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Abstract— In this paper, we propose to augment image-
based place recognition with structural cues. Specifically, these
structural cues are obtained using structure-from-motion, such
that no additional sensors are needed for place recognition.
This is achieved by augmenting the 2D convolutional neural
network (CNN) typically used for image-based place recognition
with a 3D CNN that takes as input a voxel grid derived from
the structure-from-motion point cloud. We evaluate different
methods for fusing the 2D and 3D features and obtain best
performance with global average pooling and simple con-
catenation. On the Oxford RobotCar dataset, the resulting
descriptor exhibits superior recognition performance compared
to descriptors extracted from only one of the input modalities,
including state-of-the-art image-based descriptors. Especially at
low descriptor dimensionalities, we outperform state-of-the-art
descriptors by up to 90%.

I. INTRODUCTION

Place recognition is a key concept for localization and
autonomous navigation, especially so in GPS-denied envi-
ronments. In particular, the ability to recognize a previously
observed scene is a fundamental component in Simultaneous
Localization and Mapping (SLAM). Here, place recognition
is used to provide loop closure candidates, which can be
used to compensate for accumulated drift, thereby enabling
globally consistent mapping and tracking. Furthermore, place
recognition can support the purpose of localization with
respect to a pre-built map of the environment [1]. The de-
facto standard approach involves casting its formulation as
an image-retrieval problem [2] in which a query image is
matched to the most similar one in a database of images
representing the visual map. The 6 degree-of-freedom pose
of the query camera frame can subsequently be inferred from
the retrieved database image.

Traditionally, image matching has been achieved by first
extracting handcrafted sparse local feature descriptors [4]–
[6]. Related research has focused on various ways to effi-
ciently match such local features and to meaningfully aggre-
gate them for generating matches between full images [2],
[7]–[12]. However, challenges arise when images represent-
ing the same location are captured under strong variations
in appearance [13]. These variations can be due to changes
in illumination, weather conditions, and camera viewpoint.
Considering the ultimate goal of achieving large-scale long-
term place recognition, the problem setting is further com-
plicated by severe seasonal changes in appearance, structural
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Fig. 1. To enhance visual place recognition, we propose a composite
descriptor that combines both visual and structural cues – obtained using
structure from motion – in a single representation. This figure illustrates
three queries and the retrieved image using different types of descriptors.
While descriptors that separately leverage either appearance or structure
produce incorrect matches, each query is successfully matched using our
composite descriptor despite changes in viewpoint and visual appearance.
See the supplementary material [3] for further examples.

scene modifications over time, for example due to roadworks,
and perceptual aliasing in repetitive environments.

To cope with these challenges, recent works focus on
replacing the handcrafted local features with convolutional
neural networks (CNNs), which have proven useful in vari-
ous object-level recognition tasks [14]–[16]. CNNs are used
to either improve the discriminability of learned local 2D
image features [17], [18] or directly learn powerful global
image descriptors in an end-to-end manner [19]–[21].

However, due to the susceptibility of image-based ap-
proaches to variations in scene appearance, a different branch
of research has developed local [22], [23] and global [24],
[25] 3D structural descriptors to perform place recognition in
3D reconstructed maps. Most of these structural descriptors
are based on maps generated from LiDAR scanners or
RGBD cameras. As an exception, [22], [23] proposed a local
descriptor matching approach in which learned descriptors
are derived from the point cloud obtained by structure-from-
motion. These structural descriptors were compared to state-
of-the-art appearance-based descriptors, with mixed results
– in some cases, structure outperforms appearance, while
in other cases, appearance outperforms structure. Inspired
by these results, we show in this paper that place recog-
nition performance can improve significantly by learning
to incorporate both visual and 3D structural features, that
contain information extracted over sequences of images, into
a unified location descriptor. To this end, we propose a
simple yet effective deep CNN architecture that is trained
end-to-end on the combination of both input modalities. We
demonstrate the superior matching and retrieval performance
of the resulting descriptors compared to descriptors of the
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same dimensionality extracted from only one of the two input
domains. Specifically, the structural features are obtained
from image sequences using structure from motion, such
that no additional sensors are needed to deploy our method
in practice. We verify our method throughout several experi-
ments by comparing its retrieval performance to state-of-the-
art baselines including NetVLAD [19], DenseVLAD [26],
SeqSLAM [27], and Multi-Process Fusion [28]. To the
best of our knowledge, we are the first to propose learned
composite descriptors that incorporate both appearance and
structure for the task of visual place recognition. To summa-
rize, we propose to derive place recognition descriptors from
both appearance and structure and show that the resulting
descriptor outperforms variants obtained from only one of
the two modalities. Several methods for fusing visual and
structural features are evaluated, and we show that of the
evaluated methods, the simplest one – concatenation of
globally pooled deep convolutional features – results in best
performance.

