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Abstract— Reinforcement Learning (RL) methods have been
proven successful in solving manipulation tasks autonomously.
However, RL is still not widely adopted on real robotic
systems because working with real hardware entails additional
challenges, especially when using rigid position-controlled ma-
nipulators. These challenges include the need for a robust
controller to avoid undesired behavior, that risk damaging the
robot and its environment, and constant supervision from a
human operator. The main contributions of this work are,
first, we proposed a learning-based force control framework
combining RL techniques with traditional force control. Within
said control scheme, we implemented two different conventional
approaches to achieve force control with position-controlled
robots; one is a modified parallel position/force control, and
the other is an admittance control. Secondly, we empirically
study both control schemes when used as the action space of
the RL agent. Thirdly, we developed a fail-safe mechanism for
safely training an RL agent on manipulation tasks using a real
rigid robot manipulator. The proposed methods are validated
on simulation and a real robot, an UR3 e-series robotic arm.

I. INTRODUCTION

In the age of the 4th industrial revolution, there is much
interest in applying artificial intelligence to automate indus-
trial manufacturing processes. Robotics, in particular, holds
the promise of helping to automate processes by performing
complex manipulation tasks. Nevertheless, safely solving
complex manipulation tasks in an unstructured environment
using robots is still an open problem[1].

Reinforcement learning (RL) methods have been proven
successful in solving manipulation tasks by learning com-
plex behaviors autonomously in a variety of tasks such as
grasping [2], [3], pick-and-place [4], and assembly [5]. While
there are some instances of RL research validated on real
robotic systems, most works are still confined to simulated
environments due to the additional challenges presented
by working on real hardware, especially when using rigid
position-controlled robots. These challenges include the need
for a robust controller to avoid undesired behavior that risk
collision with the environment, and constant supervision
from a human operator.

So far, when using real robotic systems with RL, there
are two common approaches. The first approach consists
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of learning high-level control policies of the manipulator.
Said approach assumes the existence of a low-level controller
that can solve the RL agent’s high-level commands. Some
examples include agents that learn to grasp [2], [3] or to
throw objects [6]. In said cases, the agent learns high-level
policies, e.g., learns the position of the target object and
the grasping pose, while a low-level controller, such as a
motion planner, directly controls the manipulator’s joints or
end-effector position. Nevertheless, the low-level controller
is not always available or easy to manually engineer for
each task, especially for achieving contact-rich manipulation
tasks with a position-controlled robot. The second approach
is to learn low-level control policies using soft robots [7],
[8], [9], manipulators with joint torque control or flexible
joints, which are considerably safer to work with due to their
compliant nature, particularly in the case of allowing an RL
agent to explore its surroundings where collisions with the
environment may be unavoidable. Our main concern with
this approach is that most industrial robot manipulators are,
by contrast, rigid robots (position-controlled manipulators).
Rigid robots usually run on position control, which works
well for contact-free tasks, such as robotic welding, or spray-
painting [10]. However, they are inherently unsuitable for
contact-rich manipulation tasks since any contact with the
environment would be considered as a disturbance by the
controller, which would generate a collision with a large
contact force. Force control methods [11] can be used to
enable the rigid manipulator to perform tasks that require
contact with the environment, though the controller’s param-
eters need to be properly tuned, which is still a challenging
task. Therefore, we propose a method to safely learn low-
level force control policies with RL on a position-controlled
robot manipulator.

This paper presents three main contributions. First, a
control framework for learning low-level force control poli-
cies combining RL techniques with traditional force control.
Within said control scheme, we implemented two differ-
ent conventional force control approaches with position-
controlled robots; one is a modified parallel position/force
control, and the other is an admittance control. Secondly,
we empirically study both control schemes when used as
the action space of the RL agent. Thirdly, we developed
a fail-safe mechanism for safely training an RL agent on
manipulation tasks using a real rigid robot manipulator.
The proposed methods are validated on simulation and real
hardware using a UR3 e-series robotic arm.
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II. RELATED WORK

1) Force control: Force control methods address the
problem of interaction between a robot manipulator and its
environment, even in the presence of some uncertainty (ge-
ometric and dynamic constraints) on contact-rich tasks [12],
[13]. These methods provide direct control of the interaction
through contact force feedback and a set of parameters,
which describe the dynamic interaction between the manipu-
lator and the environment. However, prior knowledge of the
environment is necessary to properly define the controller’s
parameters at each phase of the task, such as stiffness.
Existing methods address said problem by either scheduling
variable gains[14], using adaptive methods for setting the
gains [15], or learning the gains from demonstrations [16].
Instead, we propose to directly learn the time-variant force
control gains from interacting with the environment.

