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Abstract— In many applications of mobile robot, the environ-
ment is constantly changing. How to use historical information
to analysis environmental changes and generate a map
corresponding with current environment is important to achieve
high-precision localization. Inspired by predictive mechanism
of brain, this paper presents a long-term localization approach
named ArmMPU (ARMA-based Map Prediction and Update)
based on time series modeling and prediction. Autoregressive
moving average model (ARMA), a kind of time series modeling
method, is employed for environmental map modeling and
prediction, then predicted map and filtered observation are
fused to fix the prediction error. The simulation and experiment
results show that the proposed method improves long-term
localization performance in dynamic environments.

I. INTRODUCTION
Long-term localization is a significant topic of mobile

robots. Typical localization methods [1] build a static map
and localize on that, while in reality, the environment
for long-term work is constantly changing. The existing
long-term localization methods cannot generate maps well
corresponding with current environment, or can only perform
well in periodic environments. Moreover, the error between
generated map and real environment is not well used.

The human brain utilizes historical information by generat-
ing external models and predicting external environment state
[2], thus compressing information and finishing recognition
of environment efficiently. Imitating predictive mechanism
of brain, robots can use long-term information by modeling
and predicting the environment changes.

Inspired by predictive mechanism of brain, we present a
time series based map prediction and update method, namely
ArmMPU. In our previous work [3], time series model was
used in a long-term monocular VI SLAM system to predict
map points. In this paper, we extend previous work by
importing prediction errors in map update for fusing predic-
tion with observation efficiently and accurately, and using
a variable threshold data filter based on localizability [4]
and matching degree to reduce the observation uncertainty,
moreover extending the sensor to 2D LiDAR. Environmental
maps are modeled and predicted by ARMA [5] to generate
predicted maps, and the observation is filtered by the variable
threshold data filter. Then prediction and filtered observation
are fused by a Bayesian filter based on prediction errors to
update predicted map and get more accurate maps, so as to
get an improved localization performance.
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II. RELATED WORK

Related long-term researches can be divided into the
following three categories.

The first class is map update and localization without
spatio-temporal modeling. Saarinen et al. [6] defined each
map grid as an independent Markov chain with two states,
and updated grid state based on a probabilistic sensor model.
Tipaldi et al. [7] used Hidden Markov Model to represent the
dynamic properties of 2D map grids. Sun et al. [8] applied
scan-matching [9] updated the map when a matching score
exceeded the threshold. This kind of method focuses on
spatial modeling and online learning of maps, while lacking
modeling in time dimension. When the environment changes
greatly, the initial matching degree between observation and
the map will be too low to update the map.

The second type of method models the map in time
dimension by analysing historical information. Biber et al.
[10] proposed a sampling-based environment representation
method. It described environment with the combination of
scenes at different time. Dayoub et al. [11], [12] used
attention mechanism to transfer the interested features to
short-term memory maps, then selected stable features
update to long-term memory maps. These methods make use
of the historical information, but they are mainly based on
combinations of information and do not have prediction, so
they cannot predict accurately in the future time.

Krajnik et al. [13]–[15] transformed the environment
changes from time domain into the frequency domain to
modeling and prediction. This method (FreMEn) provided an
accurate predicted map for localization, while it assumed the
environmental changes were periodic, could not predict the
aperiodic changes, and is easy interfered by random changes.

The third kind of methods is to deal long-term prob-
lems through deep learning. Schreiber et al. [16] achieved
long-term grid prediction using recurrent neural networks.
Chen et al. [17] achieved localization through visual place
recognition, matching the appearance of current scene to a
previously visited place based on two CNN architectures.
The grid prediction methods by deep learning usually focus
on dynamic object movement, and the prediction is only in
several seconds. The visual place recognition methods can
achieve a long time span localization, while the appearance
match cannot perform well when environmental structure
changes greatly or there are many dynamic obstacles.
Besides, deep learning based methods are usually with
significant computational overhead for mobility solutions.
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Fig. 1. Overall system architecture.

III. SYSTEM OVERVIEW

The proposed ArmMPU achieves environmental map
modeling and prediction, as well as predicted map and
observation fusion. Its architecture is shown in Fig. 1. It
mainly includes three modules: time series modeling module,
map prediction module, and map update module. And a
particle filter is employed for localization.