II. RELATED WORK

Our related work can be broadly divided into methods that
rely on matching of either images or structural segments.

Place recognition in visual maps. Visual place recogni-
tion is typically treated as an image retrieval problem [2]
where the task of recognizing places is solved by matching
individual images of the same location. Classically, this has
been achieved by extracting handcrafted sparse local feature
descriptors, such as SIFT [4], ORB [6], or FREAK [5],
at salient regions of the images. Subsequently, such local
descriptors are typically combined to form a global descriptor
for each image using aggregation methods such as bag-of-
visual-words [7]–[9], VLAD [10], or Fisher Vectors (FV)
[11], which allow for direct matching of the represented
images. Alternatively, matches between local features can
be accumulated to a match between images using nearest-
neighbour voting schemes [29], [30]. State-of-the-art perfor-
mance has been demonstrated using VLAD with descriptors
calculated at every pixel, rather than at sparse locations [31].
See [12] for a survey of handcrafted visual place recognition
methods.

Early retrieval methods that use convolutional neural net-
works (CNNs) have employed off-the-shelf networks, usually
pre-trained on ImageNet for image classification, as black
box feature extractors [32], [33]. While able to outperform
retrieval based on traditional global representations, these ap-
proaches do not reach the performance of previous methods
based on local descriptor matching. Therefore, subsequent
works have proposed hybrid approaches based on conven-
tional aggregation of local CNN features including FV [34]
and VLAD [35], [36]. More recently, architectures have been
proposed that allow the training of full image descriptors in
an end-to-end fashion. These approaches typically interpret
the output of a CNN as densely extracted descriptors that
are subsequently aggregated with a differentiable pooling
method like NetVLAD [19] or Generalized-Mean Pool-
ing [21], resulting in state-of-the-art performance on various

benchmarks.

Place recognition in structural maps. Despite advance-
ments in CNN-based retrieval, the proneness to strong
changes in visual appearance of a scene constitutes a ma-
jor disadvantage of place recognition systems using single
images. As an alternative, using 3D structure can offer
benefits in terms of robustness to challenging environmental
scene alterations and changes in illumination. As in image
representations, early works propose handcrafted local de-
scriptors [37]–[41], while more recent works leverage neural
networks. Among the latter, two approaches to extracting
structural features from point clouds have emerged: in the
first approach, 3D points are aggregated into cells of a 3D
grid, and features are learned using 3D convolutions [24],
[42]. In the second approach, features are learned directly
from the point cloud using multi-layer perceptron responses
to point locations [25], [43]. All aforementioned works use
dense point clouds, as extracted from specific sensors such
as LiDAR scanners or RGBD cameras. In contrast, we focus
on situations where only visual information is available.

It has also been shown that place recognition is possible
based on the sparser structural data generated by vision-
based structure-from-motion (SfM) algorithms [22], [23]. A
key difference to the denser LiDAR or RGBD data, which
is particularly relevant to extracting handcrafted descriptors
[22], is that surface normals cannot be computed reliably.
Therefore, like [42], the CNN-based approach of [23] uses
features learned from a 3D grid representation. Compared to
visual place recognition, they report mixed results – in some
cases, structure outperforms appearance, while in other cases
appearance outperforms structure.

Hence, to leverage useful features from both modalities,
we propose fusing them to form a unified descriptor. This
idea has very recently been applied to object detection
[44] and bounding box regression [45]. To the best of
our knowledge, we are the first to apply this concept to
place recognition. Note that structure-from-motion represents
information extracted over a sequence of images. In contrast,
approaches like SeqSLAM [27] and more recently Multi-
Process Fusion (MPF) [28] use image sequences directly.
Specifically, MPF presents an alternative approach by fus-
ing information from multiple image processing methods
including histogram of gradients and CNN features, showing
significant improvements over SeqSLAM and NetVLAD.