2) Reinforcement learning and force control: Previous re-
search has also studied the use of RL methods to learn force
control gains. Buchli et al. [17] uses policy improvements
with path integrals (PI2) [18] to refine initial motion trajec-
tories and learn variable scheduling for the joint impedance
parameters. Similarly, Bogdanovic et al. [19], proposed a
variable impedance control in joint-space, where the gains
are learned with Deep Deterministic Policy Gradient (DDPG)
[20]. Likewise, Martı́n-Martı́n et al [21], proposed a variable
impedance control in end-effector space (VICES).

However, in all these cases, control of the manipula-
tor’s joint torques is assumed, which is not available for
most industrial manipulators. Instead, we focus on position-
controlled robot manipulators and provide a method to learn
manipulation tasks using force feedback control where the
controller gains are learned through RL methods. Luo et al.
[22] propose a method for achieving peg-in-hole tasks on a
deformable surface using RL and validated their approach
on a position-controlled robot. They propose learning the
motion trajectory based on the contact force information.
However, the tuning of the compliant controller’s parameters
is not taken into account. We are proposing a method
for learning not only the motion trajectory based on force
feedback but simultaneously fine-tuning the compliant con-
troller’s parameters.

Additionally, both Bogdanovic [19] and Martı́n-Martı́n
[21] study the importance of different action representation in
RL for contact-rich robot manipulation tasks. We similarly
provide an empirical study comparing different choices of
action space based on force feedback control methods for
rigid robots on contact-rich manipulation tasks.

3) Learning with real-world manipulators: Some research
projects have explored the capabilities of RL methods on
real robots by testing them on a large scale, such as Levine
et al. [3] and Pinto et al. [23], both in which a massive
amount of data was collected for learning robotic grasping
tasks. However, in both works, a high-level objective, grasp
posture, is learned from the experience obtained. In contrast,
contact-rich tasks require learning direct low-level control to,
for example, reduce contact force for safety reasons. On the
other hand, Mahmood et al. [24] propose a benchmark for

learning policies on real-world robots, so different RL algo-
rithms can be evaluated on a variety of tasks. Nevertheless,
the tasks available in [24] are either locomotion tasks with a
mobile robot or contact-free tasks with a robot manipulator.
In this work, we propose a framework for learning contact-
rich manipulation tasks with real-world robot manipulators
based on force control methods.

III. METHODOLOGY

The present study deals with high precision assembly
tasks with a position-controlled industrial robot. Due to
the difficulty of obtaining a precise model of the physical
interaction between the robot and its environment, RL is
used to learn both the motion trajectory and the optimal
parameters of a compliant controller. The RL problem is
described in Section III-A. The architecture of the system
and the interaction control methods considered are explained
in Section III-B.1, Section III-B.2, and Section III-C. Finally,
our safety mechanism that allows the robot to learn unsuper-
vised is described in Section III-D.

A. Reinforcement Learning

Robotic reinforcement learning is a control problem where
a robot, the agent, acts in a stochastic environment by
sequentially choosing actions over a sequence of time steps.
The goal is to maximize a cumulative reward. Said problem
is modeled as a Markov Decision Process. The environment
is described by a state s ∈ S. The agent can perform actions
a ∈ A, and perceives the environment through observations
o ∈ O, which may or not be equal to s. We consider
an episodic interaction of finite time steps with a limit
of T time steps per episode. The agent’s goal is to find
a policy π(a(t) | o(t)) that selects actions a(t) conditioned
on the observations o(t) to control the dynamical system.
Given an stochastic dynamics p(s(t + 1) | s(t), a(t)) and a
reward function r(s, a), the aim is to find a policy π∗ that
maximizes the expected sum of future rewards given by
R(t) =