To achieve long-term localization, a map database is built
for organizing all maps. The map database consists of two
kinds of maps: the original maps and the updated maps. The
original maps are constructed by the SLAM program [18]
at first for the initial modeling. Each mapping route is same
for the consistency of maps. The model orders and model
parameters for time series of map grids are calculated and
regular updated in the time series modeling module. Then
the map prediction module outputs predicted maps on time
dimension based on received model parameters and map
database data. The map update module filters the observation
and fuses it with the predicted map, and outputs real-time
updated maps. Finally, the updated maps are used for robots
localization and sent back to the database.

The map database is composed of L, the time series
of maps. L = {L1,L2, · · ·Lt · · · ,LT}, each Lt represents a
occupancy grid map at time t, and T is the duration of time
series. L1,L2, · · · ,LM are the original maps, where TM is time
duration for model building. The maps are aligned to get the
time series of each grid. The time interval of maps tmr is
uniform, and when a map at a certain moment is absent, it
is supplemented by copying the map at adjacent moment.

Lt =


l (1,1)t l (1,2)t · · · l (1,J)t
l (2,1)t l (2,2)t · · · l (2,J)t

...
...

...
...

l (I,1)t l (I,2)t · · · l (I,J)t

 , (1)

where I and J are rows and columns of the map, and l (i, j)t
is the state of a single grid in raw i and column j with a value
in [0,1], indicating the occupancy probability of each grid.
The occupancy is implemented in log odds form [1], and the
greater the value, the greater the occupancy probability.

IV. ALGORITHMS

The principle, formula and algorithm in ArmMPU are
introduced in this section.

A. Time series modeling and map prediction

Some objects in the environment change with certain
regularity. Map prediction can predict those changes and
generate maps matching with current environment, and
reduce the failure of map update caused by incompatibility
between observation and the original map.

In this paper, 2D grid maps are used to describe the
environment, and autoregressive moving average model
(ARMA) [5] is built for each grid. ARMA is a statistical
model for time series, providing description of stationary
stochastic process in terms of polynomials. ARMA can not
only model the periodic changes, but also aperiodic changes
with regularity, and has good adaptability to random changes.
ARMA model is defined as equation (2).

x̂(i, j)t =
p

∑
i=1

α̂ix̂(i, j)t−i + ε̂(i, j)t −
q

∑
j=1

β̂ j ε̂(i, j)t− j, (2)

where t = p+1, p+2, · · ·T , p and q are the model order, α̂

and β̂ represent the model parameters, which are independent
for each grid. ε̂(i, j)t represents white noise and x̂(i, j)t
represents the state of grid in (i, j) at t time, and x̂(i, j)t−i
is same as l (i, j)t−i, which is got from the map database.

The map database should be established before time
series modeling of grids, then the state of each grid is
predicted in time domain. The process includes model
order determination, parameter calculation, state prediction,
confidence evaluation and model update.

1) Model order determination: The model order p and
q denote the temporal correlation of the grid states and the
prediction error. They are determined at first according to
AIC [19]. The AIC criterion is used:

AICi, j(k,h) = ln σ̂
2(k,h)+

2(k+h)
n

, (3)

where n is the length of the time series.

σ̂
2(k,h) =

1
n

min
n

∑
t=1

(
h

∑
j=1

β̂ j ε̂(i, j)t− j + x̂(i, j)t −
k

∑
i=1

α̂ix̂(i, j)t−i)

=
1
n

min
n

∑
t=1

ε̂(i, j)2
t

,

(4)
The (k,h) that minimizes the AIC value is the the required

model order p and q.
2) Model parameter calculation: Then the model pa-

rameters α ∈ Rp and β ∈ Rq are determined according to
autoregressive approximation [20] as follow steps, which
characterize the grid state relationship in time domain.

Firstly, the Autoregressive Models AR(p) is fitted using
historical grid data. Then, recursively calculate the residual
sequence {ε̂(i, j)t} based on the above AR(p).