III. METHODOLOGY

In this section, we describe our general network archi-
tecture as well as our training methodology. In our place
recognition system, an observation i of a place is composed
of an image Ii and a voxel grid Gi encoding the corre-
sponding local 3D structure. We describe the extraction of
Gi from an image sequence in Section III-C. While it is
possible to use alternative input representations for feeding
3D structure into a neural network, such as in PointNet [43]
or PointNet++ [46], we use a grid representation based on
the methodologies of [23], [24], [40]. Our goal is to learn
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Fig. 2. (a) Overview of our proposed network architecture consisting of three building blocks including two separate CNN-based feature extraction
networks followed by an optional fusion network. (b) Schematic of our hard mining policy which is a modified version of that presented in [17].

the function fθ, parametrized with a set of parameters θ, that
maps Ii and Gi to a descriptor vector fθ(Ii, Gi), such that
the distance d(fθ(Ii, Gi), fθ(Ij , Gj)) is small if observations
i and j are of the same place, and large otherwise. While any
distance metric can be used as d, we have empirically found
the L1 distance to work best in our experiments. The goal is
to train fθ such that this property is maintained under strong
viewpoint and natural appearance changes between different
observations.

A. Architectural Details

The overall structure of our proposed compound network
is summarized in Fig. 2(a). The three main components
comprise two fully convolutional networks [47] dedicated
to visual and structural feature extraction, each producing a
descriptor specific to its modality, and an optional feature
fusion network that combines both sets of features into a
composite descriptor. We investigate different approaches to
combine the intermediary descriptors ranging from simple
concatenation to propagating the concatenated descriptors
through a multi-layer perceptron.

Feature extraction. Features are separately extracted for the
image Ii and the voxel grid Gi, respectively. The visual
feature extraction network is composed of twelve 3 × 3
convolutional layers with stride 1 while every other layer
starting with the second one is followed by non-overlapping
2× 2 max-pooling with stride 2. The first six convolutional
layers use 64 output channels, which is doubled to 128
for the remaining layers. The structural feature extraction
network is composed analogously to its visual counterpart
with the exception of using nine 3 × 3 × 3 convolutional
layers interspersed with 3D average pooling operations. For
computational efficiency, the first two layers are fixed at 32
output channels. The subsequent four layers use 64 and the
remaining three layers use 128 channels, respectively. Both
networks apply a Rectified Linear Unit (ReLU) non-linearity
to the output of every convolutional layer. Note that these are
the configurations describing our best performing compound
model and deviate slightly for some of the feature extraction
networks evaluated separately in Section V. Refer to our
supplemental material [3] for further information.

Global average pooling. As shown in Fig. 2(a), we apply
global average pooling [21] to the output of each extrac-
tion network’s final convolutional layer, resulting in cf -
dimensional visual and structural descriptors gA and gS .
cf = 128 for the standard configuration described above.
Compared to using fully-connected (FC) layers, global av-
erage pooling results in robustness to spatial translations,
reduces proneness to overfitting, and allows processing of
arbitrarily-shaped inputs, which is particularly interesting for
changes in camera resolution across applications [48]. We
use no other form of normalization besides the division by
the image resolution involved in average pooling.

Feature fusion. We evaluate and compare four different
methods to obtain a unified representation from intermediary
visual and structural feature vectors. The first one is a simple
concatenation, such that the final descriptor is given by

fθ(Ii, Gi) =
[
gA(Ii) gS(Gi)

]
. (1)

The second approach is a weighted concatenation using two
learnable scalar weights wA and wS to rescale each of the
intermediary feature vectors prior to concatenation,

fθ(Ii, Gi) =
[
wA · gA(Ii) wS · gS(Gi)

]
. (2)

To allow for more flexibility in learning correlations across
feature domains, the third version of our compound archi-
tecture trains a dimf × 2cf linear projection Wc of the
concatenation, as defined by

fθ(Ii, Gi) =Wc

[
gA(Ii) gS(Gi)

]
. (3)

Finally, we use a multi-layer perceptron gmlp to investigate
learning a non-linear mapping between concatenated features
and final composite descriptor,

fθ(Ii, Gi) = gmlp
([
gA(Ii) gS(Gi)

])
. (4)

The standard configuration employs two FC layers with 256
units each, followed by ReLU activation.