∑∞
i γr(s(t), a(t)) with γ being a discount factor

[25].
Soft-Actor-Critic: We use the state-of-the-art model-free

RL method called Soft-Actor-Critic (SAC) [26]. SAC is
an off-policy actor-critic deep RL algorithm based on the
maximum entropy reinforcement learning framework. SAC
aims to maximize the expected reward while optimizing a
maximum entropy. The SAC agent optimizes a maximum
entropy objective, which encourages exploration according
to a temperature parameter α. The core idea of this method is
to succeed at the task while acting as randomly as possible.
Since SAC is an off-policy algorithm, it can use a replay
buffer to reuse information from recent rollouts for sample-
efficient training. We use the SAC implementation from
TF2RL1.

B. System overview

Our proposed method aims to combine a force control
with RL to learn contact-rich tasks when using position-

1TF2RL: RL library using TensorFlow 2.0.
https://github.com/keiohta/tf2rl



Fig. 1. Proposed learning force control scheme. The input to the system
is a goal end-effector pose, xg . The policy actions are trajectory commands,
ax, and parameters, ap, of a force controller.

controlled robots. Figure 1 describes the proposed control
scheme combining an RL policy and a force control method.
We assume knowledge of the goal pose of the robot’s end-
effector, xg . Both the policy and the force controller receive
as feedback the pose error, xe = xg−x, and the contact force
Fext. The velocity of the end-effector, ẋ, is also included in
the policy’s observations. The F/T sensor signal is filtered
using a simple low-pass filter.

The force control method has two internal controllers.
First, a PD controller that generates part of the motion tra-
jectory based on the pose error, xe. Second, a force feedback
controller that alters the motion trajectory according to the
perceived contact force, Fext.

The RL policy has two objectives. First, to generate a
motion trajectory, ax. Figure 2, shows how a simple P-
controller (from the force control method) would not be
enough to solve the task without producing a collision with
the environment. For most cases, the P-controller trajec-
tory would just attempt to penetrate the environment, since
knowledge of the environment’s geometry is not assumed.
Nevertheless, the P-controller trajectory is good enough to
speed up the agent’s learning since it is already driven
towards the goal pose. Therefore, to achieve the desired be-
havior, the nominal trajectory of the robot is the combination
of the P-controller trajectory with the policy’s trajectory. The
second objective of the policy is to fine-tune the force control
methods parameters, ap, to minimize the contact force when
it occurs. We defined a collision as exceeding a maximum
contact force in any direction. Therefore, contact with the
environment is acceptable, but the policy’s second goal is to
avoid collisions. The policy also controls the P-controller’s
gains; thus, the policy decides how much to rely on the P-
controller trajectory.

1) Pose Control Representation: The pose of the robot’s
end-effector is given by x = [p, φ], where p ∈ R3 is the
position vector and φ ∈ R4 is the orientation vector. The
orientation vector is described using Euler parameters (unit
quaternions) denoted as φ = {η, ε}; where η ∈ R is the
scalar part of the quaternion and ε ∈ R3 the vector part.
Using unit quaternions allows the definition of a proper
orientation error for control purposes with a fast computation
compared to using rotation matrices [27].

The position command from the force controller is xc =
[pt, φt], where pt is the commanded translation, and φt is the
commanded orientation for the time step t. The desired joint

Fig. 2. Proposed approach to solve contact-rich tasks. Assuming knowledge
of the goal pose of the robot’s end-effector, a simple P-controller can be
designed. Our approach aims to combine this knowledge with the policy to
generate the motion trajectory.

configuration for the current time step, qc, is obtain from an
Inverse Kinematics (IK) solver based on xc.

2) Learning force control: Two of the most common
force control schemes are considered in these work, parallel
position/force control [12] and admittance control [13]. The
main drawback of said control schemes is the requirement to
tune the parameters for each specific task properly. Changes
in the environment (e.g., surface stiffness) may require a new
set of parameters. Thus, we propose a self-tuning process
using RL method.