ε̂(i, j)t = x̂(i, j)t−α̂1x̂(i, j)t−1−α̂2x̂(i, j)t−2 · · ·−α̂px̂(i, j)t−p ,
(5)
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Finally, regard the residual sequence {ε̂(i, j)t} as an
independent sequence. According the linear regression model
shown as equation (2), the matrix form of linear regression
model is:

x̂(i, j) =
(
ZÊ
)(α

β

)
+ ε̂ (6)

where Z and Ê are matrix form of x̂(i, j)t−i and ε̂(i, j)t− j in
equation (2). Get the estimated parameters as equation (7).(

α

β

)
=

[(
Z′

Ê ′

)(
Z Ê

)]−1(Z′

Ê ′

)
x̂ =

[
Z′Z Z′Ê ′

Ê ′Z Ê ′Ê

](
Z′x̂
Ê ′x̂

)
,

(7)
3) State prediction: Predicted state of each grid x̂(i, j)t at

time t is got as equation (2), then it is binarized to 0 and
1 to get x(i, j)t for subsequent map update and localization.
The whole predicted map is obtained by combining all the
grids as equation (1).

4) Confidence evaluation: To evaluate the predicted cred-
ibility, the prediction confidence G(i, j) is calculated inspired
by [21] after model building as euqation (8). The maps
used in modeling divided into two parts: one for generating
predicted states, and another used as ground truth.

G(i, j) = G0 +

Tp

∑
t=1

dt (i, j)

Tp
,

dt (i, j) =
{

d, x̂(i, j)t = round (l(i, j)t)
−d, x̂(i, j)t 6= round (l(i, j)t)

,

(8)

where, (i, j) is raw and columns of grid, x̂(i, j)t is predicted
states, l(i, j)t is true states, d is step, G0 is initial belief, Tp
is prediction length, G(i, j) is prediction confidence.

The confidence is evaluated after building model. If G(i, j)
is lower than confidence threshold Gth, the model order is
reselected, and model parameters are recalculated.

5) Model update: To maintain the accuracy of model, a
model update mechanism is necessary. The average predic-
tion accuracy s(i, j) of each grid is calculated as equation
(9) at regular interval Tup. When the prediction accuracy is
less than a certain threshold, the model parameters α and β

are recalculated using the data of latest a period of time TM ,
which is same as the time duration for initial model building.

s(i, j) =

Tup

∑
i=1

Ft

Tup
, Ft =

{
1, Spre = Struth

0, Spre 6= Struth
. (9)

Spre and Struth are the binarization of predicted state and
updated state of grid. Sth are the model update threshold.

B. Map Update

After prediction, it is necessary to fuse current observation
with predicted map to fix the prediction error and get more
accurate map.

To reduce the observation uncertainty, and avoid intro-
ducing inaccurate information due to localization error, it is
essential to establish a data filtering mechanism. According
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Fig. 2. Framework of map update.

to our previous work [22], a variable threshold data filter
mechanism is employed here.

M = λm1 +(1−λ )m2 > Mth, (10)

where λ is the matching degree weight, m1 is the matching
degree between predicted map and LiDAR date, which
reflects the prediction error; m2 is the normalized value of
localizability [4], which reflects the richness of environmen-
tal features at specific pose. Mth is the update threshold.
Transform equation (10) to the follow:m1 >

Mth− (1−λ )m2

λ
, trigger update

else , not update
(11)

Right of the inequality is the variable threshold of data
filter. There is usually a relatively high matching degree in
feature-poor pose. From equation (11), it can be seen that in
the feature-rich pose, the lower matching degree can trigger
the update; while in the feature-poor pose, a higher matching
degree is required.

The m1 and m2 can be calculated as follows:

m1 =

N
∑

i=1
wi

N
,

wi = exp−di ,

(12)

where wi is the normalized value of matching degree between
the i-th laser beam end with an obstacle in the map. di is the
distance between the end of laser beam and corresponding
grid. N is the number of laser beams.

m2 = det(ℑ̂(P)) = det(
N0

∑
i=1



∆r̂2
iE

∆x2
∆r̂2

iE
∆x∆y

∆r̂2
iE

∆x∆θ

∆r̂2
iE

∆x∆y
∆r̂2

iE
∆y2

∆r̂2
iE

∆y∆θ

∆r̂2
iE

∆x∆θ

∆r̂2
iE

∆y∆θ

∆r̂2
iE

∆θ 2


) (13)

where P = (x,y,θ) is the pose of robot. r̂2
iE is the desired

distance if the ith laser beam in the LRF model. N0 is the
laser beams’ number.