B. Training Methodology

Our network is trained using a margin-based loss on train-
ing samples which are pairs of inputs labeled with whether
they should result in a positive or a negative match. While



some place recognition methods are trained on samples from
the database sequence used during deployment, we want our
network to learn invariance to appearance conditions, so our
training set needs to represent such changes in appearance.
Furthermore, our goal is to obtain a system which can be
deployed in different environments without the need for
retraining, so we use strictly disjoint sets of training and
evaluation samples. In this section, we describe our choice
of loss function and the batch sampling strategy we have
used for training. Training has been done using stochastic
gradient descent on a single Graphics Processing Unit (GPU)
– an Nvidia Titan Xp or an Nvidia RTX 2080 Ti.
Margin-based loss. We associate each observation i with
a data sample Xi = (Ii, Gi) consisting of an image Ii
and corresponding voxel grid Gi. The network learns to
distinguish matching and non-matching locations by opti-
mizing a margin-based loss [49] that aims at minimizing the
L1 distance d(Xi,Xj) between a pair of mapped samples
Xi,Xj corresponding to matching observations while max-
imizing that of non-matching observations. With the hinge
loss denoted as ` (x) = max (x, 0), the margin-based loss
function is given by

L
(
yij ,Xi,Xj

)
= `

(
α+ yij ·

(
d(Xi,Xj)−m

))
, (5)

where yij ∈ {−1, 1} denotes the ground truth of whether
both descriptors should match and the parameters α and
m are such that the distance between matching descriptors
is nudged below m − α while the distance between non-
matching descriptors is nudged above m+ α. Compared to
the more commonly known contrastive loss [50], a margin-
based loss allows matching samples to be within a certain
distance of each other rather than enforcing them to be as
close as possible. A very popular alternative is given by the
triplet loss [51] which has been widely applied to differ-
ent problem settings [17], [52]. However, [49] highlights
the importance of sampling for deep embedding learning
and shows that a simple margin-based loss is capable of
outperforming other losses including contrastive and triplet
loss on the task of image retrieval and a range of related
tasks. Indeed, preliminary experiments using margin-based
versus triplet loss resulted in faster convergence and better
discriminative power, especially in conjunction with the hard
mining strategy described next.
Batch sampling strategy. Uniform random sampling from
all possible training pairs rapidly yields an increasing fraction
of “easy” pairs that result in a loss of zero. To avoid signifi-
cantly prolonged convergence times and inferior performance
of the converged models, we adopt the concept of hard
mining previously exploited in similar learning-based set-
tings [17], [23], [53]. In hard mining, training is focused on
samples with high loss. “Hard” samples can be determined
using forward passes, which are computationally cheaper
than training passes. In our particular pair-based training
setup, we exploit the fact that the loss of x2 pairs can be
evaluated using only 2x descriptor forward passes. The set of
hard samples technically changes with every iteration, but it

would be prohibitive to look for the hardest pair of the entire
training dataset at every iteration. Consequently, we rely on
a randomized hard mining strategy, where the n hardest
samples are selected from k2 random pairs every n training
iterations, see Fig. 2(b). k and n are iteratively adapted as
training progresses: k is increased over time, and if there are
too many samples with zero loss, n is decreased. To avoid
focus on outliers and to account for the natural imbalance
between true negatives and true positives, we use a balanced
batch composition equally divided into hard pairs, randomly
selected positive pairs, and randomly selected negative pairs.
We use the largest batch size divisible by three that fits GPU
memory - 12 when training the compound network and 24
when training the feature extraction networks individually.

C. Voxel Grid Representation

The goal of our setup is to rely on vision sensors only,
and so we use 3D structural information extracted from
the input image sequences. The reconstructed 3D point
segments are discretized into regular voxel grids to represent
local structural information. In principle, any kind of Visual
Odometry [54] or SLAM [55], [56] framework may be
used for 3D point cloud generation from image sequences.
However, we are interested in exploiting the rich structural
information provided by semi-dense reconstructions follow-
ing the promising results reported in [23]. To this end, we use
a variant of the publicly available Direct Sparse Odometry
(DSO) framework [57] extended to perform pose tracking
and mapping using stereo cameras [58]. As a direct method,
DSO is able to track and triangulate all image points that
exhibit intensity gradients, including edges.