The policy actions are a = [ax, ap], where ax = [p, φ]
are position/orientation commands, and ap are controller’s
parameters. ap is different and specific for each type of
controller, see Section III-C.1 and Section III-C.2 for details.
The policy has a control frequency of 20 Hz while the force
controller has a control frequency of 500 Hz.

C. Force control implementation

1) PID parallel Position/Force Control: Based on [12],
we implemented a PID parallel position/force control with
the addition of a selection matrix to define the degree of
control of position and force over each direction, as shown
in Figure 3. The control law consists of a PD action on
position, a PI action on force, a selection matrix and the
policy position action, ax,

u = S(Kx
p xe +Kx

d ẋe) + ax+

(I − S)(Kf
pFext +Kf

i

∫
Fextdt)

(1)

where u is the vector of driving generalized forces. The
selection matrix is

S = diag(s1, ..., s6), sj ∈ [0, 1]

where the values correspond to the degree of control that
each controller has over a given direction.

Our parallel control scheme has a total of 30 parameters,
12 from the position PD controller’s gains, 12 from the force
PI controller’s (PI) gains, and 6 from the selection matrix S.
We reduced the number of controllable parameters to prevent
unstable behavior and to reduce the system’s complexity.
For the PD controller, only the proportional gain, Kx

p , is
controllable while the derivative gain, Kx

d , is computed based
on the Kx

p . Kx
d is set to have a critically damped relationship

as
Kx
d = 2

√
Kx
p



Fig. 3. Proposed scheme for learning PID parallel position/force control.
The RL agent controls the controller parameters PD gains, PI gains, and
the selection matrix, S.

Similarly, for the PI controller, only the proportional gain,
Kf
p , is controllable, the integral gain Kf

i is computed with
respect to Kf

p . In our experiments, Kf
i was set empirically

to be 1% of Kf
p . In total, 18 parameters are controllable.

In summary, the policy actions regarding the parallel
controller’s parameters are ap = [Kx

p ,K
f
p , S].

To narrow the agents choices for the force control param-
eters, we follow a similar strategy as in [19]. Assuming we
have access to some baseline gain values, Pbase. We then
define a range of potential values for each parameter as
[Pbase−Prange, Pbase+Prange] with the constant Prange defining
the size of the range. We map the agent’s actions ap from
the range [−1, 1] to each parameter’s range. Pbase and Prange
are hyperparameters of both controllers.

2) Admittance Control: is used to achieve a desired
dynamic interaction between the manipulator and its envi-
ronment. The admittance controller for position-controlled
robots implemented is based on [28]. The admittance control
is implemented on task-space instead of the robot joint-space.
It follows the conventional control law

Fext = mdẍ+ bdẋ+ kdx (2)

where md, bd, and kd represent the desired inertia,
damping, and stiffness matrices respectively. Fext is the
actual contact force vector. x, ẋ, ẍ are the displacement of
the manipulator’s end-effector, its velocity and acceleration
respectively.

The admittance relationship can be expressed in Laplace-
domain, adopting conventional expression of a second-order
system as

X

F
(s) =

1/md

s2 + 2ζωns+ ωn
(3)

where ζ is the damping ratio and ωn is the natural
frequency, and they can be expressed by the admittance
parameters as

ζ =
bd

2
√
kdmd

ωn =

√
kd
md

(4)

We are proposing a variable admittance controller, where the
inertia, damping, and stiffness parameters are learned by the
RL agent. Additionally, a PD controller is included in our
admittance control. The PD controller with the policy action,
ax, generates the nominal trajectory as explain in Section III-
B. The complete admittance control scheme is depicted in

Fig. 4. Proposed scheme for learning admittance control. A PD controller
is included to regulate the input reference motion trajectory. The RL agent
controls the PD gains, as well as, the admittance model parameters (inertia,
damping and stiffness).

Figure 4. The PD gains are also controlled by the policy at
each time step.