After filtering the observation, a Bayesian filter is used for
data fusion. The predicted map is combined with observation
to obtain an accurate map. As the robot running, the map is
constantly updated. Dynamic occupancy grid map [23] and
HMMs [24] are used here. High matching degree indicates
accurate localization and low prediction error. The higher the
matching degree, the greater weight of the predicted map.
This allows the map to be updated relatively quickly as well

8589



as avoiding introducing inaccurate information. The fusion
is performed as equation (14).

Qt,k+1 =
[
Qt,kAc(1−m1)+Xtm1

]
Bzη ,

Ac =

[
1− p f |o

c p f |o
c

po| f
c 1− po| f

c

]
,

Bz =

[
p(z | c = occ) 0

0 p(z | c = f ree)

]
,

(14)

where Qt,k =
[

po| f
c p f |o

c

]
is the k-th updated grid state at time

t. Ac is the state transition matrix, which is identified through
Expectation-Maximization algorithm in our experiments
[23]. Bz is the observation, which is calibrated in advance
and is the same for each grid. m1 is the matching degree,
Xt = [xt 1− xt ] and xt is the predicted state, and η is the
normalization factor.

In the fusion process, updated maps matching the environ-
ment can be got. The particle filter localization algorithm is
used [1] for obtaining robot pose P based on updated maps.
When the robot stops running or one time interval tmr ends,
the updated map is sent back to the map database.

V. SIMULATION

Simulations are done in MATLAB using the parking area
scene. Periodical, gradually incremental and random changes
are set.

A. Simulation platform and parameters setting

The parking area is 50 m × 50 m, with 32 parking spaces
and 8 pillars. Parameters for model building and update are
shown in Table I, which are same in experiment except TM .

TABLE I
PARAMETERS IN SIMULATION AND EXPERIMENT

d G0 Gth Sth tmr Tup TM

0.5 0.5 0.75 0.7 1 hour 24 hours 168 hours

TABLE II
PARAMETERS FOR CHANGES

Tw (h) Td (h) D Sth (µ1,σ1) δ (h) (µ2,σ2)

168
8, 12,

24
1/2,
1/3

0.5,
1, 1.5

(0.1∼0.45,
0.1∼0.5)

24,
72, 96 (0.3,0.35)

Two scenes are set in simulation. In scene 1, the change is
periodic superimposed randomness; in scene 2, the change is
gradually incremental superimposed randomness, so that the
effects of different changes can be respectively evaluated.

The form of periodicity, gradually increment and random-
ness are shown in Fig. 4. Periodic changes are set with
daily period Td , weekly period Tw and daily parking ratio
D. For gradual increment, the D is gradual extension at rate
k. For randomness, Gaussian noise N

(
µ1,σ

2
1
)

is introduced
in the grid occupation probability, and some parking spaces
are selected to disappear in a period of time δ based on
Gaussian distribution N

(
µ2,σ

2
2
)
. Parameters are shown in

Table II, which are unequal for different parking spaces, and
detail correspondence can be found in the attached video.

Fig. 3. Maps in simulation. The figues are serial numbers of parking spaces.
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Fig. 4. Forms of changes. (a) Periodic. (b) Gradually incremental. (c)
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Fig. 5. State of the 16th parking space.

Time series of maps of 17 days are generated, with a
resolution of 0.1 m. The states of parking spaces are modeled
by ArmMPU and FreMEn [15] in two scenes. The prediction
accuracy and localization performance are compared.

B. Map prediction

The models are built using previous 7-day data to predict
maps in the next 10 days. The FreMEn code is implemented
based on the author’s open source code.

The 16th parking space with the gradually incremental
change in scene 2 is shown in Fig. 5, and the car disappeared
in the 10th day. ArmMPU can predict the incremental trend
through state regression, and can correct the prediction by
error slip for randomness. Although the prediction error was
large on the 11th day, it had readjusted from the 12th day,
while FreMEn can only extract the periodicity of changes.

TABLE III
AVERAGE PREDICTION ACCURACY IN SIMULATION

Algorithm Average prediction accuracy
Scene 1 Scene 2

FreMEn 85.03% 65.44%
ArmMPU 86.82% 83.88%

The average prediction accuracy pre ave is obtained by
calculating the ratio of the correctly predicted parking spaces
to the total parking spaces. The average prediction accuracy
of 10 days is shown as Table III.