Given the 3D reconstruction of an image sequence, we
generate one voxel grid per image. A point cloud submap is
extracted from a rectangular box centered at the camera pose
at which the image was taken. We assume each submap to
be aligned with both the z-axis of the world frame which
can be achieved using an Inertial Measurement Unit (IMU),
and with the yaw orientation of the corresponding camera
pose. The size of the box is fixed in our method and needs
to be adapted according to the environment in which it is
used. A submap contains all points observed by DSO over
the set of N preceding keyframes (ending with the frame
associated with this submap) that are located within the box
boundaries. Next, the submap is discretized into a regular
voxel grid. We evaluate three different methods to populate
the grids: with binary occupancy (bo), a voxel with any 3D
points located inside is assigned a value of 1 and 0 otherwise.
With point count (ptc), each voxel value is equal to the
number of 3D points within that voxel. With soft occupancy
(so), each 3D point receives a weight equal to 1.0 which is
distributed among the eight nearest voxel centers using tri-
linear interpolation. We compare the performance achieved
when using each of these representations in Section V-A.

IV. EXPERIMENTS

In this section, we describe the dataset and our evaluation
methodology, and provide quantitative and qualitative results



TABLE I
NUMBER OF IMAGES PER CONDITION AND SEASON PART OF OUR

TRAINING AND TESTING SETS, WHICH ARE SELECTED FROM THE

ORIGINAL SEQUENCES WITH TIMESTAMPS LISTED BELOW.

Train sun spring / summer (8183 / 5739), snow (7975), rain (8127),
overcast spring / summer / winter (7377 / 8118 / 7860)

Test
sun spring / summer / autumn (2406 / 1827 / 2416),
overcast spring / summer / winter (2178 / 2461 / 7407),
dawn (4851), snow (2450), rain (1949)

spring
summer
autumn
winter

2015-03-10-14-18-10 / 2015-05-19-14-06-38,
2014-07-14-14-49-50 / 2015-08-13-16-02-58,
2014-11-18-13-20-12,
2014-12-09-13-21-02 / 2014-12-12-10-45-15 / 2014-12-02-15-30-08 /
2015-02-03-08-45-10 / 2015-02-13-09-16-26

to validate our approach.

A. Dataset

While there exist several datasets for visual place recog-
nition in challenging conditions, most of them provide only
single, isolated images as queries. By contrast, our approach
requires sequences of images as queries in order to recon-
struct the scene. Therefore, for training and evaluation, we
use sequences from the popular and challenging Oxford
RobotCar Dataset [13]. Within this dataset, the same 10 km
route through central Oxford was captured approximately
twice a week over more than a year. We choose a set of
ten sequences that represent the large variance in visual
appearance to be expected in a long-term navigation scenario,
see Table I. With approximately two sequences of the main
route selected per season, our subset exhibits a large diversity
in illumination, weather conditions including snow, sun, and
rain as well as structural changes. Our selection effectively
compresses the about 100 traversals of the original dataset
while preserving its challenging characteristics for visual
place recognition. We follow the common procedure of
splitting each traversal into geographically non-overlapping
training, validation, and testing segments, resulting in ap-
proximately 51K training samples selected from seven se-
quences, 17K validation, and 24K testing samples chosen
across ten sequences. Images are cropped to remove the hood
of the car, and downscaled by a factor of two when used
as visual CNN input (but not when used as DSO input).
Furthermore, fully overexposed images and long sequences
during which the car is stationary are discarded to ensure
tracking stability of DSO. The discretized volume around
each camera pose is fixed at 40 × 40 × 20m with a grid
resolution of 96× 96× 48 voxels.

B. Evaluation Methodology

Our experiments evaluate place recognition based on pair-
wise matching across the sequences in our testing set. All 45
unique sequence combinations are taken into account. Each
model is evaluated in terms of exhaustive pairwise matching
and nearest-neighbor retrieval. To evaluate a model on a
given sequence pair, we loop over the images of the first
sequence while the images of the second sequence are used
to build the database. The best-performing model is selected

TABLE II
COMPARISON OF MEAN AVERAGE PRECISION (MAP) AND RECALL@1

BASED ON 128-D STRUCTURAL DESCRIPTORS FOR VARYING DEPTH dS

OF THE FEATURE EXTRACTION NETWORK AND GRID REPRESENTATIONS.