For the admittance control scheme, there are a total of 30
parameters; 12 from the position PD controller’s gains and
18 from the inertia, damping, and stiffness parameters. Simi-
larly, as mentioned in Section III-C.1, we reduced the number
of controllable parameters to prevent unstable behavior of
the robot and reduce the system’s complexity. Following
the same strategy described in Section III-C.1, of the PD
controller, only the proportional gain, Kx

p , is controllable.
Additionally, we considered the inertia parameter for each
direction as a constant, 0.1 kg·m2 in all our experiments
as a similar payload is used across tasks. Furthermore, we
compute the damping with respect to the inertia parameter
and the stiffness parameter by defining a constant damping
ratio. From (4) we have that

bd = 2 ζ
√
kd ∗md

Therefore, only the stiffness parameters are controllable.
In total, the controllable parameters of the admittance control
are reduced to 12 parameters; 6 PD gains and 6 stiffness
parameters.

In summary, the policy actions regarding the admittance
controller’s parameters are ap = [Kx

p , kd]

D. Fail-safe mechanism

Most modern robot manipulators already include a layer
of safety in the form of an emergency stop. Nonetheless, the
emergency stop exists at the extreme ends of the robot limits
and completely interrupts the entire training session if trig-
gered. To reactivate the robot, a human operator is required.
To alleviate this inconvenience, we propose a mechanism that
allows the robot to operate within less extreme limits. Thus,
training of an RL agent can be done directly on the position-
controlled manipulator with minimal human supervision.

Our system controls the robot as if teleoperating it by
providing a real-time stream of task-space motion commands
for the robot to follow. Therefore, we added our safety
layer between the streamed motion command and the robot’s
actual actuation. The fail-safe mechanism validates that the
intended action is within a defined set of safety constraints.
As shown in Algorithm 1, for each action we check whether
an IK solution exists for the desired position command, xc,
if so, whether the joint velocity required to achieve the IK
solution, qc, is within the speed limit.



If any of these validations are not satisfied, the intended
action is not executed on the robot, and the robot remains in
its current state for the present time step. Finally, we check
if the contact force at the robot’s end-effector is within a
defined range limit. If not, the episode ends immediately.

The first two validations are proactive and prevent unstable
behaviors of the manipulator before they occur. In contrast,
the third validation is reactive, i.e., only after a collision
has occurred (the force limit has been violated), the robot is
prevented from further actions.

Algorithm 1 Safe Manipulation Learning
1: Define joint velocity limit q̇max
2: Define contact force limit Fmax
3: Define initial state x0
4: Define goal state xg
5: for n = 0,· · · , N − 1 episodes do
6: for t = 0,· · · , T − 1 steps do
7: Get current contact force: Fext
8: xe = xg − x
9: Get Observation: o = [xe, ẋ, Fext]

10: Compute policy actions: πθ(ax, ap|o)
11: xc = control method(xe, ax, ap, Fext)
12: qc = IK solver(xc)
13: if qc not exists then continue
14: if |(qt − qc)/dt| > q̇max then continue
15: if Fext > Fmax then break
16: Actuate qc on robot
17: Reset to x0

E. Task’s reward function

For all the manipulation tasks considered, the same reward
function was used:

r(s, a) =w1Lm(‖xe/xmax‖1,2) + w2Lm(‖a/amax‖2)+
w3Lm(‖Fext/Fmax‖2) + w4ρ+ w5κ

(5)
where xmax, amax, and Fmax are defined maximum values.
Lm(y) = y 7→ x, x ∈ [1, 0] is a linear mapping to the
range 1 to 0, thus, the closer to the goal and the lower
the contact force, the higher the reward obtained. || · ||1,2
is L1,2 norm based on [7]. The xe is the distance between
the manipulator’s end-effector and the target goal at time
step t. a is the action taken by the agent. Fext is the contact
force. ρ is a penalty given at each time step to encourage a
fast completion of the task. κ is a reward defined as follows

κ =

200, Task completed
−10, Safety violation
0, Otherwise

(6)

Finally, each component is weighted via w, all w’s are
hyperparameters.

IV. EXPERIMENTS

We propose a framework for safely learning manipulation
tasks with position-controlled manipulators using RL. Two

control schemes were implemented. With the following ex-
periments, we seek to answer the following questions: Can
a high-dimensional force controller be learned by the agent?
Which action space, based on the number of adjustable con-
troller’s parameters provides the best learning performance?