C. Localization performance

The localization performance of our method, FreMEn, the
dynamic map method [7] and the static map method [1] are
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compared, and they all locate based on the particle filter.
Odometer and 2D LiDAR data used for localization

are generated based on maps and moving path, and the
noises respectively are Gaussian noise N(0.03,0.00042) and
N(0,0.022). Several moments in different days are selected to
test. In each run, the robot moves along a fixed path shown
in Fig. 3, with a total of n = 1801 points. Parameters for
localization and map update are shown in Table IV.

TABLE IV
PARAMETERS FOR SIMULATION

Particle
number

Update
threshold

Update
weights Loss threshold

100 Mth = 0.6 λ=0.7 1 m or 0.5 rad

The matching degree m1 along the path in a certain run
and corresponding maps are shown in Fig. 6. To show the
effect of m1, a larger update threshold Mth = 0.7 is set. In
region A and B, the prediction is accurate, m1 is relatively
large, and the parking spaces nearby are updated.

The distance and angle error deer and θeer in a run are
calculated as equations (15) and (16). (xi,yi,θi) and (x̂i, ŷi, θ̂i)
are localization result and true value at the point i. Multiple
test are averaged to obtain the average localization error.

deer =
∑

n
i=1

√
(xi− x̂i)

2 +(yi− ŷi)
2

n
, (15)

θeer =
∑

n
i=1

∣∣θi− θ̂i
∣∣

n
. (16)

When the localization error of a point exceeds a certain
threshold, localization in this point is defined lost, and is not
counted in the the average localization error. The localization
loss rate is computed as the ratio of the lost points to the
total test points. After 10 tests in each scene. The localization
performance are shown as Fig. 6. The localization error of
static map is not calculated since its loss rate is too high.

In both scenes, the localization performance of our method
and FreMEn is better than dynamic map method and
static map method, since ArmMPU and FreMEn have prior
predicted maps corresponding to the environment.

The prediction accuracy and localization performance of
ArmMPU are slightly better than FreMEn in scene 1. In
scene 2 where the changes are gradually incremental and
random, performance of ArmMPU are much better than
FreMEn. This is still because ArmMPU can better deal with
aperiodic changes with regularity and changes.

VI. EXPERIMENTS
Experiments are performed in indoor parking area and

laboratory. Parameters in experiment are shown in Table I
and V except TM , which is 192 hours. The ground truth for
map prediction are reference maps built by GMapping [18].
The ground truth for localization are measured by ruler.
A. Experiment platform

The JiaoLong intelligent wheelchair is used as experiment
platform. Odometer and two 2D LiDARs (SICK TIM571)
are employed here. An industrial personal computer with i7-
6820EQ CPU is employed, installed with Ubuntu and ROS.
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Fig. 6. Map update and localization performance. The black broken line in
(a) is actual path, and the red one in (b) is localization result.

TABLE V
PARAMETERS FOR EXPERIMENT

Particle
number

Update
threshold

Update
weights Loss threshold

50 Mth=0.65 λ=0.7 3 m or 1 rad

(a) Wheelchair (b) Scene of indoor parking area

Fig. 7. Experimental platform and environment of indoor parking area.

B. Experiment scene of parking area

The parking area is shown in Fig. 7, which is 51.7 m ×
27.8 m, with 23 parking spaces.

In parking area experiment, the parking space instead of
the single grid is modeled. The time series of parking space
states are obtained before model building, and models for
every parking space are built, then the entire predicted map
is generated based on the predicted states. By this way, the
modeling time can be significantly reduced. Since the shape
and pose of the vehicle do not change much, setting them to
fixed values in prediction is feasible in practical applications.

C. Map prediction of parking area experiment

The GMapping [18] is used for the original map and
reference map build, which can generate maps with sufficient
accuracy for our experiments. The grid map resolution is 0.1
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(a) 10:00 (b) 16:00 (c) 22:00

Fig. 8. FreMEn predicted maps.

(a) 10:00 (b) 16:00 (c) 22:00

Fig. 9. ArmMPU predicted maps.

(a) 10:00 (b) 16:00 (c) 22:00

Fig. 10. Reference maps.

TABLE VI
AVERAGE PREDICTION ACCURACY FOR 5 DAYS

FreMEn ArmMPU
Average prediction accurancy 75.51% 84.81%

m. 13 days data are collected at interval tmr: previous 8 days
data for model building and last 5 days for test.