Depth dS
mAP [-] Recall@1 [%]

bo so ptc bo so ptc

6 0.883 – – 93.9 – –
8 0.901 – – 94.5 – –
9 0.905 0.741 0.756 94.5 90.4 89.5
10 0.879 – – 93.1 – –
12 0.867 0.759 0.731 92.3 90.5 89.3

based on the results obtained on the validation split while
the testing set is used exclusively to obtain the final results.

Exhaustive pairwise matching. Given a sequence pair, we
evaluate how well a model discriminates between matching
and non-matching descriptor pairs within the set of all
possible pairs where one descriptor comes from the query
sequence and the other from the database sequence. Each de-
scriptor pair is classified into should and should-not matches:
they should be matched if they represent locations with
relative ground truth distance of less than 5m and heading
difference of less than 30 degrees. In contrast, pairs with
relative ground truth distance larger than 20m between the
associated locations should not be matched. Descriptor pairs
corresponding to locations with relative distance between 5m
and 20m and any relative heading can but do not have to be
matched. A descriptor pair is deemed to match if their L1

distance is lower than a predefined threshold demb,th. Con-
sequently, matched descriptors are categorized into true and
false positives while not matched descriptors are categorized
as either true or false negatives. This allows for computation
of precision-recall (PR) curves parameterized by demb,th.
These are summarized using mean average precision (mAP),
which is equivalent to the area under the PR curve.

Recall@1 – Nearest-neighbor retrieval. To verify the
utility of the various descriptors, we follow the common
procedure [19], [59] to evaluate retrieval by looking at the
N nearest neighbors among all database descriptors for a
given query descriptor. It is deemed correctly recognized
if there is at least one descriptor within the N retrieved
ones with associated ground truth distance below 20m. For
each sequence pair, we iterate over all descriptors of the
query sequence and compute recall@N as the percentage
of correctly recognized query descriptors. Since some of the
recorded sequences show deviations from the main route, we
only consider query descriptors for which at least one truly
matching database descriptor exists. Due to place constraints,
we restrict our analysis to the most difficult setting, N = 1.

V. RESULTS AND DISCUSSION

A. Voxel Discretization Method

We separately train the structural feature extraction net-
work for varying layer counts dS using the three grid
representations described in Section III-C. To this end, the
network learns by minimizing the margin-based loss given in
(5) for structural descriptors only. Results averaged over all



TABLE III
RECALL@1, IN PERCENT, FOR DIFFERENT FUSION METHODS AGAINST VISUAL AND STRUCTURAL DESCRIPTORS, AND SEVERAL BASELINE METHODS,

CLEARLY SHOWING PERFORMANCE GAINS WHEN BOTH INPUT MODALITIES ARE COMBINED. SEE THE SUPPLEMENTARY MATERIAL [3] FOR A

BREAKDOWN INCLUDING EACH OF THE 45 SEQUENCE PAIRINGS.

Composite descr. (ours) Appearance
descr.

Structure
descr.

NetVLAD
descr. (ft)

Multi-Process
Fusion

DenseVLAD
descr.

SeqSLAM
40m (20m)Concat Weight. concat Linear MLP

98.0 96.7 96.9 95.7 94.2 93.9 90.0 89.3 83.1 73.1 (64.5)

45 testing sequence pairs are reported in Table II. We observe
that using a binary occupancy representation achieves the
best performance for all considered configurations. This is
likely because the point count inside a voxel can vary
depending on texture and appearance of the scene, which,
unlike binary occupancy, is sensitive to seasonal changes.
Hence, this representation is used in all other experiments.
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Fig. 3. PR curves from exhaustively matching two sequence pairs
recorded in different seasons. Generally, superiority of using either visual
or structural descriptors varies across sequence pairings. For all evaluated
combinations, however, fusing both visual and structural cues using our
composite representation results in significant performance gains. See the
supplementary material [3] for the plots of all 45 sequence combinations.