A description of the materials used for the experiments
is given in Section IV-A. An insertion task was used for
evaluating the learning performance of the RL agents with
the proposed method on a simulated environment, described
in Section IV-B. Finally, the proposed method is validated on
a real robot manipulator with high-precision assembly tasks.

A. Technical details

Experimental validation was performed both in a simu-
lated environment using the Gazebo simulator [29] version
9 and on real hardware using the Universal Robot 3 e-series,
with a control frequency of up to 500 Hz. The robotic arm
has a Force/Torque sensor mounted at its end-effector and
a Robotiq Hand-e gripper. Training was performed on a
computer with CPU Intel i9-9900k, GPU Nvidia RTX-2800
Super.

B. Action spaces for learning force control

Each control scheme proposed in Section III has a number
of controllable parameters. The curse of dimensionality is a
well known problem in RL [25]. Controlling few dimensions,
number of parameters, makes the task easier to learn at the
cost of losing dexterity.

In the following experiment, several policy models were
evaluated. Each model has a different action space, i.e., a
different number of controllable parameters. We evaluate the
learning performance of the models described in Table I,
four models per control scheme. Each policy model has the
same six parameters to control the position and orientation
of the manipulator, ax, but a different number of parameters
to tune the controller’s gains, ap. From now on, we refer to
each model by the name given in Table I.

For a fair comparison, the action spaces were evaluated
on a simulated peg-insertion environment so that we could
guarantee the exact same initial conditions for each training
session. The task is to insert a cube-shaped peg into a task
board, where the hole has a clearance of 1 mm. Each policy
model was trained for 50.000 (50k) steps with a maximum
of 150 steps per episode. The complete training session was
repeated three times per model. Since the policy control

TABLE I
POLICY MODELS WITH DIFFERENT ACTION SPACES.

Control
Scheme

Name Pose Gains

PD PI /
Stiffness

Selection
Matrix S

ax ap

Parallel

P-9 6 1 1 1
P-14 6 1 1 6
P-19 6 6 6 1
P-24 6 6 6 6

Admittance

A-8 6 1 1 -
A-13 6 1 6 -

A-13pd 6 6 1 -
A-18 6 6 6 -
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Fig. 5. Learning curve of training session with active penalization of
violation of the safety constraints. Peg-insertion scenario on simulation.

frequency was set at 20 Hz, each episode lasts a maximum
of 7.5 seconds. The episode ends if 1) the maximum number
of time steps is reached, 2) a minimum distance error from
the target pose is achieved, 3) or if a collision occurs. In
general, a complete training session takes about 50 minutes,
including reset times.

Results: The comparison of learning curves for each
policy model evaluated is shown in Figure 5. In the figure,
the average cumulative reward per episode across the training
sessions (bold line) is displayed along with the standard
deviation error (shaded colored area). The results have been
smoothed out using the exponential moving averages, with
a 0.6 weight, to show the tendency of the learning curves.

From Figure 5, the overall best performance is achieved
with the policy models combined with the parallel control
scheme. By the end of the training session, these families
of policies can yield higher rewards than the policy models
combined with the admittance control scheme.

For the parallel control scheme, the model with the worst
performance is P-9; it can be seen that there is not enough
control of the controller’s parameters to learn a good policy
consistently. On the other hand, the model P-24 has the
slowest learning rate, but by the end of the training session, it
can consistently learn a good policy. The policy model P-14
has the fastest learning rate and overall best performance.

For the admittance control scheme, the models A-13pd
and A-18 have the best overall performance, with A-13pd
yielding a cumulative reward as high as P-14 by the end of
the training session. The model A-8, similar to P-9, has one
of the worst performance; again, the lack of controllable pa-
rameters seems to have a big impact on learning a successful
policy.

It is worth noting that for both control schemes, the models
P-14 and A-13pd have the best overall performance. They
provide the best trade-off between system complexity and
learn-ability. On the other hand, the models with the largest
number of parameters P-24 and A-18 can learn successful
policies, but they require a longer training time to achieve
it.