Some reference and predicted maps in the 12th day are as
Fig. 8-10. The average prediction accuracies for every day
and whole 5 days are shown as Fig. 11 and Table VI.

The prediction accuracy of ArmMPU is higher than Fre-
MEn. The actual parking environment has not only periodic
changes, but also aperiodic and randomness changes. For
example, on the beginning of weekly work, people may have
longer parking hours because of overtime work. Our method
can model aperiodic changes with regularity, and better deal
with randomness through a certain error slip correction.

D. Localization performance of parking area experiment

The localization performance can reflect the final effec-
tiveness of methods.

Four test points ABCD are chosen. In each test, push
the wheelchair to move along the route for consecutive 3
circles. To highlight the role of parking space prediction,
laser maximum scan range is set to 8 m. The wall is basically
not scanned when robot moving on the path.

The matching degree m1 in a certain test and correspond-
ing maps are shown in Fig. 12. Between points A and B,
the parking space prediction is basically correct, m1 is high,
and parking spaces nearby B are updated. After that, there
is no car in BCD segment to help with localization, and
some parking spaces between DA are wrongly predicted, so
localization performance and m1 gradually goes worse.

The average localization performance in 12 localization
tests are shown as Fig. 13. The localization performance
of ArmMPU are better than FreMEn. In case of not

Fig. 11. Average prediction accuracy for every day.

(a) Moving path (b) m1

(c) Reference map (d) Predicted map (e) Updated map

Fig. 12. Map update performance.
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Fig. 13. Localization performance.

using the wall information, the accuracy of parking space
prediction has a large impact on localization performance.
In general, in the parking area experiment, ArmMPU has
better performance.

E. Time and memory consumption
Time and memory consumption in parking area experi-

ment of ArmMPU are evaluated, which are shown in Table
VII and VIII. NumPy is used for model building with matrix
operation vectorized. In memory consumption evaluation,
two sizes of map, 51.7 m × 27.8 m (parking area) and 123.0
m × 81.4 m (several offices with hallways), are tested.

TABLE VII
TIME CONSUMPTION OF MAP MODELING AND PREDICTION

Modeling in single grid Modeling in parking space
Modeling Prediction Modeling Prediction

Consumption
of time (s) 676.69 6.42 29.7 0.78

TABLE VIII
MEMORY CONSUMPTION

Parking area Offices with hallways
Memory consumption (MB) 319 750

Time and memory consumption will increase with the map
size extending, which will result in decrease of real-time
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performance. Due to the independently modeling of each
grid, time consumption basically increases linearly, fully able
to meet the requirements for model update once a day.

Meanwhile, we record the output frequency of updated
maps and localization, which are 2 Hz and 10 Hz. In the
parking environment where the changes are not severe, the
real-time requirements can be met.

F. Experiments at laboratory

To enrich experimental scenes, experiments in a 18.1 m
× 15.0 m indoor laboratory are supplemented. Changes of
laboratory is more random due to human influence. Models
for each grids are built, and the prediction and localization
performance are shown in Table IX and X.

TABLE IX
AVERAGE PREDICTION ACCURACY

FreMEn ArmMPU
Average prediction accurancy 77.51% 78.16%

TABLE X
LOCALIZATION PERFORMANCE

Methods Distance error/m Angle error/rad Loss rate/%
FreMEn 0.45 0.13 50

ArmMPU 0.42 0.10 17

The prediction accuracy of ArmMPU is a bit higher. That
is because static object is in majority, which is easy to be
correctly predicted. However, the dynamic object has great
impact on localization, and the loss rate of ArmMPU are
much lower than FreMEn. ArmMPU has better performance
in the more randomized laboratory environment.

VII. CONCLUSION

In this paper, we propose a long-term localization method
based on time series map prediction. The environmental map
is modeled and predicted based on ARMA as the long-
term information. The Bayesian filter combines prediction
and observation with variable weight, providing accurate
prior map for localization. Simulatiosn and experiments in
different scenes show that our method can model and predict
the periodic changes and aperiodic changes with regularity of
the environment, and has certain adaptability to the random
changes, and achieving better localization performance in the
long-term changing environments. In the future work, we will
consider making use of the correlation of grids, improving
the real-time performance on the mobile robot to increase
the frequency of map update, and extending the duration of
the experiment.
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