the unrolled material. For the impedance
control component as shown in Fig. 3, we only keep the
gain K = 0.0002 in (16), which is a generalized-damper
controller as in the analysis in Section IV. The force tracking
performance (shown in Fig. 6(b)) of the first roll (without any
iterative refinement) is similar but slightly worse than the
result in Fig. 6(a) (more obvious in the force in x direction),
where we tune and use all three gains Kp,Ki,Kd. With
the desired force and motion profiles as initial input u0, we

TABLE I
RMS AND L∞ NORM OF FORCE TRACKING ERRORS (1000 N PEAK

FORCE) IN z

Iteration (No.) RMSE (N) L∞ Norm Error (N)
0 98.3848 185.4981
1 77.6698 150.9880
2 62.0531 149.2758
3 49.3232 122.7392
4 40.4415 119.7123
5 32.9373 101.3830
6 27.1772 81.7024
7 24.3933 103.6499
8 22.2196 103.8649
9 20.7247 83.8624

TABLE II
RMS AND L∞ NORM OF VELOCITY TRACKING ERRORS IN y

Iteration (No.) RMSE (mm/s) L∞ Norm Error (mm/s)
0 3.1506 4.7358
1 2.6329 3.8745
2 2.2173 3.1618
3 1.8800 2.6507
4 1.6033 2.2064
5 1.3743 1.8320
6 1.1838 2.6493
7 1.0217 1.4880
8 0.8856 2.1225
9 0.7688 1.8215

implement 9 ILC runs thus 18 step overs, because for each
update we need to roll twice due to the time reversal filtering
procedure to experimentally generate the descent direction.
For all iterations, we use a fixed learning rate α = 0.25.

Figure 7 demonstrates the force tracking performance in
z with number of ILC iterations. The RMS and ‖.‖∞ errors
for force tracking in z are summarized in Table. I. The RMS
of tracking error monotonically decreases with the ILC runs.
The ‖.‖∞ of error, although not monotonically decreasing,
demonstrates a clearly downward trend. After 9 iterations,
the force tracking error in terms of RMS error improves by
over 78 %. The comparison of velocity tracking performance
in y direction using the impedance controller, with 0 and 9
ILC iterations is illustrated in Fig. 8. Note that as in the
force tracking, the velocity tracking performance using the
impedance controller is similar to using the control input
without any ILC iterations. The RMS and ‖.‖∞ velocity
tracking errors of all 9 ILC iterations are summarized in
Table. II. The figure and table demonstrate that the velocity
tracking improves with increase number of ILC iterations.

The gradient update profiles for the motion and force
directions over the iterations are shown in Figures 9-10. The
large errors in the ramp up and ramp down portions lead to
the input correction in those periods. As the error decreases,
the update also becomes small over the entire trajectory.

We also evaluate the proposed ILC algorithm with the
same experimental parameters but for a larger magnitude of
target force. In this case, the desired force profile is still
trapezoidal but with a peak of 2000 N. As summarized in
Table. III, after 7 iterations, the tracking accuracy in terms
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of RMS error improves by over 73 %.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a robust data-driven ILC approach
for industrial robotic deep rolling. The method is gradient
based but does not require the explicit model information.
Instead, the gradient is generated by using the physical
process itself. We validate the approach through experiments
with a physical testbed using an ABB industrial robot. The
proposed ILC method outperforms the impedance control
and is applicable to other similar industrial robot platforms
that allow externally commanded inputs. The current study
has only been tested on a flat sample with relatively slow
motion profiles. Future work will include tests of the algo-
rithm with curved surfaces, multi-dimensional desired force
profiles, and fast motion trajectories.
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TABLE III
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