The parallel models’ learning curve has larger standard
deviation. One factor that contributes to these results is the
selection matrix S, which highly affects the performance of
the controller. Small changes of this parameter can make the
behavior completely different. The agent’s random explo-
ration of this parameter can result in very different results
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Fig. 6. Learning curve of training without penalizing violation of safety
constraints on the reward function. Peg-insertion scenario on simulation.

TABLE II
COLLISION DETECTED DURING TRAINING SESSION.

Model avg. # of collisions across training sessions
Penalization No penalization Difference

A-8 326 455 -39%
A-13 350 408 -16%

A-13pd 300 462 -54%
A-18 451 457 -1%
P-9 187 369 -98%

P-14 121 206 -70%
P-19 183 392 -115%
P-24 219 337 -43%

during the learning phase.

C. Safe learning

The developed fail-safe mechanism was not only evaluated
as a mechanical safety that enables the real robot to explore
random action without human supervision. We validate the
usefulness of providing information to the robot about the
safety constraints violations. Thus, we compare the proposed
reward function Equation (5) with a variant that does not
provide any punishment when a safety constraint is violated,
i.e., κ gives a reward if the task is completed or zero
otherwise, see Equation (6). We trained all policy models
with this modified reward function.

Results: Figure 6 shows the comparison of the learning
curves of all models with a reward function that does not
penalize violation of safety constraints. The results clearly
show that the overall performance considerably decreases.
The learning speed also decreases, as can be noted by
comparing the performance of, for example, the model A-
13pd. Learning with active penalization helps the agent learn
policies that yield rewards of +100 by 12,000 steps while it
takes as much as 20,000 steps without penalization to achieve
similar performance. Parallel control models show similar
results. Moreover, the learning curves are nosier, meaning
that the models can not reliably find a successful policy.

Additionally, we counted the average number of collisions
detected during training sessions for each policy model.
Table II shows the training session results using the pro-
posed reward function with active penalization of the safety
constraints and the reward function without. In all cases,
we see a high decrease in the number of collisions when
collisions are penalized. In other words, the training session
can be considered safer when the robot gets feedback on
the undesired outcomes, when safety constraints are violated.
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Fig. 7. Ring-insertion task. Hole clearance of 0.2 mm. Cumulative reward
per step of 20,000-steps training sessions of A-13pd and P-14 policy models.

Particularly, in the case of the parallel control scheme, the
models have difficulty understanding that collisions are a
poor behavior; thus, those models keep getting stuck on
episodes that finish too soon due to collision. Moreover, the
models A-13pd and P-14 do not only learn faster than other
models but also produce the lowest number of collisions
within their family of policies. On the other hand, the policy
models with the highest number of parameters, A-18 and
P-24, are able to learn successful policies at the cost of
producing the highest number of collisions.

D. Real robot experiments

Our proposed method was validated on real hardware us-
ing two high-precision assembly tasks. The first task involves
an insertion task of a metallic ring into a bolt with a clearance
of 0.2 mm, as shown in Figure 7. The second task is a more
precise insertion task of the metallic peg into a pulley, with a
clearance of 0.05 mm, as shown in Figure 8. Another robotic
arm holds the pulley, and the center of the pulley is slightly
flexible, which makes contact less stiff than the ring-insertion
task. However, since the clearance is smaller, the peg is likely
to get stuck if the peg is not adequately aligned, increasing
the difficulty of solving the task. The best policy models from
the previous experiment were used for training, P-14, and A-
13pd. Both models were trained for 20,000 steps, twice. The
episodes have a maximum length of 200 steps, about 10s.

1) Ring-insertion task results: From Figure 7, both mod-
els A-13pd and P-14 can quickly learn successful policies.
The high stiffness of the ring and bold makes the task more
likely to result in a collision. The model P-14 produced
an average of 45 collisions per training session, while A-
13pd produced 34. Despite firmly grasping the ring with the
robotic gripper, the position/orientation of the ring can still
slightly change. These slight changes can explain the drops in
performance during the training session. However, the agents
can adapt and learn to succeed in the task.