B. Feature Fusion

To show the contribution of combining visual and struc-
tural features, we investigate the gains in retrieval using
our composite descriptors over using only one of the two
input modalities. Results are reported in Table III. We
observe performance gains when using composite descriptors
regardless of the fusion method used to generate them. In
particular, we find that a simple concatenation of descriptors
gA(Ii) and gS(Gi) results in the best overall performance
with significant improvements over using only gA(Ii) or only
gS(Gi). The fact that simple concatenation performs best
could be because it forces both features to be learned – other
methods can degenerate into situations where parts of the
input features are ignored. Furthermore, more complicated
fusion methods could be prone to overfitting, resulting in
worse validation and testing performance. Still, further inves-
tigation of feature fusion methods, including more advanced
methods like attention refinement [60] are interesting future
work. Additionally, as exemplified in Fig. 3, we observe that
for some of the sequence pairings descriptors encoding struc-
tural cues perform better compared to those encoding visual
features while for other pairings, visual descriptors slightly
outperform structural ones. The left of Fig. 3 shows the PR
curves resulting when exhaustively matching two sequences
recorded during spring and winter, respectively. Both se-
quences are subject to similar illumination and weather con-

ditions and we observe that our appearance- and structure-
based descriptor variants perform very similarly. To the right
of Fig. 3, we provide the PR curves for a pairing again
recorded during different seasons and additionally under
drastically varying illumination and weather conditions. Im-
ages in the query sequence are subject to very low exposure
while those in the database sequence are affected by direct
sunlight resulting in greatly overexposed areas within the
images. As a consequence, we observe the appearance-based
variants to perform much worse compared to the structure-
based descriptor. For both illustrated sequence pairings, our
composite descriptor benefits from fusing both visual and
structural cues into a unified representation. We highlight
that for each of the 45 investigated sequence pairings, our
proposed composite descriptor consistently outperforms all
other variants.

0 100 200 300 400 500
dimf

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
ec

al
l@

1

NetVLAD (ots)

NetVLAD (ft)

Composite descr.
(pca, ours)

Composite descr.
(linear, ours)

0 100 200 300 400 500
dimf

0.40

0.50

0.60

0.70

0.80

0.90

1.00

m
A

P

Fig. 4. Mean average precision (mAP) and recall@1 shown for varying
descriptor dimensionality dimf . Both NetVLAD variants’ performance
degrades significantly more severely when reducing dimf . This results in
a relative gain of up to 90.5% in mAP and 23.6% in recall@1 of our
composite descriptor against NetVLAD for dimf = 64.

C. Baseline Comparison

We evaluate our method against SeqSLAM [27], Den-
seVLAD [26], NetVLAD [19] and Multi-Process Fu-
sion [28]. We ensure that images are spaced by 0.5m to
avoid problems when the car stands still. We evaluate SeqS-
LAM sequence lengths of 40 and 80 frames (around 20m
and 40m) and use a linear trajectory search velocity of 0.8

TABLE IV
AVERAGE TIMINGS FOR COMPUTING A SINGLE INSTANCE OF EACH

DESCRIPTOR VARIANT MEASURED USING AN NVIDIA TITAN XP.
VALUES IN PARENTHESES INDICATE COMPUTATION TIMES WHEN

DESCRIPTORS ARE COMPUTED IN BATCHES.

Descriptor type Avg. computational cost per descriptor
Appearance 8.96ms (7.53ms)
Structure 11.93ms (10.62ms)
Composite, concat 18.80ms (17.50ms)
NetVLAD 60.82ms (46.68ms)
DenseVLAD 1690ms ( - )