2) Peg-insertion task results: From Figure 8, we can see
that it takes a lot more learning time to find a successful pol-
icy for both policy models compare to the ring-insertion task.
While both policy models find a successful policy after about
13k steps, A-13pd achieved better consistent performance.
As mentioned above, the physical interaction for this task
is less stiff; thus, the average collisions per training session
were fewer than in the ring-insertion task. For models A-
13pd and P-14, the average number of collisions was 4 and
26, respectively.
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Fig. 8. Peg-insertion task. Hole clearance of 0.05 mm. Cumulative reward
per step of 20,000-steps training sessions of A-13pd and P-14 policy models.

Fig. 9. A-13pd: policy performance evolution on peg-insertion task. On
the left, performance of the initial policy tried by agent. On the right,
performance of the learned policy after training. All values correspond
to the insertion direction only. Only 160 steps are displayed for space
constraints. Insertion task divided into three phases: a search phase before
contact (Yellow), a search phase after initial contact (Red) and an insertion
phase (Green).

The evolution of the policy model A-13pd, across a
training session, is shown in Figure 9. The figure displays
the observation per time step of only the insertion direction.
The actions, ax and ap = [Kx

p , kd] are also displayed.
Observations and actions have been mapped to a range of
[1, -1]. The peg-insertion task has three phases. A search
phase before contact (Yellow). A search phase after initial
contact (Red). An insertion phase (Green). On the left, the
initial policy, we can clearly see that the insertion was not
successful even after 200 steps, as well as a rather random
selection of actions. On the contrary, on the right side, the
task is being solved at around 130 steps. On top of that,
the controller’s parameters kd and Kx

p have a clear response
to the contact force perceived. After the first contact with
the surface (Red), kd and Kx

p are dramatically reduced, as
a result, decreasing motion speed and reducing stiffness of
the manipulator, which reduces the contact force. Then, when
the peg is properly aligned (Green), kd and Kx

p are increased
to apply force to insert the peg -against the friction of the
insertion- and to finish the task faster.

V. DISCUSSION

In this work, we have presented a framework for safely
learning contact-rich manipulation tasks using reinforcement
learning with a position-controlled robot manipulator. The
agent learns a control policy that defines the motion trajec-
tory, as well as fine-tuning the force control parameters of
the manipulator’s controller. We proposed two learning force
control schemes based on two standard force control meth-



ods, parallel position/force control, and admittance control.
To validate the effectiveness of our framework, we performed
experiments in simulation and with a real robot.

First, we empirically study the trade-off between control
complexity and learning performance by validating several
policy models, each with a different action space, represented
by a different number of adjustable force control parameters.
Results show that the agent can learn optimal policies with
all policy models considered, but the best results are achieved
with the models A-13pd and P-14. These models yield the
highest reward during training, proving to be the best trade-
off between system complexity and learn-ability.

Second, results on a real robot showed the effectiveness
of our method to safely learn high-precision assembly tasks
on position-controlled robots. The first advantage is that
the fail-safe mechanism allows for training with minimal
human supervision. The second advantage is that including
information about the violation of safety constraints on the
reward function helps speed up learning and reduce the
overall number of collisions occurred during training.

Finally, in the peg insertion task, the motion trajectory is
essential when the robot is in the air, while the force control
parameters become essential when the peg is in contact with
a surface or the hole. Results show that our framework can
learn policies that behave accordingly on the different phases
of the task. The learned policies can simultaneously define
the motion trajectory and fine-tune the compliant controller
to succeed in high-precision insertion tasks.

One of the limitations of our proposed method is that
the performance is highly dependent on the choice of the
controller’s hyperparameters, more specifically, the base and
range values of the controller’s gains. In our experiments,
we empirically defined said hyperparameters. However, to
address said limitation, an interesting avenue for future
research is to obtain these hyperparameters from human
demonstrations, and then refine the force control parameters
using RL. Additionally, for simplicity, we assume knowledge
of the goal pose of the end-effector for each task. However,
vision could be used to get a rough estimation of the target
pose to perform an end-to-end learning, from vision to low-
level control, as proven in previous work [7].
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