to 1.2. For DenseVLAD, we train the visual vocabulary on
25 million RootSIFT descriptors extracted from the training
set. The final descriptors are projected to 256 dimensions to
match the dimensions of all other methods. For the evaluation
of Multi-Process Fusion, we use the publicly available VGG-
16 trained on Places365 and keep the suggested default
parameters. The comparison in retrieval performance is given
in Table III. The reported values result from averaging the
Recall@1 measured for each of the 45 sequence pairs.
Note that while this would suggest that our appearance-
only branch outperforms NetVLAD, these are results specific
to the narrow-baseline Oxford Robotcar Dataset. On the
wide-baseline VGG Oxford Buildings dataset [9], we have
found for example that NetVLAD performs better than
our appearance-only branch, with an mAP of 0.54 versus
0.15. Unfortunately, our training data is restricted to narrow
baselines, as we have not found a dataset that provides
both image sequences and a wide variety of wide baseline
matches. As NetVLAD outperforms all of the other base-
lines, we thoroughly compare our composite descriptor to
two variants of NetVLAD descriptors while also considering
different descriptor dimensions dimf . Using few descriptor
dimensions can significantly boost nearest neighbour search
performance and reduce memory requirements. The first
version uses the publicly available VGG-16 + NetVLAD layer
+ PCA whitening off-the-shelf weights trained on Pitts30k.
The second version represents the off-the-shelf weights after
fine-tuning them on our training set for 15 epochs lasting
approximately 70 hours on an Nvidia RTX 2080 Ti. Fol-
lowing [19], we use PCA to generate NetVLAD descriptors
of varying dimensionality ranging between 64 and 512.
Even though concatenation of gA(Ii) and gS(Gi) results
in best performance, training a linear projection allows us
to precisely control the number of target dimensions dimf

of our composite descriptor. Hence, we individually train
both feature extraction networks modified to produce 256-
instead of 128-dimensional descriptors. We then initialize
our compound network using these pretrained extraction
networks and continue training different weight sets by
varying dimf . By using the concatenation of gA(Ii) and
gS(Gi), we obtain 512-dimensional composite descriptors.
Additionally, we train three more variants each using a linear
projection to control dimf . The results are illustrated in Fig.
4, which shows that matching and retrieval performance of
both NetVLAD variants severely diminishes when reducing
descriptor dimensionality. For dimf = 256 – the best-
performing compact projection dimension reported in [19] –
our composite descriptor outperforms NetVLAD by 39.1% in
exhaustive pairwise matching and 8.9% in nearest-neighbor
retrieval. By decreasing dimf , our approach outperforms
NetVLAD by as much as 90.5% and 23.6% in matching
and retrieval, respectively. We also evaluate the projection
of our descriptor using a PCA trained on the same data
as the NetVLAD PCA instead of a linear projection using
our training method. As seen in Figure 4, recall@1 is the
same, while mean average precision is slightly worse. Note,
however, that the original dimension of NetVLAD (4096) is

much higher than that of our descriptor (512).
D. Computational Costs

Training the visual and structural feature extraction net-
works described in Section III-A using a single GPU requires
approximately 35 hrs and 77 hrs, respectively. The com-
pound architecture is initialized with the resulting weights
and further trained for approximately 27 hrs. Note that a
large fraction of training time is spent on batch sampling
using the hard mining strategy detailed in Section III-B.
Furthermore, the time spent on hard mining increases signif-
icantly as training progresses since such hard sample pairs
become increasingly difficult to find. In Table IV, we further
provide an overview of average inference times, including
those generated by the purely descriptor-based baselines
NetVLAD and DenseVLAD.

VI. CONCLUSION

In this paper, we have proposed to augment visual place
recognition using structural cues. We have shown that a
concatenation of feature vectors obtained from appearance
and structure performs best among the evaluated fusion
methods. Our approach is completely vision-based and does
not require additional sensors to extract structure. In all
of our experiments, our composite descriptors consistently
outperform vision- and structure-only descriptors alike, as
well as all baselines. Specifically, when comparing our com-
posite descriptor against NetVLAD, the relative performance
gain, especially at low descriptor dimensions, can be as
high as 90.5% and 23.6% in exhaustive pairwise matching
and nearest-neighbor retrieval. The good performance at low
dimensions means that our approach is particularly well
suited to fast, large-scale nearest neighbour retrieval.
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[56] J. Engel, J. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in Eur. Conf. Comput. Vis. (ECCV), pp. 834–849,
2014.

[57] J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, pp. 611–625, Mar. 2018.

[58] J. Wu, D. Yang, Q. Yan, and S. Li, “Direct sparse odometry with
stereo cameras.” https://github.com/HorizonAD/stereo_
dso, 2018.

[59] T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt, “Image retrieval
for image-based localization revisited,” in British Mach. Vis. Conf.
(BMVC), pp. 76.1–76.12, 2012.

[60] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “BiSeNet:
Bilateral segmentation network for real-time semantic segmentation,”
in Eur. Conf. Comput. Vis. (ECCV), pp. 325–341, 2018.


